an analysis of conical drill point grinding — the generation process and effects of setting errors

5
An Analysis of Conical Drill Point Grinding - the Generation Process and Effects of Setting Errors J. D. Wright, Engineer, Government Aircraft Factory, Melbourne; E. J. A. Armarego (1). University of Melbourne/Australia The final drill point geometry generation process for general p'urpose twist drills using thc popular conical grinding method is described and modelled. Based on the "ideal" case analysis pre*--iously reported, the fundamental clements of this process are identified and analysed. Far this "ideal" (design) case, the grinder described cm producc all the recommended specified drill point feature values for a range of grindirg cone angles. The introduction of grinder setting acviations from the "ideal" case (setting errors) severely complicates the analysis and the generated curved lip drill point shape. metrical features and the "acceptable grinder criteria" had to be established. The effects of deviations in six grinder settings and two drill flute-features have been studied for 80 general purpose combinations of drill point feature values. drill shapes occur for 26 combinations. lips are obtained although the ranges between the design and generated features can differ substantially. The dominant setting errors and thc susceptible generated features are identified. This study high- lights the difficulties ic achieving and controlling the specified geometry in practice. New definitions for the geo- It is shown that even with small deviations, unacceptable Fcr the remaining 54 combinations essentially straight drill INTRODUCTION The general geonetry of the conventional twist drill has been described in numerous textbooks and handbooks E1-31. Considerable international agreement on the nomenclature and specification of the salient geometrical features of twist drills is also evident in handbooks and Standards [2-71. Further, it has been recognised that the geometry at the drill point, where cutting occurs, affects the important machining per- formance characteristics such as forces, power and drill life. Through decades of developn.ent and experimentation, recommendations for the values of specified drill point features for optimum drill per- formance when machining different work materials have been given in handbooks [2,3]. Recommendations for general purpose drills, representing a compromise optimum geometry for machining a range of common work materials have also been quoted [2,3,7] and compared [81. Despite the accumulated knowledge of twist drills there is relatively little detailed information about the precise geometry of the drill point and the assoc- iated sharpening method. There is evidence to suggest that the conical grinding method is commonly used i n practice [9] although other methods have been noted in the literature [lo-121. In addition the 'as measured' geometrical variability of nominally identical manuf- actured drills has been shown to be excessive [13-161 and contributes significantly to the scatter in the drilling forces [14,15] and drill life [1G,17]. The selection of the drill point sharpening method, the drill point feature values and the quality control procedures for general purpose drills has been the responsibility of the drill manufacturers. In recent years, research workers have developed a keen interest in these important aspects of twist drills. A number of investigations of the drill geometrical variability obtained during manufacture have highlighted the sources of variations and the significant reductions in variability possible through improved quality control procedures [18-20]. A series of studies of the popular conical and some other drill point sharp- ening methods have also been made in an attempt to arrive at an optimum d r i l l point geometry [13,16,21-231. The investigations of drill point sharpenin? methods carried out a t the University of Melbourne have been aimed at obtaining a deeper understanding of the general purpose drill geometry and plausible drill point grinders capable of achieving a desired optimal geometry with a view to improve the variability of nominally identical drills [24-271. final drill point geometry generation process for general purpose drills is presented. The analysis is a further development of earlier studies based on the "ideal" conical grinding method. Detailed analyses of grinding methods have shown the conical grinding method to be most promising as a means of generating the reconmended range of drill point feature values for general purpose drills [26]. In this present analysis the generated shape and drill point feature values will be considered both in the absence (i.e. 'ideal' case) and presence of grinder setting errors. In this paper an analytical investigation of the -- FINAL DRILL POINT GEOMETRY GENERATION_ PROCESS - IDEAL CASE In developing an analysis of the final drill point geometry generation process, it is necessary to con- sider the geometrical interaction between the drill and the grinding surface. From a practical point of view, this involves four major elements these being the selection of an initial drill point geometry: the setting of the drill in a grinder; the grinder action during which the initial geometry is progressively removed; and the selection of an end point a t which the desired final drill point geometry is generated (i.e. "ideal" final location). For each of these elements of the generation process, mathematical relationships need to be established which link the grinder setting para- meters to the generated drill point geometric features. The common approach in earlier analytical studies [13, 21,22,24-261 has been to develop these types of math- ematical relationships when the drill is positioned in the "ideal" final-location and the initial geometry has been fully removed. These analyses have provided im- portant insights into the potential of the grinding methods as assessed by "acceptable grinder criteria" [2G]. Thus they represent an essential starting point for the broader analysis incorporating all elements of the generation process. The general geometry of the conical grinding method wh'en t h e d r i l l is in the 'ideal' final location is shown in Fig. 1. In addition to assuming that the initial geometry is fully removed, it has also been assumed [24,26] that: !a) The d r i l l geometry is symmetrical about the drill axis. T 1 C* SECTION A-A Annals of the ClRP Vol. 32/1/1983 1

Upload: jd-wright

Post on 02-Jul-2016

214 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: An Analysis of Conical Drill Point Grinding — the Generation Process and Effects of Setting Errors

An Analysis of Conical Drill Point Grinding - the Generation Process and Effects of Setting Errors

J. D. Wright, Engineer, Government Aircraft Factory, Melbourne; E. J. A. Armarego (1). University of Melbourne/Australia

The f i n a l d r i l l p o i n t geometry g e n e r a t i o n p r o c e s s f o r g e n e r a l p'urpose t w i s t d r i l l s u s i n g t h c popular c o n i c a l g r i n d i n g method is d e s c r i b e d and model led. Based on t h e " i d e a l " c a s e a n a l y s i s pre*--iously r e p o r t e d , t h e fundamental c lements of t h i s p r o c e s s a r e i d e n t i f i e d and ana lysed . Far t h i s " i d e a l " ( d e s i g n ) c a s e , t h e g r i n d e r d e s c r i b e d c m producc a l l t h e recommended s p e c i f i e d d r i l l p o i n t f e a t u r e v a l u e s f o r a range of g r i n d i r g cone angles . The i n t r o d u c t i o n of g r i n d e r s e t t i n g a c v i a t i o n s from t h e " i d e a l " c a s e ( s e t t i n g e r r o r s ) s e v e r e l y compl ica tes t h e a n a l y s i s and t h e genera ted curved l i p d r i l l p o i n t shape. m e t r i c a l f e a t u r e s and t h e " a c c e p t a b l e g r i n d e r c r i t e r i a " had t o be e s t a b l i s h e d . The e f f e c t s of d e v i a t i o n s i n s i x g r i n d e r s e t t i n g s and two d r i l l f l u t e - f e a t u r e s have been s t u d i e d f o r 80 g e n e r a l purpose combinat ions of d r i l l p o i n t f e a t u r e v a l u e s . d r i l l shapes occur f o r 2 6 combinat ions. l i p s a r e o b t a i n e d a l though t h e ranges between t h e d e s i g n and g e n e r a t e d f e a t u r e s can d i f f e r s u b s t a n t i a l l y . The dominant s e t t i n g e r r o r s and t h c s u s c e p t i b l e genera ted f e a t u r e s a r e i d e n t i f i e d . T h i s s t u d y high- l i g h t s t h e d i f f i c u l t i e s ic a c h i e v i n g and c o n t r o l l i n g t h e s p e c i f i e d geometry i n p r a c t i c e .

N e w d e f i n i t i o n s f o r t h e geo-

I t is shown t h a t even w i t h smal l d e v i a t i o n s , unacceptab le Fcr t h e remaining 5 4 combinat ions e s s e n t i a l l y s t r a i g h t d r i l l

INTRODUCTION

The g e n e r a l g e o n e t r y of t h e c o n v e n t i o n a l t w i s t d r i l l h a s been d e s c r i b e d i n numerous tex tbooks and handbooks E1-31. Cons iderable i n t e r n a t i o n a l agreement on t h e nomenclature and s p e c i f i c a t i o n of t h e s a l i e n t g e o m e t r i c a l f e a t u r e s of t w i s t d r i l l s is a l s o e v i d e n t i n handbooks and Standards [2-71. F u r t h e r , it has been recognised t h a t t h e geometry a t t h e d r i l l p o i n t , where c u t t i n g o c c u r s , a f f e c t s t h e impor tan t machining per - formance c h a r a c t e r i s t i c s such a s f o r c e s , power and d r i l l l i f e . Through decades of developn.ent and e x p e r i m e n t a t i o n , recommendations f o r t h e v a l u e s o f s p e c i f i e d d r i l l p o i n t f e a t u r e s f o r optimum d r i l l per- formance when machining d i f f e r e n t work m a t e r i a l s have been g i v e n i n handbooks [ 2 , 3 ] . Recommendations f o r g e n e r a l purpose d r i l l s , r e p r e s e n t i n g a compromise optimum geometry f o r machining a range of common work m a t e r i a l s have a l s o been quoted [ 2 , 3 , 7 ] and compared [81.

