x-ray states of black hole binaries & possible applications for general relativity ron...

Post on 18-Dec-2015

219 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

TRANSCRIPT

X-ray States of Black Hole Binaries & Possible Applications for General Relativity

Ron Remillard, Center for Space Research, M.I.T.

Outline Progress for Black Hole Binaries

Intensive Monitoring Campaigns: RXTE, radio, optical Modified Definitions of X-ray States: Physical Elements Each State : Applications for General Relativity Each State : Problems in Accretion Physics

Prospects for Advancement

Multi-X-ray Observations (broad-band and high-resolution Spectroscopy & Timing & Imaging)

Multi-Frequency Observations Engaging Theorists

Compact Objects

Masses from binary

motion of companion stars

or pulsars

Black Hole Binaries

Mx = 4-18 Mo

Neutron Stars

(X-ary & radio pulsars)

Mx ~ 1.4 Mo

Black Holes in the Milky Way

16 Black-Hole Binariesin the Galaxy

(Jerry Orosz, SDSU)

Scaled, tilted, andcolored for surface temp.

of companion star.

Black Hole Properties:mass (Mx) and

spin (a* = cJ / GMx2)

BH in Milky Way: 15/16 are transients

XTE J1550-564

First recorded outburst: 1998 Sept 6

Optical study in quiescence: 1.54 day binary,

9.6 Mo black hole + K subgiant star

d ~ 5 kpc ; Peak Lx ~ 20,000 Lo

Black Holes in the Milky Way

Black Holes in the Milky WayX-ray States: thermal & non-thermal

Spectral components

X-ray States of Black Hole Binaries McClintock & Remillard 2003

State modified descriptions

“very high” “steep power law”power law, ~ 2.4-3.0, fpow > 50% or fpow > 20% + QPOs

“high/soft” “thermal dominant”fpow < 20%, no QPOs, rms (0.1-10 Hz) < 0.06 at 2-30 keV

“low/hard” “low-hard (steady jet)” fpow > 80% (2-20 keV), ~ 1.5-2.1, broad PDS features, rms(0.1-10 Hz) is 10-30%

+ “quiescent” “quiescent”Lx < 10-4 Lmax , power law, ~ 1.9

X-ray States, GR, & Accretion PhysicsState / properties GR opportunity ? / physics problem

Steep power law High Freq. QPOs: GR resonance? (Mx, a*) a*

~ 2.5 , QPOs origin of steep power law and QPOs

Thermal dominant “spectro. parallax” Rin : {Ndbb, d, i } Rin(Mx, a*) a*

Tdisk ~ 1 keV range a* 0 1, then Rin = 6 1 GMx/c2

disk spectrum in Kerr metric + MHD + rad. transfer

Low Hard (steady jet) jets tap BH spin energy? (impulsive & steady jets?)

~ 1.7 ejection mechanisms; X-ray mechanism; B evolution

Quiescence N.S. vs. B.H. spectra surface vs. event horizon

~ 1.9 ADAF/CDAF model disputes; alternative scenarios?

Black Hole Emission StatesStatistics

XTE J1550-564 GRO J1655-40 XTE J1118+480

Steep Power Law 26 15 0Thermal Dominant 147 47 0Low/hard 22 2 10

Intermediate 57 2 0

Timescales (days) for all BH Binaries (RXTE)

duration transitionsSteep Power Law 1-10 <1Thermal Dominant 3-200 1-10Low/hard 3-200 1-5

Intermediate 3-30 1-3

X-ray States : Complications

+

“intermediate” ~2.5 impulsive jets state + Ecut? in transitions;

More Complications: Fast X-ray Novae

SAX J1819.3-2525 (V4641 Sgr)

black hole binary(Orosz et al. 2002)

‘Fast X-ray Nova’20 min of rage,

Sept 15, 1999 (RXTE)

outburst << disk flow ~ 20 d

High Frequency QPOs (40-450 Hz)

source HFQPO (Hz)

GRO J1655-40 300, 450

XTE J1550-564 184, 276

GRS 1915+105 41, 67, 113, 164

XTE J1859+226 190

4U1630-472 184

XTE J1650-500 250

H1743-322 160?, 240-----------red: 2-30 keV green: 6-30 keVblue: 13-30 keV

XTE J1550-564: 184, 276 Hz

GRO J1655-40: 300, 450 Hz

Commensurate Frequencies (3:2)

HFQPOs and General Relativity “Diskoseismology” (Wagoner 1999; Kato 2001)

Eigenfunctions for adiabatic perturbations

g-modes m={0,1} o, 4.1o

?? Add complexities {thick disk, corona model for SPL, nonlinear effects}

Resonance in the Inner Disk (Abramowicz & Kluzniak 2001)

GR has Frequencies for 3 coords {r, } & non-circular orbits

: r, or r, resonance ‘blob’ orbits? (Stella et al. 1999 for n.s.)… model too simplistic?

