ams introduction doug worsnop ams users meeting...

41
1 AMS Introduction Doug Worsnop AMS Users Meeting Caltech Georgia Tech FZ - Juelich October 24, 2003 October 8, 2004 25 August, 2005 CE Issues – “magic” “fudge factor” ~ 0.5 +/− 0.1 NY, Tokyo, Ron Brown 2004, Chebogue Point Aircraft: DoE G-1, Env Can King Air, BA146, ONR Twin Otter, NOAA P3 Beam width probe ambient, soot (Boston College), ozonolysis of oleic acid (Harvard) Lens transmission – standard, high throughput and high pressures lenses Light Scattering Probe: FIRST Direct Measurement of Bounce Eben Cross, Tim Onasch HOA / OOA Qi Zhang separation of “primary” and “secondary” OM direct estimate of OC content Tof-AMS – C, V and W Frank Drewnick, Silke Hings, Peter Decarlo Soft Ionization – VUV, Li+, neg ions Megan Northway, Achim Trimborn Frag waves - updated diagnostics; SO4/SO3, MSA, orgainc/SO4 interference

Upload: others

Post on 22-Oct-2020

9 views

Category:

Documents


0 download

TRANSCRIPT

  • 1

    AMS Introduction

    Doug Worsnop

    AMS Users Meeting

    Caltech

    Georgia Tech

    FZ - Juelich

    October 24, 2003

    October 8, 2004

    25 August, 2005

    CE Issues – “magic” “fudge factor” ~ 0.5 +/− 0.1

    NY, Tokyo, Ron Brown 2004, Chebogue Point

    Aircraft: DoE G-1, Env Can King Air, BA146, ONR Twin Otter, NOAA P3

    Beam width probe

    ambient, soot (Boston College), ozonolysis of oleic acid (Harvard)

    Lens transmission – standard, high throughput and high pressures lenses

    Light Scattering Probe:

    FIRST Direct Measurement of Bounce Eben Cross, Tim Onasch

    HOA / OOA – Qi Zhangseparation of “primary” and “secondary” OMdirect estimate of OC content

    Tof-AMS – C, V and W Frank Drewnick, Silke Hings, Peter Decarlo

    Soft Ionization – VUV, Li+, neg ions Megan Northway, Achim Trimborn

    Frag waves - updated diagnostics; SO4/SO3, MSA, orgainc/SO4 interference

  • 2

    Aerosols in the Atmosphere

    C.E. Kolb, Nature, 2002

    Number Density

    Surface Area

    Mass “Remote Continental”Pandis and Seinfeld, 1998

    Ultrafine Fine Coarse

    Ambient Aerosol Size Distribution

    Goal: Size-Resolved Chemical Composition of Ambient Aerosol

    EPA, 1999

  • 3

    Number Density

    Surface Area

    Mass “Remote Continental”Pandis and Seinfeld, 1998

    Ultrafine Fine Coarse

    Ambient Aerosol Size Distribution

    Goal: Size-Resolved Chemical Composition of Ambient Aerosol

    EPA, 1999

    EPA limits on Aerosol Mass Loading:

    Annual: PM2.5 < 15 µg/m3

    Daily: < 65

    Clean PM2.5= 4 µg m-3

    Aerosol Impact on VisibilityUSX Tower

    PollutedPM2.5= 45 µg m-3USX Tower

    July 2, 2001

    July 18, 2001

    Taken from same location, same time of day in Pittsburgh(at PAQS main site)

  • 4

    QuadrupoleMass Spectrometer

    Thermal Vaporization

    &Electron Impact

    Ionization

    Aerodynamic Lens

    (2 Torr)

    Chopper

    Turbo Pump

    Turbo Pump

    Turbo Pump

    TOF Region

    Particle Beam Generation

    Aerodynamic Sizing Particle Composition

    QuadrupoleMass Spectrometer

    Thermal Vaporization

    &Electron Impact

    Ionization

    Aerodynamic Lens

    (2 Torr)

    Chopper

    Turbo Pump

    Turbo Pump

    Turbo Pump

    TOF Region

    Particle Beam Generation

    Aerodynamic Sizing Particle Composition

    Aerosol Mass Spectrometer (AMS)

    • Efficient transmission (40-1000 nm), aerodynamic sizing, linear mass signal

    • Non-refractory PM1.0 mass loadings and chemically-speciated mass distributions

    Particle Inlet (1 atm)

    AMS Particle Detection Process

    Universal and quantitative chemical analysis: 0.01µg/m3 sensitivity.Vaporization and analysis of most aerosol chemical constituents

    - with primary exception of crustal oxides and elemental carbon.

