you can do the integration using mathematica type the

Post on 25-May-2022

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Problem 1 Griffiths 1.5

Ξ¨ π‘₯, 𝑑 = π΄π‘’βˆ’πœ†|π‘₯|π‘’βˆ’π‘–πœ”π‘‘

(a) 1 = |Ξ¨|2𝑑π‘₯

∞

βˆ’βˆž

= Ξ¨Ξ¨βˆ—π‘‘π‘₯∞

βˆ’βˆž

= 𝐴2 π‘’βˆ’2πœ†|π‘₯|𝑑π‘₯∞

βˆ’βˆž

= 2𝐴2 π‘’βˆ’2πœ†π‘₯𝑑π‘₯∞

0

= 2𝐴2π‘’βˆ’2πœ†π‘₯

βˆ’2πœ† ∞0

=𝐴2

πœ† β‡’ 𝐴 = πœ†

(b) π‘₯ = π‘₯|Ξ¨|2𝑑π‘₯

∞

βˆ’βˆž

= 𝐴2 π‘₯π‘’βˆ’2πœ† π‘₯ 𝑑π‘₯ = 0 ∞

βˆ’βˆž

(π‘œπ‘‘π‘‘ π‘–π‘›π‘‘π‘’π‘”π‘Ÿπ‘Žπ‘›π‘‘)

π‘₯2 = π‘₯2|Ξ¨|2𝑑π‘₯∞

βˆ’βˆž

= 𝐴2 π‘₯2π‘’βˆ’2πœ† π‘₯ 𝑑π‘₯ = ∞

βˆ’βˆž

2𝐴2 π‘₯2π‘’βˆ’2πœ†π‘₯𝑑π‘₯∞

0

You can do the integration using Mathematica if you don’t want to do it by hand. Type the following line in Mathematica then β€œShift + Enter”:

Integrate[π‘₯^2 βˆ— Exp[βˆ’2 βˆ— πœ† βˆ— π‘₯ , π‘₯, 0, Infinity

You will get 1/4πœ†3

So π‘₯2 =

2𝐴2

4πœ†3 =2πœ†

4πœ†3 =1

2πœ†2

(c) 𝜎2 = π‘₯2 βˆ’ π‘₯ 2 =

1

2πœ†2 β‡’ π‘ π‘‘π‘Žπ‘›π‘‘π‘Žπ‘Ÿπ‘‘ π‘‘π‘’π‘£π‘–π‘Žπ‘‘π‘–π‘œπ‘› 𝜎 =

1

2πœ†

3 2 1 1 2 3

0.2

0.4

0.6

0.8

1.0

|Ξ¨|2

π‘₯ 𝜎 βˆ’πœŽ

This figure plots |Ξ¨|2 as a function of x for

Ξ» = 1. The two vertical lines shows the

positions of Οƒ =1

2and βˆ’Οƒ.

Probability outside the range (βˆ’Οƒ, 𝜎):

π‘ƒπ‘œπ‘’π‘‘ = |Ξ¨|2𝑑π‘₯βˆ’πœŽ

βˆ’βˆž

+ |Ξ¨|2𝑑π‘₯∞

𝜎

= 2𝐴2 π‘’βˆ’2πœ†π‘₯𝑑π‘₯∞

𝜎

=2𝐴2

βˆ’2πœ†π‘’βˆ’2πœ†π‘₯

∞𝜎

= π‘’βˆ’ 2 = 0.2431

Problem 2

(a) 𝐻 =𝑝2

2π‘š+

1

2π‘šπœ”2π‘₯2

(b) πœ‘0 π‘₯ = 𝐴 expβˆ’π‘šπœ”π‘₯2

2ℏ

1 = |πœ‘0|2𝑑π‘₯∞

βˆ’βˆž

= 𝐴2 expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 𝐴2πœ‹β„

π‘šπœ” β‡’ 𝐴 =

π‘šπœ”

πœ‹β„

1/4

(c) πœ‘1 π‘₯ = 𝐡 + 𝐢π‘₯ expβˆ’π‘šπœ”π‘₯2

2ℏ

Orthogonality condition:

0 = πœ‘0 πœ‘1 = πœ‘0βˆ—πœ‘1𝑑π‘₯

∞

βˆ’βˆž

= 𝐴(𝐡 + 𝐢π‘₯)expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 𝐴𝐡 expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

+ 𝐴𝐢 π‘₯expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 0

= π΄π΅πœ‹β„

π‘šπœ” β‡’ 𝐡 = 0

Normalization condition:

1 = πœ‘1 πœ‘1 = |πœ‘1|2𝑑π‘₯∞

βˆ’βˆž

= 𝐢2 π‘₯2expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 𝐢2πœ‹

2

ℏ

π‘šπœ”

3/2

β‡’ 𝐢 =π‘šπœ”

πœ‹β„

1/4 2π‘šπœ”

ℏ

πœ‘2 π‘₯ = 𝐷 + 𝐸π‘₯ + 𝐹π‘₯2 expβˆ’π‘šπœ”π‘₯2

2ℏ

Orthogonality conditions: πœ‘0 πœ‘2 = 0 & πœ‘1 πœ‘2 = 0

0 = πœ‘0 πœ‘2 = πœ‘0βˆ—πœ‘2𝑑π‘₯

∞

βˆ’βˆž

= 𝐴(𝐷 + 𝐸π‘₯ + 𝐹π‘₯2)expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 𝐴𝐷 expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

+ 𝐴𝐸 π‘₯expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

+ 𝐴𝐹 π‘₯2expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 0

= π΄π·πœ‹β„

π‘šπœ”+ 𝐴𝐹

πœ‹

2

ℏ

π‘šπœ”

3/2

β‡’ 𝐹 = βˆ’2π·π‘šπœ”

ℏ

0 = πœ‘1 πœ‘2 = πœ‘1βˆ—πœ‘2𝑑π‘₯

∞

βˆ’βˆž

= 𝐢π‘₯(𝐷 + 𝐸π‘₯ + 𝐹π‘₯2)expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 𝐢𝐷 π‘₯expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

+ 𝐢𝐸 π‘₯2expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

+ 𝐢𝐹 π‘₯3expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 0 = 0

= πΆπΈπœ‹

2

ℏ

π‘šπœ”

3/2

β‡’ 𝐸 = 0

Normalization condition:

1 = πœ‘2 πœ‘2 = |πœ‘2|2𝑑π‘₯∞

βˆ’βˆž

= (𝐷 + 𝐹π‘₯2)2expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 𝐷2 expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

+ 2𝐷𝐹 π‘₯2expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

+ 𝐹2 π‘₯4expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 𝐷2πœ‹β„

π‘šπœ”+ 2𝐷𝐹

πœ‹

2

ℏ

π‘šπœ”

3/2

+ 𝐹23 πœ‹

4

ℏ

π‘šπœ”

5/2

π‘…π‘’π‘π‘Žπ‘™π‘™ 𝐹 = βˆ’2π·π‘šπœ”

ℏ

= 2𝐷2πœ‹β„

π‘šπœ” ⟹ 𝐷 =

1

2

π‘šπœ”

πœ‹β„

14 and 𝐹 = βˆ’

2

πœ‹1/4

π‘šπœ”

ℏ

5/4

(d) πœ‘1 π‘₯ = 𝐢π‘₯expβˆ’π‘šπœ”π‘₯2

2ℏ with 𝐢 =

π‘šπœ”

πœ‹β„

1/4 2π‘šπœ”

ℏ

𝐻 =𝑝2

2π‘š+

1

2π‘šπœ”2π‘₯2 = βˆ’

ℏ2

2π‘š

πœ•2

πœ•π‘₯2 +1

2π‘šπœ”2π‘₯2

π»πœ‘1 π‘₯ = βˆ’β„2

2π‘š

πœ•2

πœ•π‘₯2 +1

2π‘šπœ”2π‘₯2 𝐢π‘₯exp

βˆ’π‘šπœ”π‘₯2

2ℏ

= βˆ’β„2

2π‘š

πœ•2

πœ•π‘₯2 𝐢π‘₯expβˆ’π‘šπœ”π‘₯2

2ℏ+

1

2π‘šπœ”2π‘₯2𝐢π‘₯exp

βˆ’π‘šπœ”π‘₯2

2ℏ

= βˆ’β„2

2π‘šβˆ’

3π‘šπœ”

ℏπ‘₯ +

π‘š2πœ”2

ℏ2 π‘₯3 𝐢expβˆ’π‘šπœ”π‘₯2

2ℏ

+1

2π‘šπœ”2π‘₯3𝐢exp

βˆ’π‘šπœ”π‘₯2

2ℏ

=3β„πœ”

2𝐢π‘₯exp

βˆ’π‘šπœ”π‘₯2

2ℏ

=3β„πœ”