D e s p i t e t h e accumulated knowledge of t w i s t d r i l l s t h e r e is r e l a t i v e l y l i t t l e d e t a i l e d i n f o r m a t i o n about t h e p r e c i s e geometry of t h e d r i l l p o i n t and t h e assoc- i a t e d sharpening method. There i s ev idence to suggest t h a t t h e c o n i c a l g r i n d i n g method i s commonly used i n p r a c t i c e [9] a l though o t h e r methods have been noted i n t h e l i t e r a t u r e [lo-121. I n a d d i t i o n t h e ' a s measured' g e o m e t r i c a l v a r i a b i l i t y of nominal ly i d e n t i c a l manuf- a c t u r e d d r i l l s h a s been shown t o be e x c e s s i v e [13-161 and c o n t r i b u t e s s i g n i f i c a n t l y t o t h e s c a t t e r i n t h e d r i l l i n g f o r c e s [14,15] and d r i l l l i f e [1G,17]. The s e l e c t i o n of t h e d r i l l p o i n t sharpening method, t h e d r i l l p o i n t f e a t u r e v a l u e s and t h e q u a l i t y c o n t r o l procedures f o r g e n e r a l purpose d r i l l s h a s been t h e r e s p o n s i b i l i t y of t h e d r i l l manufac turers . I n r e c e n t y e a r s , r e s e a r c h workers have developed a keen i n t e r e s t i n t h e s e impor tan t a s p e c t s of t w i s t d r i l l s . A number of i n v e s t i g a t i o n s of t h e d r i l l g e o m e t r i c a l v a r i a b i l i t y o b t a i n e d d u r i n g manufacture have h i g h l i g h t e d t h e s o u r c e s of v a r i a t i o n s and t h e s i g n i f i c a n t r e d u c t i o n s i n v a r i a b i l i t y p o s s i b l e through improved q u a l i t y c o n t r o l procedures [18-20]. A s e r i e s of s t u d i e s of t h e popular c o n i c a l and some o t h e r d r i l l p o i n t sharp- en ing methods have a l s o been made i n an a t t e m p t t o a r r i v e a t an optimum d r i l l p o i n t geometry [13,16,21-231. The i n v e s t i g a t i o n s o f d r i l l p o i n t sharpenin? methods c a r r i e d o u t a t t h e U n i v e r s i t y of Melbourne have been aimed a t o b t a i n i n g a deeper unders tanding of t h e g e n e r a l purpose d r i l l geometry and p l a u s i b l e d r i l l p o i n t g r i n d e r s c a p a b l e of a c h i e v i n g a d e s i r e d opt imal geometry w i t h a view to improve t h e v a r i a b i l i t y of nominal ly i d e n t i c a l d r i l l s [24-271.

f i n a l d r i l l p o i n t geometry g e n e r a t i o n p r o c e s s f o r g e n e r a l purpose d r i l l s is p r e s e n t e d . The a n a l y s i s is a f u r t h e r development of e a r l i e r s t u d i e s based on t h e " i d e a l " c o n i c a l g r i n d i n g method. D e t a i l e d a n a l y s e s of g r i n d i n g methods have shown t h e c o n i c a l g r i n d i n g method t o be most promising a s a means of g e n e r a t i n g t h e reconmended range o f d r i l l p o i n t f e a t u r e v a l u e s f o r g e n e r a l purpose d r i l l s [26]. I n t h i s p r e s e n t a n a l y s i s t h e g e n e r a t e d shape and d r i l l p o i n t f e a t u r e v a l u e s w i l l be cons idered both i n t h e absence ( i . e . ' i d e a l ' c a s e ) and presence of g r i n d e r s e t t i n g errors.

I n t h i s paper an a n a l y t i c a l i n v e s t i g a t i o n of t h e

-- FINAL DRILL POINT GEOMETRY GENERATION_ PROCESS - IDEAL CASE

I n deve loping an a n a l y s i s of t h e f i n a l d r i l l p o i n t geometry g e n e r a t i o n p r o c e s s , i t is necessary t o con- s i d e r t h e g e o m e t r i c a l i n t e r a c t i o n between t h e d r i l l and t h e g r i n d i n g s u r f a c e . From a p r a c t i c a l p o i n t of view, t h i s i n v o l v e s f o u r major e lements t h e s e being t h e s e l e c t i o n of an i n i t i a l d r i l l p o i n t geometry: t h e

s e t t i n g of t h e d r i l l i n a g r i n d e r ; t h e g r i n d e r a c t i o n d u r i n g which t h e i n i t i a l geometry is p r o g r e s s i v e l y removed; and t h e s e l e c t i o n of an end p o i n t a t which t h e d e s i r e d f i n a l d r i l l p o i n t geometry i s g e n e r a t e d ( i . e . " i d e a l " f i n a l l o c a t i o n ) . For each of t h e s e e lements of t h e g e n e r a t i o n p r o c e s s , mathematical r e l a t i o n s h i p s need to be e s t a b l i s h e d which l i n k t h e g r i n d e r s e t t i n g para- meters t o t h e g e n e r a t e d d r i l l p o i n t geometr ic f e a t u r e s . The common approach i n e a r l i e r a n a l y t i c a l s t u d i e s [13, 21,22,24-261 has been t o develop t h e s e types of math- e m a t i c a l r e l a t i o n s h i p s when t h e d r i l l i s p o s i t i o n e d i n t h e " i d e a l " f i n a l - l o c a t i o n and t h e i n i t i a l geometry h a s been f u l l y removed. These a n a l y s e s have provided i m - p o r t a n t i n s i g h t s i n t o t h e p o t e n t i a l of t h e g r i n d i n g methods a s a s s e s s e d by " a c c e p t a b l e g r i n d e r c r i t e r i a " [2G]. Thus they r e p r e s e n t an e s s e n t i a l s t a r t i n g p o i n t for t h e broader a n a l y s i s i n c o r p o r a t i n g a l l e lements o f t h e g e n e r a t i o n p r o c e s s .

The g e n e r a l geometry of t h e c o n i c a l g r i n d i n g method wh'en t h e d r i l l i s i n t h e ' i d e a l ' f i n a l l o c a t i o n i s shown i n F i g . 1. I n a d d i t i o n t o assuming t h a t t h e i n i t i a l geometry i s f u l l y removed, i t has a l s o been assumed [24 ,26] t h a t :

!a) The d r i l l geometry is symmetr ical about t h e d r i l l a x i s .

T 1 C*

SECTION A-A

Annals of the ClRP Vol. 32/1/1983 1

Page 2: An Analysis of Conical Drill Point Grinding — the Generation Process and Effects of Setting Errors

( b ) The p o r t i o n o f t h e f l u t e s u r f a c e which f o r m s e a c h l i p i s a " r u l e d " s u r f a c e ( d e v e l o p a b l e a n n u l a r h e l e c o i d ) .

( c ) The d i s t a n c e be tween e a c h s t r a i g h t l i n e f l u t e g e n e r a t o r i n ( b ) and t h e d r i l l a x i s is h a l f t h e web t h i c k n e s s (W) and t h e a c u t e a n g l e between t h e skew g e n e r a t o r and t h e d r i l l a x i s i s h a l f t h e p o i n t a n g l e ( p ) .

F o r t h i s g r i n d i n g method, t h e d r i l l f l a n k s a r e gen- e r a t e d by two r i g h t c i r c u l a r g r i n d i n g c o n e s symmetr ic- a l l y l o c a t e d a b o u t t h e d r i l l a x i s w i t h e a c h cone gen- e r a t i n g o n e f l a n k . The c o n e and d r i l l axes l i e i n p a r a l l e l p l a n e s w i t h t h e cone a x e s d i s p l a c e d by a d i s - t a n c e C from t h e d r i l l a x i s . The a c u t e a n g l e s b e t - ween t h g skew d r i l l and cone a x e s a r e e a c h y w h i l e t h e semi -cone a n g l e f o r e a c h cone is b. I f t h e g e n e r a t e d l i p i s t o b e s t r a i g h t , t h e ' i d e a l ' f i n a l l o c a t i o n o f t h e d r i l l mus t be s u c h t h a t a s t r a i g h t l i n e g e n e r a t o r o f e a c h f l u t e ( t a n g e n t i a l to t h e d r i l l core d i a m e t e r ) i s c o i n c i d e n t w i t h a c o r r e s p o n d i n g s t r a i g h t l i n e c o n e g e n e r a t o r . The a n g l e between t h e p r o j e c t i o n s o f t h e cone g e n e r a t o r t h r o u g h t h e l i p and t h e c o n e a x i s i n t h e p l a n e no rma l t o t h e d r i l l a x i s i s A . The cone a p i c e s , a t o r i g i n s 0 and 0 are d i s p l a c e d by C , C and C w i t h r e s p e c t to o r i g i n 0 on t h e d r i l l a x r s as shdwn i n F i g . 1. A number o f t h e g r i n d i n g p a r a - meters ? , ~ , A , V , C ~ , C , C z a r e i n t e r r e l a t e d by [ 2 4 ] ,

t a n v = - Y

s inxcosxsec ' e - g ' s e c 2 i (cos2 i(sec'1:-1) + s i n ' x s e c 2 ,2 (1-cos? ysec2 9)