    Positive IonMass

    Spectrometry

    Vaporizer

    e-

    Electron EmittingFilament

    R+

    Focused Particle Beam

    FlashVaporization

    of Non-RefractoryComponents (NR)

    600 C Electron Impact Ionization

  • 5

    Operating Modes: Alternate between two modes

    Size

    Dis

    trib

    utio

    n • Beam Chopped• Spectrometer is fixed (subset of 0-300 amu)

    • Beam Open• Spectrometer is scanned (0-300 amu)

    Mass Loadings20

    15

    10

    5

    0

    Mas

    s C

    once

    ntra

    tion

    (µg

    m-3

    )12:00 PM4/15/2003

    1:00 PM 2:00 PM 3:00 PM 4:00 PM

    Date and Time

    Ammonium Sulphate Nitrate Organics

    14

    12

    10

    8

    6

    4

    2

    0

    dM/d

    logD

    va (µ

    g m

    -3)

    2 3 4 5 6 7 8 9100

    2 3 4 5 6 7 8 91000

    2

    Vacuum Aerodynamic Diameter (nm)

    Ammonium Nitrate Sulphate Organics

    Ion

    Sig

    nal

    0.0060.0040.0020.000Particle TOF (s)

    (limited comp. info)

    0.001

    0.01

    0.1

    1

    10

    100

    Nitr

    ate

    Equ

    ival

    ent M

    ass

    Con

    cent

    ratio

    n (µ

    g m

    -3)

    120110100908070605040302010m/z

    Species

    Air 188Water -0.0591Ammonium 1.02Nitrate 1.24Sulphate 1.81Chloride 0.0413PAH 0.00169Organics 7.93Others 0.883

    (no size info)

    Ave

    rage

    Com

    posi

    tion

    Mass Distributions

    3.0

    2.5

    2.0

    1.5

    1.0

    0.5

    0.0

    Nitr

    ate

    Equi

    vale

    nt M

    ass

    Con

    cent

    ratio

    n (µ

    g m

    -3)

    1412010080604020m/z (Daltons)

    Ammonium 4.8 ug/m3Nitrate 5.8Sulphate 9.4Organics 13.4Chloride 0.15

    Mexico City 2/2002

    43 44

    57

    Urban organic aerosol is a mixture of hydrocarbon and oxygenated components

  • 6

    MS Signatures for Aerosol Species Identificationcolor coded to match spectra

    Water H2O H2O+ , HO+ , O+ 18, 17, 16Ammonium NH3 NH3+, NH2+, NH+ 17, 16, 15Nitrate HNO3 HNO3+, NO2+, NO+ 63, 46, 30

    Sulfate H2SO4 H2SO4+, HSO3+, SO3+ 98, 81, 80SO2+, SO+ 64, 48

    Organic CnHmOy H2O+, CO+, CO2+ 18, 28, 44(Oxygenated) H3C2O+, HCO2+, Cn’Hm+ 43, 45, ...

    Organic CnHm Cn’Hm’+ 27,29,41,43,55,57,69,71...(hydrocarbon)

    Group Molecule/Species Ion Fragments Mass Fragments

    e-e-

    e-

    e-

    e-

    e-

    Standard electron impact ionization @ 70 eVEasy to quantify: ca. NIST MS libraryEasy to separate inorganic and organic componentsSpeciation of organic composition is challenging

    ELECTRON IMPACT (EI) IONIZATION

    Measure all ions:

    Ion Rate = Σ Ri+

    independent of parent or fragment (neutral or ion)molecular mass

    EI Cross Section (σ) ∝ electrons/molecule ∝ mass/molecule

    Ion Rate = 2ndary electrons/sec ∝ σ • molecules/sec

    Ion Rate = Σ Ri+ ∝ total mass/sec

    σR + e- → R+ + e- + e-

    ↓Ri

    + + Rj

  • 7

    Mass Loading A ∝ (MWA/IEA) ∑ Ion Signal

    EI Ionization: A + e- ----> A+ ----> ai+

    Calibration Factor * (MWNO3/IENO3)

    EI Ionization Cross Sections

    6

    4

    2

    0

    Nitr

    ate

    Equi

    vale

    nt C

    ross

    Sec

    tion

    200150100500

    Molecular Mass

    Oxygenated Organics = 1.5 X NITRATE

    Diesel Fuel

    NitrateSulfate

    Inorganics NITRATE = 1.0

    Chloride

    AMS Particle Detection

    Universal / quantitative chemical analysis: 0.01µg/m3 sensitivity.

    “EVERTYHING AT THE SAME TIME” No Separation - bulk analysis

    [ no dust (oxides) or elemental (black) carbon ]

    Positive IonMass

    Spectrometry

    Vaporizer

    e-

    Electron EmittingFilament

    R+

    Focused Particle Beam

    FlashVaporization

    of Non-RefractoryComponents (NR)

    600 C Electron Impact Ionization

  • 8

    Aerosol Composition

    • Organic aerosols are composed of thousands of compounds.

    • Chemical analysis of organics is a significant challenge.

    • Compound specific study can only explain a small fraction of total organic mass. Large fraction unidentified.

    Figure 3.10. Speciation results for organic aerosol in Southern California (Rogge et al., 1993). Even if a hundred or so individual organic compounds were identified and quantified they represented only 15 percent or so of the total organic mass.