2πœ‘1 π‘₯ ⟹ 𝐸1 =

3β„πœ”

2

Problem 3

π‘Ž+ =1

2β„π‘šπœ”(βˆ’π‘–π‘ + π‘šπœ”π‘₯) π‘Žβˆ’ =

1

2β„π‘šπœ”(+𝑖𝑝 + π‘šπœ”π‘₯)

π‘Žβˆ’, π‘Ž+ =1

2β„π‘šπœ”[𝑖𝑝 + π‘šπœ”π‘₯, βˆ’π‘–π‘ + π‘šπœ”π‘₯ =

1

2β„π‘šπœ”{π‘–π‘šπœ” 𝑝, π‘₯ βˆ’ π‘–π‘šπœ”[π‘₯, 𝑝 }

=1

2β„π‘šπœ”{π‘–π‘šπœ”(βˆ’π‘–β„) βˆ’ π‘–π‘šπœ”(𝑖ℏ)} = 1

β„πœ” π‘Ž+π‘Žβˆ’ +1

2= β„πœ”

1

2β„π‘šπœ”βˆ’π‘–π‘ + π‘šπœ”π‘₯ 𝑖𝑝 + π‘šπœ”π‘₯ +

1

2

=1

2π‘šπ‘2 + π‘–π‘šπœ”π‘₯𝑝 βˆ’ π‘–π‘šπœ”π‘π‘₯ + π‘š2πœ”2π‘₯2 +

1

2β„πœ”

=1

2π‘šπ‘2 + π‘–π‘šπœ”[π‘₯, 𝑝 + π‘š2πœ”2π‘₯2 +

1

2β„πœ”

=1

2π‘šπ‘2 βˆ’ β„π‘šπœ” + π‘š2πœ”2π‘₯2 +

1

2β„πœ”

=𝑝2

2π‘š+

1

2π‘šπœ”2π‘₯2 = 𝐻

𝐻 π‘Ž+πœ‘π‘› = β„πœ” π‘Ž+π‘Žβˆ’ +1

2π‘Ž+πœ‘π‘› = β„πœ”(π‘Ž+π‘Žβˆ’π‘Ž+ + 1/2π‘Ž+) πœ‘π‘›

= β„πœ”π‘Ž+ π‘Žβˆ’π‘Ž+ +1

2πœ‘π‘› = β„πœ”π‘Ž+ π‘Ž+π‘Žβˆ’ + 1 +

1

2πœ‘π‘›

= π‘Ž+ 𝐻 + β„πœ” πœ‘π‘› = π‘Ž+ 𝐸 + β„πœ” πœ‘π‘› = 𝐸 + β„πœ” π‘Ž+πœ‘π‘›

Therefore π‘Ž+πœ‘π‘› is an eigenstate of H with energy 𝐸 + β„πœ” . But it may not be

normalized. It is related to the normalized eigenstate πœ‘π‘›+1 up to a coefficient:

π‘Ž+πœ‘π‘› = πΆπœ‘π‘›+1

1 = πœ‘π‘›+1 πœ‘π‘›+1 =1

|𝐢|2π‘Ž+πœ‘π‘› π‘Ž+πœ‘π‘› =

1

|𝐢|2πœ‘π‘› π‘Žβˆ’π‘Ž+πœ‘π‘›

=1

|𝐢|2πœ‘π‘› (π‘Ž+π‘Žβˆ’ + 1)πœ‘π‘› =

1

|𝐢|2πœ‘π‘› (𝐻/β„πœ” + 1/2)πœ‘π‘› =

1

𝐢 2 (𝑛 + 1)

⟹ 𝐢 = 𝑛 + 1 and π‘Ž+πœ‘π‘› = 𝑛 + 1 πœ‘π‘›+1 Similarly π‘Žβˆ’πœ‘π‘› = 𝑛 πœ‘π‘›βˆ’1

π»πœ‘π‘› = β„πœ” π‘Ž+π‘Žβˆ’ +1

2πœ‘π‘› = β„πœ” π‘Ž+π‘Žβˆ’πœ‘π‘› +

1

2πœ‘π‘› = β„πœ” π‘Ž+ 𝑛 πœ‘π‘›βˆ’1 +

1

2πœ‘π‘›

= β„πœ” 𝑛 π‘›πœ‘π‘› +1

2πœ‘π‘› = β„πœ” 𝑛 +

1

2πœ‘π‘›

Problem 4

πœ‘0 π‘₯ = 𝐴 expβˆ’π‘šπœ”π‘₯2

2ℏ Ground state: 𝐴 =

π‘šπœ”