(1) ( 2 ) Cx = C tanA - W/cos;i

Y and Cz = C t a n v . ( 3 ) Y Thus from t h e geomet ry i n F i g . 1 and t h e above e q u a t - i o n s , f o u r g r i n d i n g p a r a m e t e r s a r e s u f f i c i e n t t o f u l l y d e s c r i b e t h e geomet ry w i t h t h e d r i l l i n t h e ' i d e a l ' f i n a l l o c a t i o n [26 ] . As w i l l be n o t e d l a t e r , t h e f o u r g r i n d i n g p a r a m e t e r s o , x , i and Cx p r o v i d e a u s e f u l p r a c t i c a l s e l e c t i o n .

The e q u a t i o n s f o r g r i n d i n g cone 1 w i t h respect to t h e o r i g i n 0 o n t h e d r i l l a x i s h a s b e e n e x p r e s s e d as ~ 2 4 1

( 4 )

A similar e q u a t i o n f o r cone 2 c a n a lso h e found [24 ] .

g e n t i a l t o t h e d r i l l cone d i a m e t e r ) p r o j e c t e d i n t h e x-y p l a n e are:

The e q u a t i o n s f o r t h e l ips ( f l u t e g e n e r a t o r s t a n -

f o r L i p 1 : x = y t a n i - W/COSA f o r L i p 2 : x = y t a n i + W/COSA

The r e l e v a n t p o r t i o n o f t h e c h i s e l e d g e e q u a t i o n i n t h e x-y p l a n e c a n b c found by s G l v i n g t h e two c o n e e q u a t i o n s w i t h r e s p e c t t o o r i g i n 0 on t h e d r i l l a x i s

i f rom which [24]

F o r t h e c u r v e d c h i s e l edge , the c h i s e l e d g e a n g l e $ is b a s e d on t h e t a n g e n t t o t h e c u r v e i n t h e x-y p l a n e a t x=y=O, t h u s from F i g . 1

where

t a n $ ' = -

$ = 1800 - A - $ 1 (7)

[ s i n 2 9 - s i n x c o s x L i n 2 ci - ( cx/c ) ( cod -cog 3

(CX/C )( cos~e-cos7x) ( 8 ) Y

t h e p o i n t a n g l e 2p and l i p c l e a r a n c e a n g l e CP are also r e l a t e d t o t h e g r i n d i n g p a r a m e t e r s [ 2 4 ] 20 t h a t

and

t a n c s = -cos ( & # - A ) [ t a n A + t a n ( ~ - 1 ) ( c o s 2 x - s in7 Xtan2 9) -tanvtan(w-i)sinycosxsec20]

The r e m a i n i n g s p e c i f i e d d r i l l p o i n t f e a t u r e s , i . e .

cospcosx + s i n p s i n x c o s ~ - c o s e = 0 ( 9 )

i [ t a n " ( s i n 2 x -cos2 ,q t a n 2 o ) - s inxcosXsec2 D I ( 10) where t h e web a n g l e w is d e f i n e d a s

, = s i n - l ( w / r ) (11)

A t t h e o u t e r c o r n e r , r = D/2 and ,: = .,, , so t h a t t h e l i p c l e a r a n c e a n q l e C : c a n be found f?om E q u a t i o n (101 by u s i n y . , f rom EquatTon (11).

E q u a t i o n s (1) t o (11) p r o v i d e t h e m a t h e m a t i c a l r e l a t i o n s h i p s be tween t h e g r i n d i n q p a r a m e t e r s and t h e commonly s p e c i f i e d d r i l l p o i n t f e a t u r e s 2p , Cv , ' v , 2W and D . f e a t u r e s 2p. C! and i:' a r e g e n c r a t e d on :he f l u t e d body w i t h known'features 2W and D . A s n o t e d earlier and e v i d e n t from E q u a t i o n s (1) t o (11) t h e f o u r nec- e s s a r y g r i n d i n g p a r a m e t e r s s u c h a s '1, Y , and C h a v e t o be found from t h e t h r e e e q u a t i o n s i n v o l v i n g t#e g e n e r a t e d f e a t u r e s 2p, Ci and I ( E q u a t i o n s ( 7 ) , (9) and (10). Thus tine d r i l l O g e o m e t r y i s u n d e r s p e c i f i e d a l t h o u g h a l l t h e d r i l l p o i n t f e a t u r e s c a n b e independ- e n t l y s e l e c t e d and g e n e r a t e d by t h i s g r i n d i n g method p r o v i d e d one g r i n d i n g p a r a m e t e r s u c h a s '4 is p r e - s e l e c t e d [24 ,26 ] . F u r t h e r i t h a s p r e v i o u s l y b e e n shown t h a t t h e c o n d i t i o n $1 .. '< mus t a p p l y t o e n s u r e t h a t t h e d r i l l r e m a i n s w i t h i n t h e g r i n d i n g cone and h e n c e c a n b e f u l l y g round [24 ] . I n a more r e c e n t work by t h e a u t h o r s [26] a comprehens ive set o f " a c c e p t a b l e g r i n d e r cri teria" h a v e b e e n e s t a b l i s h e d and a p p l i e d to t h e c o n i c a l . g r i n d i n g method. I t was found t h a t a t a l l c o m b i n a t i o n s o f t h e recommended d r i l l p o i n t f e a t u r e v a l u e s f o r g e n e r a l p u r p o s e d r i l l s , t h e d e s i r e d geomet ry was g e n e r a t e d and t h e a v a i l a b l e r a n g e w i t h i n wh ich ( ' u ) c o u l d be s e l e c t e d was o n l y m a r g i n a l l y r e s t r i c t e d [26] .

The r e m a i n i n g e l e m e n t s o f t h e g e n e r a t i o n p r o c e s s need t o b e c o n s i d e r e d i n o r d e r t o p h y s i c a l l y p o s i t i o n t h e d r i l l i n t h e ' i d e a l ' f i n a l locat ion shown i n F i g . 1 and t h u s a c h i e v e t h e d e m o n s t r a t e d p o t e n t i a l o f t h i s g r i n d i n q method f o r g e n e r a l p u r p o s e d r i l l s h a r p e n i n g . The g r i n d e r shown i n F i g . 2 , h a s b e e n d e s i g n e d f o r t h i s p u r p o s e . I t i s n o t e d t h a t t h e g r i n d e r a l l o w s f o r t h e f a c t t h a t t h e i n i t i a l s e t t i n g s w i l l o c c u r when t h e d r i l l i s d i s p l a c e d from i ts f i n a l l o c a t i o n w i t h r e s p e c t to t h e g r i n d i n g s u r f a c e . Thus , a l t h o u g h o n l y f o u r g r i n d i n g p a r a m e t e r s are needed to d e s c r i b e t h e geomet ry i n t h e " i d e a l " f i n a l l o c a t i o n , more g r i n d e r s e t t i n g p a r a m e t e r s may b e needed t o a c h i e v e t h i s c o n d i t i o n . N e v e r t h e l e s s , a n a t t e m p t h a s b e e n made t o maximize t h e u t i l i z a t i o n o f t h e g r i n d i n g p a r a m e t e r s i n t h e above a n a l y s i s . F o r example , t h e g r i n d e r s e t t i n g p a r a m e t e r s 9 and :< are d i r e c t p h y s i c a l r ep - r e s e n t a t i o n of t h e cor-res o n d i n g r i n d i n g p a r a m e t e r s i n t h e a n a l y s i s . S i m i l a r P y by m J i n g t h e v e e g r o o v e