    2003 NARSTO Assessment

    CE Issues – “magic” “fudge factor” ~ 0.5 +/− 0.1

    NY, Tokyo, Ron Brown 2004, Chebogue Point

    Aircraft: DoE G-1, Env Can King Air, BA146, ONR Twin Otter, NOAA P3

    Beam width probe

    ambient, soot (Boston College), ozonolysis of oleic acid (Harvard)

    Lens transmission – standard, high throughput and high pressures lenses

    Light Scattering Probe:

    FIRST Direct Measurement of Bounce Eben Cross, Tim Onasch

    HOA / OOA – Qi Zhangseparation of “primary” and “secondary” OMdirect estimate of OC content

    Tof-AMS – C, V and W Frank Drewnick, Silke Hings, Peter Decarlo

    Soft Ionization – VUV, Li+, neg ions Megan Northway, Achim Trimborn

    Frag waves - updated diagnostics; SO4/SO3, MSA, orgainc/SO4 interference

  • 9

    Observed ‘Traffic’ Mode in Size Distributions

    Scotland SASUA-3

    Remote Site Mono-modal Aged-Transported

    Urban Site Bi-modalLocal Sources

    ACE ASIA

    Allan, Alfarra et al. (U. Manchester)

    5 6 7 8 9100

    2 3 4 5 6 7 8 91000

    2 3

    3

    2

    1

    04 5 6 7 8 9

    1002 3 4 5 6 7 8 9

    10002 3 5 6 7 8 9

    1002 3 4 5 6 7 8 9

    10002 35 6 7 8 9

    1002 3 4 5 6 7 8 9

    10002 35 6 7 8 9

    1002 3 4 5 6 7 8 9

    10002 3

    SulfateOrganicsNitrate

    Cheju-Do Island, KoreaApril, 2001

    3

    2

    1

    04 5 6 7 8 9

    1002 3 4 5 6 7 8 9

    10002 3

    3

    2

    1

    04 5 6 7 8 9

    1002 3 4 5 6 7 8 9

    10002 3

    3

    2

    1

    04 5 6 7 8 9

    1002 3 4 5 6 7 8 9

    10002 3

    3

    2

    1

    04 5 6 7 8 9

    1002 3 4 5 6 7 8 9

    10002 3

    Aerodynamic Diameter (nm)

    OrganicsNitrateSulfate

    Edinburgh, ScotlandNovember, 2000

    dM/d

    logD

    (µg

    m-3

    )

    Aerodynamic Diameter (nm)Accumulation modeAccumulation mode‘Traffic’ mode

    NO3= SO4= NH4+ nss-Cl-

    OM vs OC

    Takegawa et al., 2005Assumed CE = 0.5

    OM CnHmOp⎯⎯ = ⎯⎯⎯⎯OC Cn

  • 10

    46

    45

    44

    43

    42

    41

    40

    Latit

    ude

    -74 -72 -70 -68 -66

    Longitude

    Boston

    New York City

    Ronald H. BrownNEAQS 2004Cruise Track

    outflow

    ICARTT – International Consortium for Atmospheric Resaerchon Transport and Transformation

    Onasch, Quinn, Bates et al

    AMS (NR-PM1) quantification

    25

    20

    15

    10

    5

    0

    AMS

    SO

    4

    2520151050PILS SO4

    5

    4

    3

    2

    1

    0

    AMS

    NH

    4

    543210PILS NH4

    14

    12

    10

    8

    6

    4

    2

    0

    AMS

    Org

    6420OCEC

    35

    30

    25

    20

    15

    10

    5

    0

    AMS

    tota

    l

    35302520151050DMPS mass

    Slope = 1.0R2 = 0.92

    Slope = 1.94R2 = 0.71

    Slope = 1.16R2 = 0.87

    Slope = 0.87R2 = 0.81

    1:1 line

    1:1 line

    1:1 line

    2:1 line

    • Composition/phase-dependent collection efficiency (CE) applied• Correction for smaller cut diameter in AMS lens compared to PM1 impactors

  • 11

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    CE

    3.02.52.01.51.00.50.0

    NH4/SO4 Ratio

    0.4

    0.3

    0.2

    0.1

    0.0

    AM

    S W

    ater Mass Fraction

    Apparent CE depends on NH4/SO4 ratio

    14

    12

    10

    8

    6

    4

    2

    0

    AMS

    SO

    4=

    14121086420Impactor nss SO4=

    12

    10

    8

    6

    4

    2

    0

    ug/m

    3

    220210200190

    DOY

    y = 1.2x - 0.52, r^2 = 0.86

    Impactor nssSO4 AMS SO4

    ICARTT Chebogue Point AMS - Impactor Comparison

    AMS SO4 vs Impactor nssSO4 (Quinn, NOAA PMEL)

    CE = 0.5

  • 12

    PMTACS-NY 2004 Weimer, Drewnick, Demerjian et al

    CE = 0.42

    4) Measurements of Particulate Water with the AMS

    • Using Brendan’s CE data, we looked at the water mass fraction/total mass (water plus dry mass) as f(RH) for both ammonium sulfate and ammonium nitrate particles

    • For both particle compositions, the gas phase water was subtracted from the difference signal as a f(RH) before the particulate water was derived.