πœ‹β„

1/4

with

π‘₯ = πœ‘0βˆ— π‘₯ π‘₯πœ‘0 π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

= 𝐴2 π‘₯expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 0

π‘₯2 = πœ‘0βˆ— π‘₯ π‘₯2πœ‘0 π‘₯ 𝑑π‘₯𝑑π‘₯

∞

βˆ’βˆž

= 𝐴2 π‘₯2expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 𝐴2πœ‹

2

ℏ

π‘šπœ”

3/2

=ℏ

2π‘šπœ”

𝜎π‘₯ = π‘₯2 βˆ’ π‘₯ 2 =ℏ

2π‘šπœ”

𝑝 = πœ‘0βˆ— π‘₯ βˆ’π‘–β„

πœ•

πœ•π‘₯πœ‘0 π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

= 𝐴2 expβˆ’π‘šπœ”π‘₯2

2β„π‘–π‘šπœ” π‘₯exp

βˆ’π‘šπœ”π‘₯2

2ℏ𝑑π‘₯

∞

βˆ’βˆž

= π‘–π‘šπœ”π΄2 π‘₯expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 0

𝑝2 = πœ‘0βˆ— π‘₯ βˆ’β„2

πœ•2

πœ•π‘₯2 πœ‘0 π‘₯ 𝑑π‘₯∞

βˆ’βˆž

= βˆ’π΄2 ℏ2 expβˆ’π‘šπœ”π‘₯2

2ℏ

π‘š2πœ”2

ℏ2 π‘₯2 βˆ’π‘šπœ”

ℏexp

βˆ’π‘šπœ”π‘₯2

2ℏ𝑑π‘₯

∞

βˆ’βˆž

= βˆ’π΄2 π‘š2πœ”2 π‘₯2expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

+ 𝐴2β„π‘šπœ” expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= βˆ’π΄2 π‘š2πœ”2πœ‹

2

ℏ

π‘šπœ”

3/2

+ 𝐴2β„π‘šπœ”πœ‹β„

π‘šπœ”=

1

2β„π‘šπœ”

πœŽπ‘ = 𝑝2 βˆ’ 𝑝 2 =1

2β„π‘šπœ”

𝜎π‘₯πœŽπ‘ =ℏ

2π‘šπœ”

1

2β„π‘šπœ” =

ℏ

2 Minimum uncertainty

1st excited state:

πœ‘1 π‘₯ = 𝐢π‘₯expβˆ’π‘šπœ”π‘₯2

2ℏ with 𝐢 =

2

πœ‹1/4

π‘šπœ”

ℏ

3/4

π‘₯ = πœ‘1βˆ— π‘₯ π‘₯πœ‘1 π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

= 𝐢2 π‘₯3expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 0

π‘₯2 = πœ‘1βˆ— π‘₯ π‘₯2πœ‘1 π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

= 𝐢2 π‘₯4expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 𝐢23 πœ‹

4

ℏ

π‘šπœ”

5/2

=3ℏ

2π‘šπœ”

𝜎π‘₯ = π‘₯2 βˆ’ π‘₯ 2 =3ℏ

2π‘šπœ”

𝑝 = πœ‘1βˆ— π‘₯ βˆ’π‘–β„

πœ•

πœ•π‘₯πœ‘1 π‘₯ 𝑑π‘₯

∞

βˆ’βˆž

= βˆ’π‘–β„πΆ2 π‘₯ 1 βˆ’π‘šπœ”

ℏπ‘₯2 exp

βˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= 0

𝑝2 = πœ‘1βˆ— π‘₯ βˆ’β„2

πœ•2

πœ•π‘₯2 πœ‘1 π‘₯ 𝑑π‘₯∞

βˆ’βˆž

= βˆ’πΆ2 ℏ2 π‘š2πœ”2

ℏ2 π‘₯4 βˆ’3π‘šπœ”

ℏπ‘₯2 exp

βˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= βˆ’πΆ2 π‘š2πœ”2 π‘₯4expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

+ 3𝐢2β„π‘šπœ” π‘₯2expβˆ’π‘šπœ”π‘₯2

ℏ𝑑π‘₯

∞

βˆ’βˆž

= βˆ’3

2β„π‘šπœ” + 3β„π‘šπœ” =

3

2β„π‘šπœ”

πœŽπ‘ = 𝑝2 βˆ’ 𝑝 2 =3

2β„π‘šπœ”

𝜎π‘₯πœŽπ‘ =3ℏ

2π‘šπœ”

3

2β„π‘šπœ” =

3ℏ

2>

ℏ

2

Problem 4: operator approach: MUCH simpler!