Dur ing p o i n t s h a r p e n i n g t h e t h r e e s p e c i f i e d

o, coneapex * ab"G, bc-cp

ac = cq

FIGURE 2

2

Page 3: An Analysis of Conical Drill Point Grinding — the Generation Process and Effects of Setting Errors

i n which t.he d r i l l is h e l d s y n m e t r i c a l wi th r e s p e c t t o t h e p l a n e p a r a l l e l t o t h e d r i l l and g r i n d i n g cone ax is , t h e g r i n d i n g parameter C can be d i r e c t l y set on t h e g r i n d e r ( F i g . 2 ) . The d iHect U S E of t h e g r i n d i n g para- meters C z and C a s g c i n d e r s e t t i n g parameters p r e s e n t problems s i n c e These a r e d i s t a n c e s between o r i g i n s 0: and 0 i n space when t h e d r i l l i s i n t h e ' i d c a l ' f i n a l l o c a t i o n . By a n t . i c i p a t i n g t h e f i n a l l o c a t i o n o f t h e o u t e r c o r n e r of t h e d r i l l wi th r e s p e c t to t h e p i v o t p o i n t on t h e g r i n d e r a t tachment , t h e s e t t i n g parameter d i s t a n c e L a long t h e d r i l l a x i s can he e s t a b l i s h e d . T'ne d i s t a n g e normal t o t h e g r i n d i n g wheel s u r f a c e L may b e used t o d e s c r i b e t h e r e l a t i o n s h i p between t h g g r i n d e r p i v o t p o i n t and t h e g r i n d i n g s u r f a c e i n t h e ' i d e a l f i n s 1 l o c a t i o n . These s e t t i n g parameters , shown i n Fig. 2 , may be usea instDad of C z and C and

L~ = c (co t%-tan . , ) t ( D / 2 ) ( co tycosecv- tan . Jcos ic , , - . ) ) and Ls = (C + ( D / 2 s i n ~ ) ) s i n ~ i c o s ~ c o s e c ' ~ (13) wherc is h a l f t h e vee groove a n g l e . The i n i t i a l nnqular s e t t i n g of t h e d r i l l i n t h e vee groove t o achieve t h e g r i n d i n g p a r m e t e r 1. depends on t h e i n i t - i a l d r i l l p o i n t geometry and i t s r e l a t i o n t o t h e f l u t e g e n e r a t o r in tended t o f o r n t h e l i p when t h e d r i l l i s i n i t s ' i d e a l ' f i n a l p o s i t i o n . T h i s angular g r i n d e r s e t t i n g parameter may be made e q u a l tc t h e g r i n d i n g parameter i by c a r e f u l l y s e l e c t i n g t h e i n i t i a l d r i l l p o i n t geometry.

The d e s i g n of t h e i n i t i a l d r i l l p o i n t qenmetry c o n s t i t u t e s t h e f i r s t impor tan t e lement of t h e f i n a l d r i l l p o i n t g e n e r a t i o n process . The i n i t i a l d r i l l p o i n t geor ,e t ry should s i m p l i f y t h e s e t t i n g of t h e d r i l l i n t h e g r i n d e r (second e l e m e n t ) , should e n s u r e t h a t t h e i n i t i a l d r i l l p o i n t geometry is f u l l y rem- oved a t t h e g r i n d e r a c t i o n end p o i n t (e lement f o u r ) , should n o t i n v o l v e e x c e s s i v e m a t e r i a l removal d u r i n g p o i n t g r i n d i n g and should h e a n easy shape t o be produced.

The i n i t i a l p o i n t geometry c o n s i s t i n g of a r i g h t c i r c u l a r cone c o a x i a l w i t h t h e d r i l l a x i s can s a t i s - f y a l l t h e above c r i t e r i a when a s u i t a b l e semi-cone a n g l e '3 is s e l e c t e d . I t is a p p a r e n t t h a t t h i s i n i t i a l D p o i n t geometry is easy t o produce and h a s a geometry which roughly approximates t n e f i n a l p o i n t georretry so t h a t t h e amount of m a t e r i a l t o be removed is n o t e i tcess ive . F u r t h e r t h e c i r c u m f e r e n t i a l c l e a r - ance a n g l e Ct [24,26] is z e r o on t h e i n i t i a l c o n i c a l f l a n k s so t h a f e x c e s s m a t e r i a l is a v a i l a b l e a t t h e f l a n k s i n c e C e 0 on t h e s e s u r f a c e s fcr t h e f i n a l p o i n t geometryCO F u r t h e r t h e s o l i d cone i n t h e web ( c o r e ) r e g i m a l s o p r o v i d e s excess m a t e r i a l which e n a b l e s t h e c h i s e l edge to be formed by t h e g e n e r a t i o n process . The c o n d i t i o n s i n t h e v i c i n i t y of t h e event - u a l l i p can be s t u d i e d from t h e yrometry of t h e inLer- s e c t i o n of t h e i n i t i a l d r i l l p o i n t cone and t h e f l u t e s u r f a c e . I t i s found t h a t vhen 9 is s e l e c t e d such t h a t a s i n g l e flute g e n e r a t o r i n t g r s e c t s t w o cone g e n e r a t o r s a t t h e o u t e r and core r a d i i , r e s p e c t i v e l y , t h e i n t e r s e c t i o n c u r v e has an ex t remely s m a l l convex c u r v a t u r e when viewed i n a p l a n e normal t o t h e d r i l l axis (x-y p l a n e ) . Thus t h e i n i t i a l c o n e - f l u t e i n t e r - s e c t i o n c u r v e v e r y c l o s e l y approximates t h e s i n g l e f l u t e g e n e r a t o r c o n s i d e r e d a l though a s l i g h t amount of m a t e r i a l is a v a i l a b l e f o r removal when t h e f l u t e g e n e r a t o r is chosen a s t h e e v e n t u a l l i p of t h e sharp- ened d r i l l . The r e q u i r e d i n i t i a l d r i l l semi-cone s i n g l e 4 is found to depend on t h e p o i n t a n g l e 2p and web t h i c a n e s s t o d i a m e t e r r a t i o 2W/D [27] i . e .

a r e expressed by [ 1 2 ] , Y

Y ( 1 2 )

Y

From t h e above e q u a t i o n i t is c l e a r t h a t 5 w i l l be less t h a n t h e " i n t u i t i v e " c h o i c e of 9 i n i t i a l geometry, t h e i n t e r s e c t i o n o f D t h e i n i t i a l d r i l l cone and f l u t e may be used t o i d e n t i f y t h e f i n a l l i p and o u t e r c o r n e r which s i m p l i f i e s t h e i n i t i a l s e t t i n g of t h e d r i l l i n t h e g r i n d e r , i . e . s e t t i n g s Lc and 1 .

ing t h e i n i t i a l p o i n t geometry a t t h e a p p r o p r i a t e 0 (Equat ion (14)) and s e t t i n g O , x , C ,L and ,I on t h e g r i n d e r a t tachment . The d r i l l i s x t h & p o s i t i o n e d i n i t s ' i d e a l ' f i n a l l o c a t i o n by g r a d u a l l y incrementing t h e g r i n d e r a t tachment i n t h e L d i r e c t i o n w h i l e O s c i l l a t i n g a b o u t t h e g r i n d i n g done a x i s u n t i l t h e

i n i t i a l geometry is f u l l y removed i . e . L i s s a t i s - f i e d .

T h i s a n a l y s i s h a s demonstrated t h a t t h e s tudy of t h e d r i l l p o i n t g e n e r a t i o n p r o c e s s i s more i n t r i c a t e t h a n t h e a n a l y s i s f o r t h e d r i l l i n t h e ' i d e a l ' f i n a l l o c a t i o n d e p i c t e d by F i g . 1. However by a d e t a i l e d c o n s i d e r a t i o n of t h e v a r i o u s e lements t h e g e n e r a t i o n p r o c e s s can be s i m p l i f i e d and t h e p o t e n t i a l scope of t h i s g r i n d i n g method noted e a r l i e r [26] achieved when s e t t i n g e r r o r s a r e ignored .

= pp With t h i s

The g e n e r a t i o n p r o c e s s t h e r e f o r e c o n s i s t s of gr ind-

FINAL IIRILI. POINT GEOMETRY - GEWERATION PROCESS - SETTING ERRORS

I n a t t e m p t i n g to a c h i e v e t h e d e s i r e d f i n a l d r i l l p c i n t geometry, e r r o r s a r e p o s s i b l e i n s e t t i n q each of t>e f i v e main g r i n d e r parameters ( i . e . a , A , . + , C , and L 1 . A d d i t i o n a l l y , t h e i n i t i a l geometry may c 8 n t a i n f f r o r s i n 2W and i , i rh i le t h e d r i l l may be moved Loo f a r towards t h e g r i n d i n g wheel by an amount dt, d u r i n g the g r i n d e r a c t i o n element of t h e g e n e r a t i o n process . With such numerous p o t e n t i a l soi i rces of error, it i s d o u b t f u l i n o r a c t i c e i f a l l t h e s e e r r o r s can be e l i m - i n a t e d . T h e i r n e t e f f e c t w i l l be t o make i t impract- i c a l tr) p o s i t i o n t h e d r i l l i n t h e " i d e a l " f i n a l l o c a t - i o n . S o a l though t h e f i n a l g e n e r a t e d d r i l l p o i n t geometry w i l l have c o n i c a l f l a n k s i t s l i p s must be curved because u n l i k e t h e " i d e a l " c a s e i l l u s t r a t e d i n F i g . 1, t h e l i p s a r e n o t formed by a s i n g l e g r i n d i n g cone g e n e r a t o r . Thus t h e need is c r e a t e d f o r an extended a n a l y s i s t o s tudy t h e i n f l u e n c e of e r r o r s on t h e g e n e r a t e d geometry.