…ray tracing in Kerr metric (Schnittman & Bertschinger 2003):

feasible to produce QPOs at and r = 0.667

GR Coordinate Frequencies

r, = f ( Mx, r = r / (GMx/c2), a* = cJ/GMx

2 )

azimuth = c3/GMx [ 2 r 3/2 (1+ a* r -3/2) ]-1

radialr = || (1 - 6r -1 + 8a* r -3/2 - 3a*2 r -2)1/2

polar = || (1 - 4a* r -3/2 + 3a*2 r -2)1/2

Bardeen & Pettersen 1975; Chandrasekhar 1983

Merloni et al. 1999; Markovic 2000; Lamb 2001

QPO Pairs (3:2 o) vs. BH Mass GRO J1655-40, XTE J1550-564,

GRS1915+105: plot 2o vs, MBH

“QPO mass” (o = 931 Hz / M)

same mechanism

AND same spin

a* ~ 0.3-0.4 if QPOs are

and r

? Compare subclasses

While model efforts go on.

Combining X-ray Timing & Spectroscopy

GRO J1655-40

red “x”: no QPOs, thermal dom.

green : only Low-Freq. QPOs (0.1-20 Hz)

blue: LFQPOs + HFQPOs;(300, 450 Hz)

steep power law state

Combining X-ray Timing & Spectroscopy

XTE J1550-564

red “x”: no QPOs, thermal dom.

green : only Low-Freq. QPOs (0.05-20 Hz); LH and INT states

blue: LFQPOs + HFQPOs;(184, 276 Hz)

most: steep power-law state

Low Frequency QPOs

XTE J1550-564

QPOs (4 Hz)

rms variations ~ 30%At Lx ~ 5X1038 erg cm-2 s-1

(5.3 kpc; ~0.3 LEdd)

? Spiral waves in a highly magnetized disk?

Tagger & Pellat 1999(transports energy

out to wave corotation radius)

Low Frequency QPOs Properties

range: 0.05 – 30 Hz (most 0.5 – 10 Hz) amplitude: 1 – 20 % (rms, 2 – 30 keV) Q (= / ) 3 – 20 (typical 8.5) Phase lags -0.1 to +0.2 (2-6 keV vs. 13-30 keV)

X-ray States Low / Hard sometimes (transitions) Thermal Dominant generally, no Steep Power Law yes

Physical Correlations proportional to disk flux (not Tdisk; Fpow, etc) Ampl.(E) roughly like power law flux (harder than disk)

Sensitive Broad-Band Spectra (e.g. XMM)

Other Methods to Deduce Disk Structure

Broad Fe K Emission in B.H.(Profiles require spin? Which states?)

XTEJ1550-564 (INT): Miller et al. 2002

XTE J1650-500 (SPL): Miller et al. 2002

GRS1915 (SPL?) Martocchia et al. 2002

V4641 Sgr (LH?) Miller et al. 2002

Disk Reflection Spectra(Reflection vs. states?)

e.g. Done et al. 1999; Done & Nayakshin 2001

High Resolution Spectra (e.g. Chandra)Other Methods to Deduce Disk Structure

Spectral Lines from Hot Gas

Local outflow? disk winds (e.g. in Cir X-1)

but no BH cases yet.

Disk atmosphere (? thick disk at high Lx)

GRS1915+105: Lee et al. 2001

Conclusions Progress in Astrophysics of Black Hole Binaries:

18 Mass Measurements (4-18 Mo) Radio : X-ray efforts secure LH state steady jet Prospects (3) for measuring spin Timing + Energetics framework to probe

disk magnetization and other essential variables

Outstanding Problems: Origin of Steep Power Law component Strong, Low Frequency QPOs in SPL and INT states Kerr disk spectral models difficult; (5,000+ X-ray spectra)

top related