π‘₯ =ℏ

2π‘šπœ”(π‘Ž+ + π‘Žβˆ’) 𝑝 = 𝑖

β„π‘šπœ”

2(π‘Ž+ βˆ’ π‘Žβˆ’)

𝑛 π‘₯ 𝑛 =ℏ

2π‘šπœ”π‘› π‘Ž+ + π‘Žβˆ’ 𝑛 = 0

𝑛 π‘₯2 𝑛 =ℏ

2π‘šπœ”π‘› π‘Ž+π‘Ž+ + π‘Ž+π‘Žβˆ’ + π‘Žβˆ’π‘Ž+ + π‘Žβˆ’π‘Žβˆ’ 𝑛 =

ℏ

π‘šπœ”π‘› + 1/2

𝑛 𝑝 𝑛 = π‘–β„π‘šπœ”

2𝑛 π‘Ž+ βˆ’ π‘Žβˆ’ 𝑛 = 0

𝑛 𝑝2 𝑛 = βˆ’β„π‘šπœ”

2𝑛 π‘Ž+π‘Ž+ βˆ’ π‘Ž+π‘Žβˆ’ βˆ’ π‘Žβˆ’π‘Ž+ + π‘Žβˆ’π‘Žβˆ’ 𝑛 = β„π‘šπœ” 𝑛 + 1/2

Ground state: 𝜎π‘₯πœŽπ‘ =ℏ

2π‘šπœ”

1

2β„π‘šπœ” =

ℏ

2

𝜎π‘₯πœŽπ‘ =3ℏ

2π‘šπœ”

3

2β„π‘šπœ” =

3ℏ

2 1st excited state:

Problem 5

(a) Probability to be in the ground state =

| πœ‘1(π‘₯) πœ“π΄(π‘₯, 𝑑 = 0) |2 = πœ‘1(π‘₯)1

2πœ‘1 π‘₯ +

1

2πœ‘2 π‘₯

2

=1

2

(b) πœ“π΄ π‘₯, 𝑑 =

1

2πœ‘1 π‘₯ π‘’βˆ’π‘–πΈ1𝑑/ℏ +

1

2πœ‘2 π‘₯ π‘’βˆ’π‘–πΈ2𝑑/ℏ

For a 1D infinite square well 𝐸𝑛 =𝑛2πœ‹2ℏ2

2π‘šπ‘Ž2 , 𝐸1 =πœ‹2ℏ2

2π‘šπ‘Ž2 , 𝐸2 =2πœ‹2ℏ2

π‘šπ‘Ž2 ,

πœ“π΄ π‘₯, 𝑑 =1

2πœ‘1 π‘₯ exp βˆ’

π‘–πœ‹2ℏ𝑑

2π‘šπ‘Ž2 +1

2πœ‘2 π‘₯ exp βˆ’

𝑖2πœ‹2ℏ𝑑

π‘šπ‘Ž2

(c) Density distribution at 𝑑 = 0 is:

|πœ“π΄ π‘₯, 𝑑 = 0 |2 = πœ“π΄βˆ— π‘₯, 𝑑 = 0 πœ“π΄ π‘₯, 𝑑 = 0

=1

2πœ‘1

βˆ— π‘₯ +1

2πœ‘2

βˆ— π‘₯1

2πœ‘1 π‘₯ +

1

2πœ‘2 π‘₯

=1

2|πœ‘1|2 + |πœ‘2|2 + 2πœ‘1πœ‘2 since πœ‘1 & πœ‘2 are real

|πœ“π΄ π‘₯, 𝑑 |2 = πœ“π΄βˆ— π‘₯, 𝑑 πœ“π΄ π‘₯, 𝑑

=1

2πœ‘1

βˆ— π‘₯ 𝑒𝑖𝐸1𝑑/ℏ +1

2πœ‘2

βˆ— π‘₯ 𝑒𝑖𝐸2𝑑/ℏ1

2πœ‘1 π‘₯ π‘’βˆ’π‘–πΈ1𝑑/ℏ +

1

2πœ‘2 π‘₯ π‘’βˆ’π‘–πΈ2𝑑/ℏ

=1

2|πœ‘1|2 + |πœ‘2|2 + πœ‘1

βˆ—πœ‘2π‘’βˆ’π‘–(𝐸2βˆ’πΈ1)𝑑/ℏ+πœ‘1πœ‘2βˆ—π‘’π‘–(𝐸2βˆ’πΈ1)𝑑/ℏ

=1

2|πœ‘1|2 + |πœ‘2|2 + 2πœ‘1πœ‘2cos ((𝐸2βˆ’πΈ1)𝑑/ℏ)