  • 13

    Gas phase water calibration

    • Measure RH and Temperature (water vapor pressure)

    •Subtract gas phase water contribution using water vapor pressure and calibration

    Middlebrook, Matthews 2005

    6000

    4000

    2000

    0

    dM/d

    T (µ

    g m

    -3 s

    -1)

    5x10-343210Time of Flight (s)

    Water

    Gas phase Particle source

    4) Ammonium Sulfate Water Content

    -1.0

    -0.5

    0.0

    0.5

    1.0

    Mw

    ater

    /Mto

    tal

    100806040200

    Sampling Line Relative Humidity (%)

    Ammonium Sulfate Particles hydration expts.

    dehydration expts. Tang, 1980

    Ddma,dry = 343 nmDdma,dry = 199 nmDdma,dry = 100 nm

  • 14

    4) Ammonium Nitrate Water Content

    -1.0

    -0.5

    0.0

    0.5

    1.0M

    wate

    r/Mto

    tal

    100806040200

    Sampling Line Relative Humidity (%)

    Ammonium Nitrate Particles hydration expts.

    dehydration expts. Tang, 1980

    Ddma,dry = 343 nmDdma,dry = 199 nm

    Do we have a chance to get information about xH2O – at least a lower limit ? (calculations with Pitzer + Unifac)NH4HSO4 / Glutaric Acid - mole fractions from AMS data

  • 15

    Beam Width Probe

    Alex Huffman et al – detailed description in press

    Dara Salcedo – analysis of Mexico City Data

    also James Allan

    Interesting but not critical

    …. “all” ambient particles are focused on the oven

    BWP analysis from Mexico City0.9

    0.8

    0.7

    0.6

    0.5

    0.4

    0.3

    0.2

    sigm

    a

    4/11/2003 4/16/2003 4/21/2003 4/26/2003 5/1/2003dat

    sigma (pt every 34 min) 90% : 0.28 - 0.50 95% : 0.265 - 0.55 98% : 0.25 - 0.60

  • 16

    Figures from Huffman et alRed line is the fit that I used in order to calculate sigma for the BWP data

    100

    80

    60

    40

    20

    0

    % o

    f Tot

    al

    807060504030Wire sector (arbitrary units)

    100

    80

    60

    40

    20

    0

    No cooling 90 % RH

    QUEST (Finland) Beam Width Probe Attenuation

    Allan et al

    DRY (Ambient)

    90% RH (Cooled)

  • 17

    0.4

    0.3

    0.2

    0.1

    0.0 ∆M

    / ∆L

    ogD

    aero

    (µg

    m-3

    )

    102 3 4 5 6 7 8

    1002 3 4 5 6 7 8

    10002

    Daero (nm)

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    Collection E

    fficiency

    Queens Surface Corp.

    Flame generated soot in the lab(Slowik et al, 2005; DeCarlo et al., 2005)

    Diesel particles on the road

    (Canagaratna et al., 2003)

    What is the nature of the small mode organics?8

    4

    0

    -4

    2 3 4 5 6 7 8 9100 2 3 4 5 6 7 8 91000Vacuum Aerodynamic Diameter (nm)

    2.01.00.0-1.0

    dM/d

    logD

    va (µ

    g m

    -3)

    3210-1

    m/z 57

    m/z 202

    m/z 226

    Dmob100 nm150 nm200 nm250 nm300 nm350 nm400 nm

  • 18

    Calculation of Black Carbon Content, Particle Density, and Dynamic Shape Factor

    Assumptions: 1. No internal voids2. Dynamic shape factor is the same in continuum and free-molecular regimes3. BC, PAH, aliphatic species are immiscible4. Component densities estimated (ρBC = 2.0 g/cc, ρPAH = 1.3 g/cc, ρAL = 0.85 g/cc)

    System of equations relating equivalent diameter and mass:

    dm = dve χCc(dm)Cc(dve)

    dva = dveρpρ0

    1χ mp = mBC + mPAH + mAL = (π/6) dve

    3 ρp

    The system is underdetermined (3 equations, 4 unknowns: dve, ρp, χ, mBC). However, using assumptions 3 and 4, ρp may be expressed as:

    ρp =mBC + mPAH + mALmBCρBC

    mPAHρPAH

    mALρAL

    + +

    The system has been reduced to 3 equations with 3 unknowns, and can be solved for mBC, ρp, and χ.

    D_mob = d * X

    D_va = pro * d / X

  • 19

    Aging of fractal combustion particles

    100

    0

    200

    300

    400

    500

    100

    0

    200

    300

    400

    500

    12

    8

    4

    dM/d

    logD

    a(µ

    gm

    -3)

    12

    8

    4

    dM/d

    logD

    a(µ

    gm

    -3)

    20

    15

    10

    5

    03 4 5 6 7

    1002 3 4 5 6 7

    10002

    20

    15

    10

    5

    03 4 5 6 7

    1002 3 4 5 6 7

    10002

    20

    15

    10

    5

    03 4 5 6 7

    1002 3 4 5 6 7

    10002

    Aerodynamic Diam. (nm)

    0

    Ammonium Nitrate Sulphate Organics Chloride Diesel Truck Emission

    ~1 sec average

    Fixed Site~100 min average(morning rush hour)

    Photochemical processing and

    transport(afternoon)

