the sylvester-kac matrix spacemorigi/prova1_file/talks_web/bevilacqua-bozzo.pdf · the...

Post on 25-Sep-2020

19 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

IntroductionBand matrices

Tridiagonal matrices

The Sylvester-Kac matrix space

R. Bevilacqua1 E. Bozzo2

1Dipartimento di InformaticaUniversità di Pisa

2Dipartimento di Matematica ed InformaticaUniversità di Udine

Due giorni di Algebra Lineare NumericaBologna 6-7 Marzo 2008

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

Outline

1 IntroductionThe Sylvester-Kac matrixConstructive reduction in triangular form

2 Band matrices

3 Tridiagonal matricesReduction of tridiagonal matricesThe Sylvester-Kac matrix space

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

The Sylvester-Kac matrixConstructive reduction in triangular form

Outline

1 IntroductionThe Sylvester-Kac matrixConstructive reduction in triangular form

2 Band matrices

3 Tridiagonal matricesReduction of tridiagonal matricesThe Sylvester-Kac matrix space

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

The Sylvester-Kac matrixConstructive reduction in triangular form

Sn

Sn =

0 n − 1

1 0. . .

. . . . . . 1n − 1 0

It is surprising that

σ(Sn) = {−n + 1,−n + 3, . . . , n − 3, n − 1}

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

The Sylvester-Kac matrixConstructive reduction in triangular form

Sn

Sn =

0 n − 1

1 0. . .

. . . . . . 1n − 1 0

It is surprising that

σ(Sn) = {−n + 1,−n + 3, . . . , n − 3, n − 1}

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

The Sylvester-Kac matrixConstructive reduction in triangular form

Some papers

Sylvester, 1854Muir, 1882,1923, 1933Shrödinger, 1926Kac, 1947Clement, 1959Taussky, Todd, 1991Edelman, Kostlan, 1994Holtz, 2005Boros, Rósza, 2006

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

The Sylvester-Kac matrixConstructive reduction in triangular form

Example: Ehrenfest model

P = 1n−1Sn is stochastic

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

The Sylvester-Kac matrixConstructive reduction in triangular form

Outline

1 IntroductionThe Sylvester-Kac matrixConstructive reduction in triangular form

2 Band matrices

3 Tridiagonal matricesReduction of tridiagonal matricesThe Sylvester-Kac matrix space

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

The Sylvester-Kac matrixConstructive reduction in triangular form

Schur theorem

If V =(A B

)is a n×n full rank matrix such that BT A = O then

V−1 =

(A+

B+

).

If MA = AΛ then

V−1MV =

(A+

B+

)M

(A B

)=

(Λ A+MBO B+MB

).

From now on we study the case where A = a is a vector withoutzero components.

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

The Sylvester-Kac matrixConstructive reduction in triangular form

Schur theorem

In order to work with band matrices we choose

B =

1 0 0

−a(1)/a(2) 1. . .

...0 −a(2)/a(3) 1 0

0 0. . . 1

0. . . 0 −a(n − 1)/a(n)

.

Then, it is easy to show that

V−1MV =

(λ a+MB+T

O BT MLT

), where L = tril((1./a(1 : (n−1)))aT )

Notation M = M(1) and BT MLT = M(2).

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

The Sylvester-Kac matrixConstructive reduction in triangular form

Motivating example

Let M(1) = Sn. If e = (1, . . . , 1)T then M(1)e = (n− 1)e. If a = ewe find

M(2) = Sn−1 − I.

This implies that the reduction step can be repeated, leading toa triangular matrix similar to Sn.

It is interesting to ask if other matrices share with Sn thisproperty.

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

Reduction of band matrices

Theorem

Let M(1) be a (bl , bu) band matrix. Then M(2)

has lower band of width bl and its outermost lowerdiagonal is equal to the outermost lower diagonal of the(n − 1)× (n − 1) leading principal submatrix of M(1).has upper band of width bu and if

a(k+1)a(k−bu) = a(k)a(k−bu+1) k = bu+1, . . . , n−1

the outermost upper diagonal of M(2) is equal to theoutermost upper diagonal of the (n − 1)× (n − 1) trailingprincipal submatrix of M(1).

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

Reduction of tridiagonal matricesThe Sylvester-Kac matrix space

Outline

1 IntroductionThe Sylvester-Kac matrixConstructive reduction in triangular form

2 Band matrices

3 Tridiagonal matricesReduction of tridiagonal matricesThe Sylvester-Kac matrix space

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

Reduction of tridiagonal matricesThe Sylvester-Kac matrix space

Form of the eigenvector

LemmaLet a be a vector without zero components. Then

a(k + 1)a(k − 1) = a(k)2 ⇐⇒ a(k) =a(2)k−1

a(1)k−2 .

If a(1) = 1, setting a(2) = ρ yields

a(k) = ρk−1.

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

Reduction of tridiagonal matricesThe Sylvester-Kac matrix space

Reduction of tridiagonal matrices

Theorem

Let M(1) be tridiagonal. If

M(1)(1, ρ, . . . , ρn−1)T = λ1(1, ρ, . . . , ρn−1)T

thenM(2)(1, ρ, . . . , ρn−2)T = λ2(1, ρ, . . . , ρn−2)T

if and only if

λ2 − λ1 = ρ(M(1)(k + 1, k + 2)−M(1)(k , k + 1))

+1/ρ(M(1)(k , k − 1)−M(1)(k + 1, k)).

for k = 1, . . . , n − 1 where M(1)(1, 0) = M(1)(n, n + 1) = 0.