Therefore |πœ“π΄ π‘₯, 𝑑 |2 = |πœ“π΄ π‘₯, 𝑑 = 0 |2 when cos ((𝐸2βˆ’πΈ1)𝑑/ℏ) = 1

Or (𝐸2βˆ’πΈ1)𝑑/ℏ = 2πœ‹, 4πœ‹, 6πœ‹, …

𝑑 = 2π‘›πœ‹β„/(𝐸2βˆ’πΈ1) = 2π‘›πœ‹β„/2πœ‹2ℏ2

π‘šπ‘Ž2 βˆ’πœ‹2ℏ2

2π‘šπ‘Ž2 =4π‘›π‘šπ‘Ž2

3πœ‹β„ where 𝑛 = 1,2,3, …

The smallest 𝑑1 =4π‘šπ‘Ž2

3πœ‹β„

(d)

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

t=0 t=0.1*t1 t=0.2*t1 t=0.3*t1

t=0.4*t1 t=0.5*t1 t=0.6*t1 t=0.7*t1

t=0.8*t1 t=0.9*t1 t=t1

(e)

πœ“π΅ π‘₯, 𝑑 =1

2πœ‘1 π‘₯ π‘’βˆ’π‘–πΈ1𝑑/ℏ βˆ’

1

2πœ‘2 π‘₯ π‘’βˆ’π‘–πΈ2𝑑/ℏ

Density distribution at 𝑑 = 0 is:

|πœ“π΅ π‘₯, 𝑑 = 0 |2 = πœ“π΅βˆ— π‘₯, 𝑑 = 0 πœ“π΅ π‘₯, 𝑑 = 0

=1

2πœ‘1

βˆ— π‘₯ βˆ’1

2πœ‘2

βˆ— π‘₯1

2πœ‘1 π‘₯ βˆ’

1

2πœ‘2 π‘₯

=1

2|πœ‘1|2 + |πœ‘2|2 βˆ’ 2πœ‘1πœ‘2 since πœ‘1 & πœ‘2 are real

|πœ“π΅ π‘₯, 𝑑 |2 = πœ“π΅βˆ— π‘₯, 𝑑 πœ“π΅ π‘₯, 𝑑

=1

2πœ‘1

βˆ— π‘₯ 𝑒𝑖𝐸1𝑑/ℏ βˆ’1

2πœ‘2

βˆ— π‘₯ 𝑒𝑖𝐸2𝑑/ℏ1

2πœ‘1 π‘₯ π‘’βˆ’π‘–πΈ1𝑑/ℏ βˆ’

1

2πœ‘2 π‘₯ π‘’βˆ’π‘–πΈ2𝑑/ℏ

=1

2|πœ‘1|2 + |πœ‘2|2 βˆ’ πœ‘1

βˆ—πœ‘2π‘’βˆ’π‘–(𝐸2βˆ’πΈ1)𝑑/β„βˆ’πœ‘1πœ‘2βˆ—π‘’π‘–(𝐸2βˆ’πΈ1)𝑑/ℏ

=1

2|πœ‘1|2 + |πœ‘2|2 βˆ’ 2πœ‘1πœ‘2cos ((𝐸2βˆ’πΈ1)𝑑/ℏ)

𝑑1 𝑖𝑠 π‘‘β„Žπ‘’ π‘ π‘Žπ‘šπ‘’ π‘Žπ‘  π‘‘β„Žπ‘’ π‘π‘Ÿπ‘’π‘£π‘–π‘œπ‘’π‘  π‘π‘Žπ‘ π‘’

(f)

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

πœ“π΄

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

2.5

3.0

πœ“π΅

0 a a 0

0.3a 0.7a

The two initial states can be determined by measuring the position of the particle:

If the measured value of x is around 0.3a then the initial state is πœ“π΄;

If the measured value of x is around 0.7a then the initial state is πœ“π΅.

top related