The a n a l y s i s p r e s e n t e d i s based on t h e " i d e a l " case and accommodates t h e g r i n d e r s e t t i n q , i n i t i a l geometry, and g r i n d e r a c t i o n errsrs d i s c u s s e d above. I t a l s o i n c l u d e s a s u i t a b l e d e f i n i t i o n of t h e g r i n d e r a c t i o n rnd p o i n t . F u r t h e r , t h e " a c c e p t a b l e g r i n d e r c r i t e r i a " e s t a b l i s h e d f o r t h e " i d e a l " c a s e [26] a r e reviewed and modi f ied . F i n a l l y , r e v i s e d d e f i n i t i o n s of t h e s p e c i f - i e d d r i l l p o i n t f e a t u r e s a r e developed and a means of measuring t h e amount of l i p c u r v a t u r e determined.

For t h e purpose Of t h e a n a l y s i s , t h e o r i g i n i s t a k e n t o be t h e p o i n t 0 on t h e d r i l l a x i s a s shown i n F i g . 1. The i n t r o d u c t i o n of s e t t i n g and g r i n d e r a c t i o n e r r o r s w i l l l e a d t o t h e d isp lacement of bo th t h e d r i l l and cone a x e s away from t h e " i d e a l " f i n a l l o c a t i o n . When t h e g r i n d e r j i g is p o s i t i o n e d a d i s - t a n c e L t r . away from t h e g r i n d i n g wheel p l a n e , t h e equat io j l s f o r t h e d isp lacement between t h e o r i g i n 0 on th? d r i l l a x i s and t h e cone apex become: C X ' = cx t dCx ( 1 5 )

C ' = C s i n ( d 0 t d x ) + C c o s ( d * + d r ) Y Z Y

t 2C s in[%]cos[$+ 5]+ 2C s i n [ Z ! c o s [ x + d i : - . ' t ~ ] dB

- (G,singI- L ) ( c o t $ - c o t ( 1 j t d 9 ) ) s in!HtiAdatdu)

t s i n ( y t d x ) c o s e c ( e + do) . \ (16)

P 2 2 q

Cz' = Cz cos(d0 + d i ) - C s i n ( d . 1 + dX) Y

(20)

I t is noted t h a t i n t h e " i d e a l " c a s e when do, d r , dCx, dLc and A e o u a l z e r o , Equat ions ( 1 5 ) - ( 1 7 ) r e v e r t , a s expec ted , t o Cx '=Cx , C '=C

The e q u a t i o n s f o r a p o i n t x , y , z on t h e g r i n d i n g cone 1 can then be detgrmised from:

and C z ' = C z . Y Y

x = ( y , + c ' ) t a v A ' - cx' ( 2 2 ) Y zc = (yc + C y ' ) t a n v ' - C Z '

where t h e a n g l e s > ' and Y ' can b e i n t e r r e l a t e d u s i n g a modif ied v e r s i o n of t h e " i d e a l " c a s e Equat ion (1) and s u b e t i t u t i n g 4 + dq and x + d i f o r 9 and x r e s p e c t i v e l y .

A t a r a d i u s r , a p o i n t x on a g e n e r a l f l u t e g e n e r a t o r may be d e t e g h i % %om t h e fo l lowing e x p r e s s i o n s ( w i t h r e f e r e n c e t o o r i g i n 0 on t h e d r i l l axis) : xf = r s i n ( i t 9 + dh - 6)')

yf = r cos()i t h t d i - i u ' )

zf = (Wtanh + rcos , , , ' )cotp + [*$]cot(6,t dS)

(23)

(24) (25)

(26) where, s inw' = W 7- t dW

and G r e p r e s e n t s t h e i n c l i n a t i o n between t h e p r o j e c t - i o n s of t h e g e n e r a l and r e f e r e n c e f l u t e g e n e r a t o r s i n a p l a n e normal t o t h e d r i l l a x i s . The r e f e r e n c e f l u t e g e n e r a t o r i n t u r n r e p r e s e n t s t h e g e n e r a t o r i n c l i n e d by t h e error a n g l e dA t o t h e g e n e r a t o r which forms t h e

Page 4: An Analysis of Conical Drill Point Grinding — the Generation Process and Effects of Setting Errors

s t r a i g h t l i p when t h e d r i l l i s p o s i t i o n e d i n t h e " i d e a l " f i n a l l o c a t i o n .

d r i l l cone g e n e r a t o r t R e '8' e u a t 'f ons t a k e t h e form: xD = r s i n e

yD = CoSE zD = r c c t 9

where i~.' i s found by s u b s t i t u t i n g r = D i n Equat ion (27) and E is t h e a n g l e between t h e p r o j e c t i o n s of t h e g e n e r a l i n i t i a l d r i l l cone g e n e r a t o r and t h e y- a x i s i n a p lane normal t o t h e d r i l l a x i s .

p o i n t can b c e s t a b l i s h e d and t h e r e s u l t a n t f i n a l d r i l l p o i n t geometry found. I t i s a p p a r e n t t h a t t h e s e e q u a t i o n s a r e f a i r l y complex and i n v o l v e v a r i a b l e s which a r e d i f f i c u l t t o s e p a r a t e . Hence i t was necess- a r y t o u s e i t e r a t i v e s o l u t i o n s e a r c h techniques t o de termine t h e g r i n d e r a c t i o n end p o i n t . The l a r g e number of c a l c u l a t i o n s involved was expedi ted by developing and us ing a s u b s t a n t i a l computer programme

I n broad terms, t h e method of de te rmining t h e g r i n d e r a c t i o n end p o i n t i s t o f i r s t select v a l u e s of t h e commonly s p e c i f i e d d r i l l p o i n t f e a t u r e s t o g e t h e r w i t h s i z e s of t h e g r i n d e r s e t t i n g , i n i t i a l geometry, and g r i n d e r a c t i o n errors. The " i d e a l " c a s e g r i n d i n g and g r i n d e r parameter v a l u e s a r e t h e n c a l c u l a t e d from Equat ions (1) - (13) and t h e i n i t i a l d r i l l semi-cone a n g l e 8 de te rmined u s i n g Equat ion ( 1 4 ) . Equat ions (28)-(3B) a r e used t o s e l e c t a p o i n t on t h e i n i t i a l d r i l l cone. The p o i n t on t h e g r i n d i n g cone a t which x =x and y =y i s then found from Equat ions ( 1 5 ) - ( 2 3 ) . Tfiesg two g h B s of e q u a t i o n s a r e i t e r a t e d f o r . ? t ill t h e c o n d i t i o n z =z is s a t i s f i e d . By r e p e a t i n g t h e above s t e p s forCa Eomprehensive g r i d of p o i n t s on t h e i n i t i a l d r i l l cone a minimum v a l u e of.! can be e s t a b - l i s h e d . T h i s r e p r e s e n t s t h e l a s t p o i n t on t h e i n i t i a l d r i l l cone removed by t h e g r i n d i n g cone. S u b t r a c t i n g dA from t h e minimum h v a l u e g i v e s t h e g r i n d e r a c t i o n end p o i n t when errors o c c u r .

The f i n a l d r i l l p o i n t geometry genera ted a t t h e g r i n d e r a c t i o n end p o i n t must , i n a s i m i l a r f a s h i o n t o t h e " i d e a l " c a s e , m e e t c e r t a i n shape c o n s t r a i n t s i f i t s g e n e r a l appearance i s t o be cons idered accept - a b l e . With e r r o r s p r e s e n t , t h e seven " a c c e p t a b l e

g r i n d e r criteria" e s t a b l i s h e d 1261 a r e reduced to t h e fo l lowing f i v e c r i t e r i a :

F i n a l l y , a p o i n t x , on t h e g e n e r a l i n i t i a l

+ WtanAcotp + n(cosh:co tp - c o t c D ) (30) D 2

Using Equat ions ( 1 5 ) - ( 3 0 ) , t h e g r i n d e r a c t i o n end

~ 2 7 1 .

1.

2.

3 .

4.

5.