    EMISSIONS

    URBANAging/Processing

    Urban Down WindOxidized and internally mixed

    with secondary organicand inorganic compounds

  • 20

    Lens Transmission issues

    Reasonable understanding of current lenses

    Peter Liu, Leah Williams, John Jayne

    Ann Middlebrook, Brendan Matthew, Ken Docherty

    “standard” vs “high throughput”

    some variability

    New “high pressure” lens – modification of Schreiner lens

    1.4

    1.2

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    Sig

    nal (

    arb.

    uni

    ts)

    2 3 4 5 6 7 8 9100

    2 3 4 5 6 7 8 91000

    Dva (nm)

    TransEff, NH4NO3nh4no3_sep0104_CE, Peter Liu, N transeff_countsEl_model_new_585torr, Deng calc Trans_760torr, Deng, calc. AN_ObsCalcRat (AN_ARI) DEHS_ObsCalcRat (DEHS_ARI) SN_ObsCalcRat (NaNO3_ARI) DEHS_dec1304_CE dehs_small_dec1404_CE NaNO3_CE_dec1304 ARI2_Na_TOF_CPC ARI2_NH4_TOF_CPC SN_2_obspredrat

  • 21

    High Pressure Lens Assembly

    -0.36 -0.30 -0.24 -0.18 -0.12 -0.06 0.00-0.015

    -0.010

    -0.005

    0.000

    0.005

    0.010

    0.015

    Nozzle

    Diameter of pinhole is 120/140/160 microns.Diameters of connection and lens tube are 4.4mm.Diameter of the nozzle is 0.8mm.

    LensConnectionPinhole

    Y (m

    )

    X (m)

    Deng Rensheng (MIT)

    Transmission Efficiency

    O140, Q=149.2sccm, Window: 0.21- 4µm

    10 100 1000 10000

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    10 100 1000 10000

    O160 O140 O120

    Tran

    smis

    sion

    effi

    cien

    cy

    Dp, nm

    O120, Q=108.0sccmWindow: 0.135-4.5µm

    O160, Q=198.0sccmWindow: 0.33-3.4µm

    Deng Rensheng (MIT)

  • 22

    Light Scattering Probe – Eben Cross (Tim Onasch)

    In-situ quantification of the refractory and/or particle bounce events for single particles

    30

    20

    10

    0

    ls_s

    ig

    5x10-343210time-of-flight

    1.00.80.60.40.20.0

    tof_sig

    50

    40

    30

    20

    10

    0

    ls_s

    ig

    4x10-33210time-of-flight

    250

    200

    150

    100

    50

    0

    tof_sig

    Refractory or Particle Bounce Event

    Non-Refractory Particle Event NH4NO3

    (NH4)2SO4

  • 23

    15

    10

    5

    0

    Mas

    s C

    once

    ntra

    tion

    (µg

    m-3

    )

    12:00 PM8/12/2004

    3:00 PM 6:00 PM 9:00 PM

    Date and Time

    Ammonium Nitrate Sulphate Chloride Organics PAH

    High and Low RH Nitrate600

    500

    400

    300

    200

    100

    0

    dN/d

    LogD

    va

    3 4 5 6 7 8 9100

    2 3 4 5 6 7 8 91000

    Dva

    3

    2

    1

    0

    ce_b

    ounc

    e

    dNdLogD_LS dNdLogDtoflsd_30_46 ce = 1.08+/- 0.3

    NH4NO3

    15

    10

    5

    0

    Mas

    s C

    once

    ntra

    tion

    (µg

    m-3

    )

    12:00 PM8/12/2004

    3:00 PM 6:00 PM 9:00 PM

    Date and Time

    Water Ammonium Nitrate Sulphate Chloride Organics PAH

    RH = 54% Sulfate

    150100

    500dN

    /dLo

    gDva

    3 4 5 6 7100

    2 3 4 5 6 71000

    Dva

    0.40.30.20.10.0 ce

    _bou

    nce

    dNdLogD_LS dNdLogDtoflsd_48_64_80_81_98 ce = 0.16 +/- 0.15

    DRY (NH4)2SO4

  • 24

    15

    10

    5

    0

    Mas

    s C

    once

    ntra

    tion

    (µg

    m-3

    )

    12:00 PM8/12/2004

    3:00 PM 6:00 PM 9:00 PM

    Date and Time

    Water Ammonium Nitrate Sulphate Chloride Organics PAH

    RH = 84% Sulfate

    600

    400

    200

    0

    dN/d

    LogD

    va

    3 4 5 6 7100

    2 3 4 5 6 71000

    Dva

    1.2

    0.8

    0.4

    0.0

    ce_b

    ounc

    e

    dNdLogD_LS dNdLogDtoflsd_48_64_80_81_98 ce = 0.81 +/- 0.12

    WET (NH4)2SO4

    250

    200

    150

    100

    50

    0

    dNdL

    ogD

    _LS

    4 5 6 7 8 91000

    2

    Dva

    1.2

    0.8

    0.4

    0.0

    ce_bounce

    dNdLogD_LS dNdLogD_NO3_30_46 dNdLogD_org_43_44 dNdLogD_SO4_48_64

    Sulfate Event 7/30/04 Species Mean ce sdev

    NO3 0.53 0.10

    SO4 0.62 0.17

    Org 0.65 0.12

    Region over which the mean was calculated

    Ambient Particles

    Chebogue Point

    Nova Scotia

  • 25

    1.4

    1.2

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    AMS/

    PIL

    S C

    E (S

    O4

    or N

    O3)