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

Reduction of tridiagonal matricesThe Sylvester-Kac matrix space

Outline

1 IntroductionThe Sylvester-Kac matrixConstructive reduction in triangular form

2 Band matrices

3 Tridiagonal matricesReduction of tridiagonal matricesThe Sylvester-Kac matrix space

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

Reduction of tridiagonal matricesThe Sylvester-Kac matrix space

Reduction completion

It is possible to complete the reduction process by solving aparticular homogeneous linear system that has:

(n − 1) + (n − 2) + . . . + 1 = n(n − 1)/2 equations;3n − 2 unknowns (the 2n − 2 off diagonal entries of M(1)

and the n eigenvalues λi ).The solutions of the system for ρ 6= 1 can be obtained from thesolutions for ρ = 1 by a simple scaling.

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

Reduction of tridiagonal matricesThe Sylvester-Kac matrix space

Example

In the case where n = 5, the system has 10 equations and 13unknowns.

−1 1 0 0 −1 0 0 0 1 −1 0 0 00 −1 1 0 1 −1 0 0 1 −1 0 0 00 0 −1 1 0 1 −1 0 1 −1 0 0 00 0 0 −1 0 0 1 −1 1 −1 0 0 00 −1 1 0 −1 0 0 0 0 1 −1 0 00 0 −1 1 1 −1 0 0 0 1 −1 0 00 0 0 −1 0 1 −1 0 0 1 −1 0 00 0 −1 1 −1 0 0 0 0 0 1 −1 00 0 0 −1 1 −1 0 0 0 0 1 −1 00 0 0 −1 −1 0 0 0 0 0 0 1 −1

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

Reduction of tridiagonal matricesThe Sylvester-Kac matrix space

Dimension and parametrization

The system can be solved by using a block elimination.

TheoremFor every n the space of the solution has dimension 4.

It is possible to represent the space of the solutions by using λi ,i = 1, 2, 3 and β = M(1)(2, 1) as parameters.

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

Reduction of tridiagonal matricesThe Sylvester-Kac matrix space

Solution

In the case where ρ = 1 we find

λi = 12(i − 2)(i − 3)λ1 − (i − 1)(i − 3)λ2 + 1

2(i − 1)(i − 2)λ3,i = 4, . . . , n,

M(1)(i + 1, i) = iβ + 12 i(i − 1)(λ1 − 2λ2 + λ3) i = 2, . . . , n − 1,

M(1)(i , i + 1) = −(n − i)β − 12(n − 1)(n + i − 5)λ1

+(n − i)(n + i − 4)λ2 − 12(n − i)(n + i − 3)λ3

i = 1, . . . , n − 1.

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

Reduction of tridiagonal matricesThe Sylvester-Kac matrix space

n = 5

Let S(β, λ1, λ2, λ3) the general solution. When n = 5 oneobtains

S5(1, 0, 0, 0) =

4 −4 0 0 01 2 −3 0 00 2 0 −2 00 0 3 −2 −10 0 0 4 −4

,

S5(0, 1, 0, 0) =

3 −2 0 0 00 4 −3 0 00 1 3 −3 00 0 3 0 −20 0 0 6 −5

,

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

Reduction of tridiagonal matricesThe Sylvester-Kac matrix space

n = 5

S5(0, 0, 1, 0) =

−8 8 0 0 00 −9 9 0 00 −2 −6 8 00 0 −6 1 50 0 0 −12 12

,

S5(0, 0, 0, 1) =

6 −6 0 0 00 6 −6 0 00 1 4 −5 00 0 3 0 −30 0 0 6 −6

.

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

Reduction of tridiagonal matricesThe Sylvester-Kac matrix space

TheoremThe Sylvester-Kac matrix space contains a two dimensionalsubspace made up by symmetric matrices.

Example

S5(2, 3, 2, 0) =

1 2 0 0 02 −2 3 0 00 3 −3 3 00 0 3 −2 20 0 0 2 1

.

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

Reduction of tridiagonal matricesThe Sylvester-Kac matrix space

Problems

Obtain the entries of V such that VSV−1 is triangular.What happens if different values of ρ are allowed in thedifferent reduction steps.

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

IntroductionBand matrices

Tridiagonal matrices

Reduction of tridiagonal matricesThe Sylvester-Kac matrix space

References

O. Taussky, J. ToddAnother look to a matrix of Mark KacLinear Algebra Appl. 150(1991), 341–360.

A. Edelman, E. KostlanThe road from Kac’s matrix to Kac’s random polynomialsProceedings of the Fifth SIAM on Applied Linear Algebra,Philadelphia (1994), 503–507.

O. HoltzEvaluation of Sylvester type determinants using orthogonalpolynomialsProceedings of the Fourth ISSAC Congress, WorldScientific (2005), 395–405.

R. Bevilacqua, E. Bozzo The Sylvester-Kac matrix space

top related