The d r i l l p o i n t r e g i o n should be symmetr ical about t h e d r i l l a x i s . The d r i l l f l a n k s u r f a c e bounded by t h e l i p , c h i s e l edge , d r i l l p o i n t h e e l , and f l u t e d land should be a cont inuous s u r f a c e . The c h i s e l edge should j o i n t h e l i p a t t h e c h i s e l edge c o r n e r . The c l e a r a n c e a t a l l p o i n t s on t h e angular f l a n k r e g i o n between t h e o u t e r c o r n e r and t h e c h i s e l edge c o r n e r should be s u f f i c i e n t t o p r e v e n t i n t e r f e r e n c e w i t h t h e t r a n s i e n t s u r f a c e d u r i n g d r i l l i n g . C o n d i t i o n s (1) t o ( 4 ) should be s a t i s f i e d when a t t e m p t i n g to achieve t h e recommended ranggs of t h e s p e g i f i e 8 d r i l l g o i n t f e a t u r s i.e. 2p=118 ; Q= 120 -135 : CLn=8 -16'; 6,,=2C -32O; 2W/D=12%-20%. %

- The modes of f a i l u r e of t h e above c r i t e r i a a r e

i d e n t i c a l t o t h e " i d e a l " c o n i c a l g r i n d i n g method [26] w i t h t h e e x c e p t i o n s t h a t c r i t e r i o n 3 may be f a i l e d by t h e c h i s e l edge i n t e r s e c t i n g t h e d r i l l p o i n t h e e l and c r i t e r i o n 4 may n o t be m e t due t o t h e l i p c l e a r r n c e angrle becoming n e g a t i v e .

e r a t e d a t t h e g r i n d e r a c t i o n end p o i n t , co-ord ina tes f o r p o i n t s on t h e d r i l l f l a n k were found from Equat- i o n s ( 1 5 ) - ( 2 3 ) . Combining t h e s e e q u a t i o n s w i t h Equat ions ( 2 4 ) - ( 2 7 ) f o r t h e d r i l l f l u t e and i t e r a t i n g f o r $ till t h e c o n d i t i o n z =z w a s s a t i s f i e d , t h e d r i l l l i p co-ord ina tes w e & e s t a b l i s h e d . F i n a l l y , t h e c h i s e l edge c o - o r d i n a t e s were found from Equat ion (23) and a modif ied v e r s i o n of t h e " i d e a l " c a s e Equat ion ( 6 ) w i t h C x ' , C I , R + d B , and x+dx s u b s t i t u t e d f o r Cx, C

With t h e g e n e r a t e d l i p s being curved , r e v i s e d d e f i n i t i o n s w e r e needed f o r t h e g e n e r a t e d p o i n t f e a t u r e s such as t h e p o i n t angle . Three r e v i s e d d e f i n i t i o n s were d e r i v e d us ing t h e concept of an "average" d r i l l l i p formed by j o i n i n g t h e o u t e r and c h i s e l edge c o r n e r s w i t h a s t r a i g h t l i n e . The aver - age p o i n t a n g l e 2p d i r e c t l y based on t h e "average" l i p w h i l e t h e average c h i s e l edge a n g l e $ was a l s o r e q u i r e d u s e of modif ied v e r s i o n s of Equat iohs ( 7 ) and ( 8 ) developed f o r t h e " i d e a l " c a s e . S i m i l a r l y , t h e c l e a r a n c e a n g l e CZ ' was obta ined us ing a modif ied v e r s i o n of t h e " i d e a l " c a s e Equat ion (10). I n both c a s e s , t h e m o d i f i c a t i o n s involved s u b s t i t u t i n g t h e error c a s e f o r t h e " i d e a l "

I n d e s c r i b i n g t h e f i n a l d r i l l point-geometry gen-

a , and y r e s p e c t i v e l y . Y '

and average l i p spac ing 2WA were

c a s e va lues c .g . $',+dt. f n r t i . F i n a l l y , t h e l i p curva t - u r e was determined i n t h e x-y p lane (,',xy) and y-z p lane (!.yz) by e s t a b l i s h i n g t h e amount of d e p a r t u r e of t h e curved l i p from t h e "average" l i p . Scope of Conica l Grinding w i t h Errors

The " a c c e p t a b l c g r i n d e r c r i t e r i a " w e r e used t o a s s e s s t h e g e n e r a t e d f i n a l d r i l l p o i n t geometry f o r a l a r g e number of g e n e r a l purpose combinat ions of d r i l l p o i n t f e a t u r e v a l u e s . A s i n d i c a t e d i n t a b l e 1, 80 combinat ions of 0 , CI , 2W/D and h e l i x a n g l e x . were t e 8 t e d t o g e t h e r wi th 9 0 v a l u e s of 2 over t h e range 31 -50° ( i . e . lo i n t e r v a l s ) . T h i s gave a t o t a l of 80120 = 1 6 0 0 combinat ions which were examined. The combined e f f e c t s of t h e 8 e r r o r s a<,, dw, d ; , dC , dL , d a , dW and d i , were s t u d i e d by s imul taneous ly a5plyifig t h c worst c a s e l i m i t s f o r each error. The f i g u r e s s e l e c t e d f o r t h e 8 errors were dil, d:? t .5O: d l ! 2O; dCx, dL I .002", dh + .002"; dW 1 .0013": and d t : 1C28O. The g r i n d e r s e t t i n p and p o s i t i o n i n g ergors were d e r i v c d f r o n c o n s i d e r a t i o n of t h e r e l e v a n t s e t t i n g mechanisms w h i l e t h e i n i t i a l geometry e r r o r s wcre obta ined from an e a r l i e r p r o c e s s c a p a b i l i t y s tudy 1191. From t a b l e 1 it i s a p p a r e n t t h a t i n con- t r a s t t o t h e " i d e a l " c a s e ( i . e . z e r o e r r o r s ) , a t 26 ( o r 32%) of t h e 80 geometr ic combina t ions , no accept - a b l e f i n a l d r i l l p o i n t geometry could be produced t h u s f a i l i n g c r i t e r i o n 5. For t h e remaining combinat- i o n s , upper l i m i t s for fi were g e n e r a l l y due t o t h e f a i l u r e of c r i t e r i o n 4 i n t h a t t h e c i r c u m f e r e n t i a l c l e a r a n r e a n g l e C1 [ 2 4 ] was inadequate w h i l e t h e l o w e r l i m i t s w e r e &own t o r e s u l t from e i t h e r no or a second c h i s e l edge c o r n e r be ing g e n e r a t e d Thus n o t meet ing c r i t e r i o n 3. I n t o t a l , of t h e 1600 combinat- i o n s cons idered , a t some 688 (or 435) t h e d r i l l p o i n t geometry g e n e r a t e d was unacceptab le . Hence t h e presence of r e l a t i v e l y smal l e r r o r s has been demon- s t r a t e d t o s u b s t a n t i a l l y reduce t h e scope of c o n i c a l g r i n d i n g and p l a c e s i g n i f i c a n t r e s t r i c t i o n s on t h e v a l u e of .? which may be s e l e c t e d . L i p Curva ture and Prominent D r i l l P o i n t F e a t u r e s

The combined e f f e c t s of errors on t h e genera ted l i p c u r v a t u r e and d r i l l p o i n t f e a t u r e v a l u e s have been examined f o r s e v e r a l combinat ions of t h e spec- i f i e d d r i l l p o i n t f e a t u r e s and g r i n d e r semi-cone a n g l e 4 a t which t h e " a c c e p t a b l e g r i n d e r c r i t e r i a " w e r e s a t i s f i e d . A sample of t h e s e r e s u l t s is i l l u s t - r a t e d i n t a b l e 2 . For each of t h e 11 geometr ic combinat ions l i s t e d , t h e combined w o r s t c a s e l i m i t s

TABLE 1. Combined e f f e c t s of d e v i a t i o n s on scope of c o n i c a l d r i l l F o i n t g r i n d e r model led. (2p = 118O i n a l l c a s e s ) IDEAL CASE ( i . e . z e r o errors)

D = 1" D = 1 / 2 "

$\cyo 8 10 1 2 1 4 16

125 * * 130 * * * 135 ,34 .33 ,31 * *

120 * * r-T--T-

D = 1 / 4 "

g\"'o 8 10 1 2 1 4 16 120 * * * * * 125 * * * * * 130 * * * * 1 3 5 i 3 3 * * *

COMBINED EFFECTS

D = 1" D = 1/2"

, >v 'o 8 10 12 1 4 16 b\"o 8 10 11 1 4 16 1 2 0 <43 <42 e42 d 4 0 e35 120 .45 ~ 4 5 <45 e45 ~ 4 2 125 <48 <49 -50 * * 125 -50 ~ 5 0 * * * 130 n 34-37* * * 130 n 33-42* * * 1 3 5 n n n n n 135 n n n n n

D = 1 / 4 " D = 1/8" v\'*o 8 1 0 12 14 16 b\"o 8 10 1 2 14 16

120 *46 .46 <47 .47 *47 120 ~ 4 5 .46 *47 .48 ~ 4 9 125 <SO * * * 125 <50 * * * * 130 n n * * * 130 n n ~ 4 8 * * 1 3 5 n n n n r . 1 3 5 n n n n n

-

---

Symbols: * - combinat ion a c c e p t a b l e ( a l & g r i n d e r

n - combinat ion unacceptab le Agrindgr c r i t e r i a m e t , ti = 31° - 50 ) .

c r i t e r i o n n o t m e t , r) = 3 1 - 50 ) .