    1.61.41.21.00.80.60.40.20.0

    Light Scattering CE

    85

    80

    75

    70

    65

    60

    55

    Relative H

    umidity (%

    )

    Polydisperse Aerosols Ammonium sulfate Ammonium nitrate 25:75 AS:Org mixture 50:50 AS:Org mixture 75:25 AS:Org mixture Organic acid mixture 50:50 AN:Org mixture Ambient

    Peter Decarlo

  • 26

    20

    15

    10

    5

    0

    ug/m

    ^3

    7/25/2004 7/27/2004 7/29/2004 7/31/2004dat

    1.81.71.61.51.41.31.2d

    ensi

    ty(g

    /cc)

    1.4s

    SO4 Org NH4 NO3 MAAP

    Aerodynamic and Optical Diameters Particle Density

    Eben Cross, Boston College

    Density:OpticalChemical

    CnH2n+0,2 ----> CmH2m±1+27, 29, 41, 43, 55, 57, 69, 71, ...

    CnHmOy ----> H2O+ , CO+ , CO2+ , C2H3O+18 28 44 43

    29, 55, ….

    Organic Mass Spectra

    Following flash vaporization at ~600oC

    e-

    e-

    C5H9+C4H7+C3H5+

  • 27

    Organic Mass Distributions

    • Small mode, hydrocarbon-based, primary traffic organic PM• Accumulation mode oxidized organic PM

    Morning Rush Hour

    Accumulation mode

    m/z = 57C4H9+

    ‘Traffic’ mode m/z = 44CO2+

    Organic Mass Spectra

    m/z = 44CO2+

    Accumulation mode

    ‘Traffic’ mode

    m/z = 57C4H9+

    Morning Rush Hour

    Investigate specific mass spectra during morning rush hour and late afternoon

  • 28

    Hydrocarbon and oxidized organics

    2.0

    1.5

    1.0

    0.5

    0.0

    Nitr

    ate

    Equi

    vale

    nt M

    ass

    Con

    cent

    ratio

    n (µ

    g m

    -3)

    150140130120110100908070605040302010m/z

    Species

    Air 295 ± 0.2Water 1.62 ± 0.1Ammonium 0.896 ± 0.02Nitrate 0.486 ± 0.007Sulphate 1.98 ± 0.01Chloride 0.0727 ± 0.007PAH 0.00739 ± 0.004Organics 13.1 ± 0.05Others 1.38 ± 0.2

    m/z = 44CO2+

    16

    14

    12

    10

    8

    6

    4

    2

    0

    dM/d

    logD

    va (µ

    g m

    -3)

    2 3 4 5 6 7 8 9100

    2 3 4 5 6 7 8 91000

    2

    Vacuum Aerodynamic Diameter (nm)

    Organics

    5

    4

    3

    2

    1

    0

    Nitr

    ate

    Equi

    vale

    nt M

    ass

    Con

    cent

    ratio

    n (µ

    g m

    -3)

    150140130120110100908070605040302010m/z

    Species

    Air 293 ± 0.3Water 1.53 ± 0.2Ammonium 1.81 ± 0.03Nitrate 1.79 ± 0.02Sulphate 2.29 ± 0.03Chloride 0.901 ± 0.02PAH 0.066 ± 0.008Organics 39.2 ± 0.1Others 2.77 ± 0.2

    m/z = 43C3H7+

    30

    20

    10

    0

    dM/d

    logD

    va (µ

    g m

    -3)

    2 3 4 5 6 7 8 9100

    2 3 4 5 6 7 8 91000

    2

    Vacuum Aerodynamic Diameter (nm)

    Organics

    Small traffic mode

    Hydrocarbonseries

    m/z = 57C4H9+

    AMS Mass Spectral Tracersm/z 57 (mostly C4H9+): Hydrocarbon-like Organic Aerosol (HOA; likely POA)

    m/z 44 (mostly CO2+): Oxygenated Organic Aerosol (OOA; likely SOA)

    Gas & EC data from E. Wittig & R. Subramanian (CMU)

  • 29

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    050

    100150

    200250

    23:20:00 23:30:00 23:40:00

    23:50:00 00:00:00 00:10:00 00:20:00

    Sign

    al In

    tens

    ity

    m/z

    Sampling timet0t1

    t2t3

    ......

    Organic Mass Spectra

    Deconvolve AMS Organic Data: MathematicsAn AMS organic mass spectrum is the linear superposition of the mass spectra of individual organic species.