= 32O- f o r D = $", 2W/D = 14% and 6 " = 30°:

D = k " , 2W/D = 17% and 6 " = 26O: and fo r

When D = 1". 2W/D = 1 2 % and F

f o r D = 2W/D = 20% and"b3 = 2bo.

4

Page 5: An Analysis of Conical Drill Point Grinding — the Generation Process and Effects of Setting Errors

o f t h e 8 errors c o n s i d e r c d i n t h i s i n v e s t i g a t i o r were appl ied a t t h e levels l i s ted p r e v i o u s l y . From t a b l e 2 i t c a n b e s e e n t h a t t h e l i p c u r v a t u r c ? i s i n a l l cases q u i t e smal l . A s t h e maxim!im m a g n i t u d e o f t h e c u r v a t u r c componen t s was J mere .003 ( f o r ' > x y / D ) , t h e g e n e r a t e d l i p s c a n f o r p r a c t i c a l p u r p o s e s b e r e g a r d e d as s t r a i g h t l i n e s . Gi7Jen t h a t a l l t h e " a c c e p t a b l c g r i n d e r criteria' are a l s o s a t i s f i e d , t h e s e r e s u l t s s u g g e s t t h a t t h e g e n e r a l a p p e a r a n c e of t h e g e n e r a t e d p o i n t g e o m e t r y is n o t a r e l i a b l e i n d i c a t o r o f t h e p r e s e n c e o r e f f e c t s of g r i n d e r s e t t i n g errors.

The l i m i t e d Lip c u r v a t u r e a l s o i m p l i e s t h a t t h e g e n e r a t e d p o i n t f e a t u r e s c a n b e t reated as p h y s i c a l r e p r e s e n t a t i o n s o f t h e i r " i d e a l " case c o u n t e r p a r t s . From t a b l e 2 it is a p p a r e n t t h a t t h e combined errors s u b s t a n t i a l l y a f f e c t t h e v a l u e s o f t h e g e n e r a t e ? p o i n t f e a t u r e s . F o r i n s t a n c e i n a l l 11 cases, t h e r a n g e o f 2p r e a c h i n g 6.9'. v a l u e s is a s i g n i f i c a n t 4 .8 . :mWAseems p a r t i c u l a r l y s e n s i t i v e to errors . I n 3 of the 11 cases i i l u s t r a t e d , t h e g e n e r a t e d r a n g e o f i exceeded t h e recomnended q e n e r a l p u r p o s e r a n g e f o r A t h i s f e a t u r e o f 15' (12Oo-13So) w h i l e t h e naximum r a n g e of v c o n s i d e r e d ? ,, t o d . b u t s u r ~ r i s i n g l y i t d ; . S i m i l a r l y , d ; a n d d; h a d t h e a n t i c i p a t e d major i n f l u e n c e on 2p w h i l e dW s i g n i f i c a n t l y a f f e c t e d 2W ' . The r e s u l t s i n A t a b l e 2 show t h a t t h e g e n e r a t e d d r i P l p o i n t f e a t u r e r a n g e s s t r a d d l e t h e c o r r e s p o n d i n g " i d e a l " s p e c i f i e d v a l u e s . However , d i f f i c u l t i e s a re l i k e l y t o b e e n c o u n t e r e d i n t h e a c h i c v e m e n t and con t ro l o f a p a r t i c u l a r set of recommended g e n e r a l p u r p o s e f e a t u r e v a l u e s . F u r t h e r when t h e nomina l d e s i g n v a l u e s d i f f e r f rom b a t c h t o b o t c h t .he t o t a l sca t te r i n t h e q e n e r a t e d p o i n t f c a t u r e v a l u e s c a n b e e x t r e m c l y w i d e . F o r e x a n p l e , f r o g tab&' 2 , when I is s e l e c t e d w i t h i n t h c l i m i t s 120 -130 t h e g g n e r a t c d va lue o f 3.) a r a n g e o f 28 .3 . I t s h o u l d be n o t c d t h a t a s f a i r l y l o w l e v e l s o f errors h a v e b e e n c o n s i d e r e d i n t h i s i n v e s t i g a t i o n , t h e s u b s t a n t i a l p o i n t f e a t u r e v a r i a t . - i o n s shown i n t ab l e 2 may w e l l b e c o n s e r v a t i v e w h i l e t h e g e n e r a l p u r p o s e scope i l l u s t r a t e d i n t a b l e 1 c o u l d be e v e n f u r t h e r r e d u c e d .

v a l u e s e x c e e d s 46 w i t h t h e maximum r a n g e S i m i l a r l y , &he maximum r a n g e o f C .

A l t h o u g h t h e r a n g e s o o f ' i D are f a i r l y moderate ( i . e . 2 .6% max.; t h e a n g l e

'

w a s a s h i g h as 16.6O. Of t h e 8 errors was found t o b e , as e x p e c t e d , s e n s i t i v e

w a s e v e n more s e n s i t i v e t o

is shown t o v a r y f rom 112 .4 -138 .7

TABLE 2 . Combined e f f e c t s of d e v i a t i o n s on s a l i e n t f e a t u r e s of f i n a l d r i l l p o i n t g e o m r t r y .

MAX PlAX

A D 2p 1, C ! *y/3 fyz /D 2pA , -_----I - ---__ll----___l

f 1 1 8 1 2 0 8 42 Hi .001 - 1 2 0 . 1 128 .2 9 . 5 L-.OOl - 1 1 5 . 7 112 .4 6 . 9 R 4 .4 15 .8 2.6

3 1 H+.001 - 1 2 0 . 1 126 .5 l G . 2 L-.OO2 - 1 1 5 . 7 113 .7 6 . d R 4.4 12 .9 3 .8

f 1 1 8 1 2 0 1 6 42 H i . 0 0 2 + .001 1 2 0 . 5 125 .7 17 .4 L - . 0 0 2 - . 001 115 .0 1 1 4 . 2 14 .7 R 5 . 5 1 1 . 5 2 .7

31 Hi.002 - 1 2 0 . 5 124 .7 1 7 . 3 L-.002 - . 001 114 .9 1 1 5 . 1 15.0 R 5 . 6 9 .6 2 .3

$j 1 1 8 130 16 42 H+.COl - L-.002 -.001 R

L-.002 - . 001 R

1 118 120 8 42 €1+.002 - L-.002 - R

3 1 H+.001 - L-.002 -.OOl R

1 118 120 16 3 1 Hc.002 +.001 L-.003 - . 001 R

1 118 130 16 42 H+.OOZ +.001 L- .003 - . 0 0 1 R

3 1 H+.OO2 +.OOl L-.003 -.OOl R

31 H+.OOl -

1 2 0 . 5 138 .4 114 .9 121 .9

5.6 1 6 . 5 1 2 0 . 5 1 3 6 . 8 1 1 4 . 8 123 .5

5.7 1 3 . 3

1 2 0 . 3 127 .6 1 1 5 . 7 1 1 3 . 3

4.6 1 4 . 3 120 .4 125 .3 1 1 5 . 7 1 1 5 . 0

4 .7 1 0 . 3

120 .7 123 .6 114 .6 116.0

6 . 1 7.6

120 .6 138 .7 114 .6 1 2 2 . 1

6 .0 16.6 120 .8 136 .4 114 .6 124 .0

6 . 2 1 2 . 4

18.0 1 4 . 4

3.5 18 .7 1 4 . 1

4 .6

9 .4 6 . 8 2.6

1 0 . 2 6 .0 4 . 2

17 .O 15 .2 1.8

1 7 . 8 14 .4

3 .4 18 .6 13 .8

4 .8

2WI;/D

1 8 . 2 15 .9

2 . 3 1 8 . 1 1 5 . 8

2 . 3

1 8 . 2 15 .8

2 .4 1 8 . 2 1 5 . 8

2 .4

1 8 . 3 1 5 . 8

2 . 5 18 .3 1 5 . 7

2.6

12 .3 1 1 . 7

.6 1 2 . 3 11 .7

.6

1 2 . 3 11 .7

.6

1 2 . 3 11 .7

.6 1 2 . 3 11 .7

.6

Note: When D = f " , 2W/D=171 and A =26O and when D = l " , 2W/D=12?: a n d 4::=32O

H - maximum v a l u e o f g e n e r a t e d f e a t u r e L - minimum v a l u e o f g e n e r a t e d f e a t u r r R - r a n q e of n e n e r a t e d f c ~ 3 t u r c s .

c o ~ c L , v s I o r ; s

The f i n a l d r i l l p o i n t g e o m e t r y g e n e r a t i o n p r o c e s s for g e n e r a l p u r p o s e t w i s t d r i l l s u s i n g t h e p o p u l a r c o n i c a l g r i n d i n g method h a s 'm3en a n a l y s c d b o t h i n t h e a b s e n c e ! i . e . " i d e a l " case) and p r e s e n c e of g r i n d e r s e t t i n g e r r o r s . I t i s shown t h a t t h e a n a l y s i s f o r r e l a t i n y t h e s p e c i f i e d d r i l . 1 p o i n t f e a t u r e s t o t h e g r i n d i n g p a r a m c t e r s when t h e d r i l l i s i n t h e " i d e a l " f i n a l 1 . o t a t i o n r e p r e s e r . t s o n l y p a r t o f t h e g e n e r a t i o n p r o c e s s . The i n i t i a l d r i l l p o i n t g e o m e t r y , t h e s e t t i n g o f t h e d r i l l i n t h e g r i n d e r , t h e g r i n d e r a c t i o n d u r i n g wh ich t h e i n i t i a l g e o m e t r y is removed a n d t h e i d e n t i f i c a t i o n o f t h e g r i n d e r a c t i o n e n d p o i n t c o n s t i t u t e t h e f o u r m a j o r e l e m e n t s wh ich c o n t r i b u t e t o t h e c o m p l e x i t y 3f t h e d r i l l p o i n t g e n e r a t i o n process. The d e t a i l e d a n a l y s i s o f t h e s e e l e m e n t s r e s u l t e d i n a n i n i t i a l d r i l l p o i n t g e o m e t r y and g r i n d e r d e s i g n c a p a b l e o f p r o d u c i n g a l l t h e r eco rn tend- e d s p e c i f i e d d r i l l p o i n t f e a t u r e xvalues fo r t h e " i d e a l " case of z e r o s e t t i n q errors.

The nore complex a n a l y s i s a n d g e n e r a t e d d r i l l po in t s h a p e d u e to t h e i n t r o d u c t i o n o f s e t t i n g errors n e c e s s i t a t e d r e a p p r a i s a l of " a c c e p t a b l e y r i n d c r c r i te r ia" and d r i l l p o i n t f e a t u r e d e f i n i t i o n s . The p r e s e n c e o f r e l a t i v e l y s m a l l g r i n d e r s e t t i n o errors l e a d t o a s i g n i f i c a n t r e d u c t i o n i n t h e s c o p e of c o n i c a l g r i n d i n g f o r g e n e r a l p u r p o s e d r i l l s . Of t h e 80 g e n e r a l p u r p o s e c o m b i n a t i o n s of d r i l l p o i n t f e a t u r e v a l u e s ?.n a c c e p t a b l e s h a p e is o n l y g e n e r a t e d a t 54 ( i . e . 68%) c o m b i n a t i o n s . W i t h i n t h e r e d u c e d scope, t h e amoullt of l i p c u r v a t u r e f o r a c c e p t a b l e d r i l l p o i n t s h a p e s was shown to b e n e g l i g i b l e a l t h o u g h s m a l l s e t t i n g errors r e s u l t e d i n wide v a r i a t i o n s i n t h e v a l u e s o f t h e g e n e r a t e d f e a t u r e s ! e g 1.6.6" for r a n g e ) . i l ence i t h a s b e e n d e m o n s t r a t e d t h a t i n i t s e l f t h e q e n e r a l a p p e a r a n c e of t h e g e n e r a t e d p o i n t g e o m e t r y is a n u n r e l i a b l e i n d i c a t o r o f t h e p r e s e n c e or e f f e c t s o f s e t t i n g errors f o r u s e i n q u a l i t y c o n t r o l . F u r t h e r , t h P g e n e r a t e d p o i n t f e a t u r e s h a v e b e e n shown to b e p a r t i c u l a r l y s e n s i t i v e to a number o f s e t t i n g errors.

T h i s s t u d y h a s h i g h l i g h t e d t h e c o m p l e x i t i e s o f t h e g e n e r a t i o n p r o c e s s and t h e a t t e n d a n t d i f f i c u l t i e s i n a c h i e v i n g and c o n t r o l l i n g t h e s p e c i f i e d d r i l l p o i n t geornc t ry n o t e d i n p r a c t i c e .

A

1.

2.

3 .

4 . 5 .

6 . 7. 8 .

9 .

10 . 11. 1 2 .

1 3 .

1 4 .

1 5 .

1 6 .

1 7 .

1 8 .

19.

2 0 .

2 1 .

22 .

2 3 .

2 4 .

25 .

26 .

27 .

REFERENCES

C. DONALDSON, G . H . Le CAIN a n d V.C. GOULD, " T o o l D e s i g p " , McGraw-Hill , N e w J e r s e y (1969) . A. S .T.M.E., " T o o l E n g i n e e r s ' IIandbook" , McGraw-11111, N e w Y o r k , ( 1 9 5 8 ) . METAL CUTTING TOOL INSTITUTE, "Metal C u t t i n q T o o l Handbook", ( 1 9 6 9 ) . AMERICAN STANDARD, USAS, H94-11-1967. BRITISH STANDARD INSTITUTION, B .S .328 , P a r t I- 1959 . AUSTRALIAN STANDARD, A.S.2438-1981. G . M . H . STANDARD, " C u t t i n g T o o l s " , ( 1 9 6 8 ) . E . J . A . ARMAREGO and J . D . WRIGHT. J. Engg. P r o d . , 2 . 1. ( 1 9 7 8 ) . . . c. ROHLKE, W e r k s t a t t s t e c h n i k and Masch inenbau , 47 , 5 , ( 1 9 5 7 ) . M . D . K I N M A N , M a c h i n e r y , 102, ( 1 9 6 3 ) . W . D . ARNOT, M e c h a n i c a l World, 1 1 4 , March ( 1 9 5 2 ) . E . J . A . ARMAREGO a n d A. ROTENBERG, 1 n t . J . M a c h . T o o l D e s . R e s . , 13, 1 8 3 , ( 1 9 7 3 ) . D.F. GALLOWAY, T r a n s . Amer. SOC. Mech. E n g r s . , 7 9 , 1 9 1 , ( 1 9 5 7 ) . G.F. MICflELETTI a n d R . LEVI, P r o c . o f 8 t h I n t . M.T.D.R. C o n f . , U n i v e r s i t y o f N a n c h e s t e r , S e p t . , ( 1 9 6 7 ) . fl. MALKIEWTCZ, M.Enq.Sc. T h e s i s , U n i v e r s i t v o f

-

Melbourne ( 1 9 7 3 ) . S . KALDOR a n d E . LENZ, A n n a l s o f t h e CIRP, 2, 1, ( 1 9 8 0 ) . C .S . OXFORD J N R , A.S.T.E. c o l l e c t e d p a p e r s , 2, ( 1 9 5 9 ) .

J . D . WRIGHT, M.Eng.Sc. T h e s i s , U n i v e r s i t y o f M e l b o u r n e , ( 1 5 7 5 ) . E.J.A. ARMAREGO and J . D . WRIGHT, J . Cngg. P r o d . 2 , 2 , ( 1 9 7 8 ) . I. MUSHTAQ, M.Ena.Sc. T h e s i s , U n i v e r s i t y of Melbourne ( 1 9 8 0 ) . S. F U J I I , M.L. DeVRIES a n d S.M. W U , J. o f Eng. I n d . , 92, ( 1 9 7 0 ) .

I n d . , 9 3 , ( 1 9 7 1 ) . W . D . TSAI a n d S.M. WU, I n t . J . Mach. T o o l D e s . R e s . , 1 9 , 9 5 , ( 1 9 7 9 ) . E.J.A.-jiRMAREGO a n d A . ROTENBERG, I n t . J. Mach. T o o l Des. R e s . , 2, 155 a n d 1 6 5 , ( 1 9 7 3 ) . F.K.T. Y A N , M . Eng. Sc . T h e s i s , U n i v e r s i t y of H e l b o u r n e ( 1 9 7 4 ) . E .J .A. ARMAREGO a n d J.D. WRIGHT, Annals of t h e CIHP, 2, 1, ( 1 9 8 0 ) . J . D . WRIGHT, Ph.D. T h e s i s , i i n i v e r s i t y of Melbourne ( 1 9 8 1 ) .

S. F U J I I , M.L. DCVRIES a n d S.M. WU, J. of Eng.

5