    = + E

    Residual matrix

    ×

    mass spectra matrix of n components

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    nttt

    n

    n

    ccc

    cccccc

    ,2,1,

    ,22,21,2

    ,12,11,1

    L

    LLLL

    L

    L

    Conc. matrix of n components

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    300,2,1,

    300,22,21,2

    300,12,11,1

    nnn msmsms

    msmsmsmsmsms

    L

    LLLL

    L

    L

    ⎥⎥⎥⎥

    ⎢⎢⎢⎢

    300,2,1,

    300,22,21,2

    300,12,11,1

    ttt mmm

    mmmmmm

    L

    LLLL

    L

    L

    t

    iRow: mass spec

    Column: t series

    ?Our approach:

    Custom PCA initializes with

    unique MS tracers

    Nt: 1,000 ~ 10,000

  • 30

    Indications of other (small) components or small variation in the spectra

    Hydrocarbon-type OAOxygenated OA

    HOA and OOA Time Series in Pittsburgh

  • 31

    Mexico City Map

    Measurements were obtained at several fixed sites in Mexico City(Xalostoc, Merced, Cenica, Pedregal, and Santa Ana)

    with differing influences of air pollution sources and meteorology.

    Urban Aerosols – City Center and Down Wind

    • City center

    • Residential urban

    • Boundary site

  • 32

    Oxygenated organic composition from AMS

    0.8

    0.6

    0.4

    0.2

    0.0

    m/z

    44

    6420Organics

    6

    4

    2

    0

    Org

    anic

    s (u

    g/m

    3)

    12:00 AM7/9/2004

    Date and Time

    High O:C Ratio (m = 0.17) Medium O:C Ratio (m = 0.10) Low O:C Ratio (m = 0.03)

  • 33

    0.25

    0.20

    0.15

    0.10

    0.05

    0.00

    m/z

    44 (C

    O2+

    ) /

    orga

    nic

    6050403020100

    Ozone (ppb)

    350300250200150100500

    Wind Direction

    Secondary Organic Oxidation CO2+ (m/z 44) vs Ozone

    Sulfate NR Organic Nitrate

    Northwest – Southerly Aerosol Loading

    14

    12

    10

    8

    6

    4

    2

    0

    dM/d

    logD

    va (µ

    g m

    -3)

    5 6 7 8 9100

    2 3 4 5 6 7 8 91000

    2

    Vacuum Aerodynamic Diameter (nm)

    Nitrate Sulphate Organics Ammonium

    4

    3

    2

    1

    0

    dM/d

    logD

    va (µ

    g m

    -3)

    5 6 7 8 9100

    2 3 4 5 6 7 8 91000

    2

    Vacuum Aerodynamic Diameter (nm)

    Nitrate Sulphate Organics Ammonium

    1 0

    8

    6

    4

    2

    0

    7 /2 6 /20 0 4 7 /2 9 /200 4 8 /1 /2004d a t

  • 34

    1 .0

    0 .8

    0 .6

    0 .4

    0 .2

    0 .0

    Nitr

    ate

    Equ

    ival

    ent M

    ass

    Con

    cent

    ratio

    n (µ

    g m

    -3)

    1 5014 013012 01101 0090807 0605040302 010m/z

    Sp ecies

    Air 89.6 ± 0.03W ater 0 .424 ± 0.02Am monium 0.2 93 ± 0.005Nitrate 0.07 65 ± 0 .0008MSA 0 ± 0Sulphate 1.59 ± 0.0 03Chlo ride 0 .0008 83 ± 0.0006PAH -0.000 657 ± 0.001Orga nics 1.27 ± 0.006Others 0.149 ± 0.004

    Southerly airflow

    0 .8

    0 .6

    0 .4

    0 .2

    0 .0

    Nitr

    ate

    Equ

    ival

    ent M

    ass

    Con

    cent

    ratio

    n (µ

    g m

    -3)

    1 501401301 201101009 08070605040302010m /z

    Spe cies

    A ir 89 .6 ± 0 .03W ater -0.11 4 ± 0 .02A mm on ium 0.23 6 ± 0 .005N itrate 0.192 ± 0.0 01S ulphate 0.411 ± 0.0 02C hloride 0.00525 ± 0.0 006P AH 0.000 348 ± 0.000 9O rgan ics 3.96 ± 0.00 7O th ers 0 .643 ± 0.00 7

    Northwest airflow

    0 .6

    0 .5

    0 .4

    0 .3

    0 .2

    0 .1

    0 .0

    Nitr

    ate

    Equ

    ival

    ent M

    ass

    Con

    cent

    ratio

    n (µ

    g m

    -3)

    1 501401301 201101009 08070605040302010m /z

    S pec ies

    Air 89.6 ± 0.03W ate r -0. 114 ± 0.02Am mo niu m 0. 236 ± 0.00 5Nitrate 0.19 2 ± 0 .001Sulpha te 0.4 11 ± 0 .002Chloride 0.005 25 ± 0 .0006PA H 0.00 0348 ± 0.0 009O rg anic s 3.9 6 ± 0.007O thers 0.643 ± 0.007

    Northwest airflow

    0 .30

    0 .25

    0 .20

    0 .15

    0 .10

    0 .05

    0 .00

    Nitr

    ate

    Equ

    ival

    ent M

    ass

    Con

    cent

    ratio

    n (µ

    g m

    -3)

    1 501 401301201 10100908070605040302010m /z

    Sp ec ies

    A i r 8 9 .6 ± 0.03W ater 0 .424 ± 0.02Am m o nium 0.2 93 ± 0 .005N itrate 0 .07 65 ± 0 .0008M SA 0 ± 0Sulphat e 1.59 ± 0.0 03C hlo ride 0 .0008 83 ± 0 .000 6PA H -0.000 657 ± 0.001Orga nic s 1.27 ± 0.0 06Ot hers 0.149 ± 0.0 04

    Southerly a irflow

    CO2+ (m/z 44)

    C2H3O+ (m/z 43)

  • 35

    “First” Single Particle - Mixed (NH4)2SO4 and Organic

    Drewnick, Hings, DeCarlo, Jimenez et al.

  • 36

    1.5

    1.0

    0.5

    0.0

    1600155015001450140013501300

    QMSApproximately 1.5 ug/m3 of sulfate, 30 second acquisition

    m/z 48, SO+ m/z 64, SO2+

    FIG 2a

  • 37

    1.0

    0.8

    0.6

    0.4

    0.2

    0.0

    4100400039003800370036003500

    40

    30

    20

    10

    0

    x10-

    3

    4100400039003800370036003500

    ToF-AMSApproximately 1.5 ug/m3 of sulfate, 30 second acquisition

    m/z 48, SO+m/z 64, SO2+

    x40

    “organics”

    FIG 2b

    IONS

    IONS

    C-ToF

    W-ToF

  • 38

    0 . 6

    0 . 4

    0 . 2

    0 . 0

    W M

    ode

    Sign

    al (b

    its)

    4 3 . 1 04 3 . 0 84 3 . 0 64 3 . 0 44 3 . 0 24 3 . 0 04 2 . 9 8

    3 0

    2 0

    1 0

    0

    V Mode S

    ignal (bits)

    H N 3C H N OC H 3 N 2

    C 2 H 3 O C 2 H 5 NC 3 H 7

    N 2H 2C OC H 2C H 4C 2 HC 2 HC 3H NC H NC H 3C 2 HC 2 HC 2 HC 3 HC 3 HC 4

    D ie s e l D if f e r e n c e S p e c t r a W M o d e V M o d e

    H N 3C H N O

    C H 3 N 2C 2 H 3 O C 2 H 5 N

    C 3 H 7

    r e n c e S p e c tr a

    Diesel Exhaust

    WToF-AMS: m/z 43

    Albumen (protein)

    C2H3O+ C3H7+

    DeCarlo et al,

    unpublished results (2005)

    V-Mode

    W-Mode

    FIG 4

    High Resolution MS

    OOA Marker

    m/z 44: dominated by CO2+HOA Marker

    m/z 57: dominated by C4H9+

    Albumen (protein) particles Diesel Exhaust

  • 39

    VUV (10.5 eV) lamp assembly in ionization region of AMS

    “softer”

    ionization

    Switch between EI and Photoionization

    8

    6

    4

    2

    0

    -2 8 910

    Energy (eV)

    150 140 130 120 110

    Wavelength (nm)

    AlkanesAlcohols

    AldehydesKetones

    EthersAromatic

    O Kr

    LiFCaF2

    ArLampWindow

    Acids

    Organic Groups

    11 1210

    Single Photon - Ionization Kr at 10/10.5 eV

    MgF2

  • 40

    40

    30

    20

    10

    0

    500400300200100

    40

    30

    20

    10

    0

    x10-3

    Cigarette Smoke – ToFAMS with VUV (JARI)

    EI

    VUV

    Akiyama (JARI)

    12

    10

    8

    6

    4

    2

    0

    12010080604020

    NO2- (m/z = 46)

    NO3- (m/z =62)

    HCOO- (m/z = 45)

    CH3COO- (m/z = 59)

    C2H5COO- (m/z = 73)

    HSO4- (m/z = 97,99)

    SO2- (m/z = 64)

    SO3- (m/z = 80)

    Cl- (m/z = 35,37)

    CNO- (m/z = 42)

    NO- (m/z = 30)

    CN- (m/z = 26)

    OH- (m/z = 17)

    O- (m/z = 16)

    Electron attachment (neg ion) spectrum of ambient (Riverside)

  • 41

    Li attachment spectrum of pinene – ozon experiment

    220210200190180170160150140130m/z

    220210200190180170160150140130m/z

    pinic acid + Li+ (m/z = 192)

    pinonic acid + Li+ (m/z = 190)

    norpinic acid + Li+ (m/z = 178)

    norpinonic acid + Li+ (m/z = 176)

    pinonaldehyde + Li+ (m/z = 174)

    norpinonaldehyde + Li+ (m/z = 160)

    dialdehyde + Li+ (m/z = 146)

    Cs+ (m/z = 133)

    Findings from EPA’s Findings from EPA’s Particulate Matter Particulate Matter

    Supersites ProgramSupersites Program

    Cover of JGR-Atmospheres, in press

    Data from:Zhang et al., ES&T 38, 4797, 2004

    JGR 110 (D07S09), 2005Stainer et al, ES&T; JGR