the meaning of distances in spectral analysispeople.ece.umn.edu/~georgiou/papers/plenary1.pdf ·...

Post on 13-Jul-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

The meaning ofDistances in Spectral Analysis

46th IEEE Conference on Decision & Control

Plenary presentation

Tryphon Georgiou

Electrical & Computer EngineeringUniversity of Minnesota

Meaning of distances

• maximal separation (L∞)• energy-like content (L2)• integral of flow-rate (L1)

New Orleans, December 2007 2

Power spectra

0 0.5 1 1.5 2 2.5 310!6

10!5

10!4

10!3

10!2

10!1

Periodogram, Blackman-Tukey, Levinson, Durbin, Burg, . . .

New Orleans, December 2007 3

Spectral analysis

0 0.5 1 1.5 2 2.5 310!6

10!5

10!4

10!3

10!2

10!1

+

=

. . . u(0), u(1), . . .+

...

u(k) =∫ejkθdX(θ) E{u(k)u(k + `)} =

∫ej`θf (θ)dθ

New Orleans, December 2007 4

Signals vs. power densities

time-signals

(u1 − u2) “error signal”

power distributions

0 0.5 1 1.5 2 2.5 310!6

10!5

10!4

10!3

10!2

10!1

0 0.5 1 1.5 2 2.5 310!6

10!5

10!4

10!3

10!2

(f1 − f2) is not a “signal”

New Orleans, December 2007 5

Communications

Speech analysis/coding

New Orleans, December 2007 6

Medical diagnostics

Noninvasive temperature sensing

Temperature field

with E. Ebbini & A.N. AminiIn IEEE Trans. on Biomedical Engineering, 2005

New Orleans, December 2007 7

Medical diagnostics Radar (SAR)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 110

−1

100

101

102

http://www.sandia.gov/radar/images/3dsar.gif

New Orleans, December 2007 8

Quantitative analysis

different

methods

0 0.5 1 1.5 2 2.5 310!6

10!5

10!4

10!3

10!2

10!1

0 0.5 1 1.5 2 2.5 310!6

10!5

10!4

10!3

10!2

How can we compare power spectra?

New Orleans, December 2007 9

Quantitative analysis

same

method

0 0.5 1 1.5 2 2.5 310!6

10!5

10!4

10!3

10!2

0 0.5 1 1.5 2 2.5 310!6

10!5

10!4

10!3

10!2

10!1

How can we compare power spectra?

New Orleans, December 2007 10

How can we compare power spectra?

Question:what is a natural notion of distancebetween power spectral densities?

quantify uncertainty

signal classification, detect structural changes

system identification, tune algorithms, sensor technology

New Orleans, December 2007 11

Plan of the talkMetrics based on

prediction theory (Szego, Kolmogorov)

parallels with information geometry (Fisher, Rao)

transport geometry (Monge-Kantorovich)

Case studies & applications Prediction-basedgeometry

Informationgeometry

Transportgeometry

applications

New Orleans, December 2007 12

Setting. . . u−1, u0, u1, u2, . . . . . . u−1, u0, u1, u2, . . .

0 0.5 1 1.5 2 2.5 310

−6

10−4

10−2

100

0 0.5 1 1.5 2 2.5 310

−6

10−5

10−4

10−3

10−2

f1(θ) f2(θ)

New Orleans, December 2007 13

What is it we would like to have?

distance(

0 0.5 1 1.5 2 2.5 310

−6

10−5

10−4

10−3

10−2

10−1

, 0 0.5 1 1.5 2 2.5 310

−6

10−5

10−4

10−3

10−2 )

f1(θ), f2(θ)

• metric• meaningful & natural

candidates?Kullback-Leibler, Bregman, Itakura-Saito, Makhoul,..

convex functionalsperceptual qualities

New Orleans, December 2007 14

Linear prediction

One-step-ahead prediction: upresent − upresent|past

with upresent|past :=∑

pastαkuk

E{|upresent − upresent|past|2} = variance of prediction error

New Orleans, December 2007 15

Szego’s theorem

One-step-ahead prediction:

least error variance = exp

{1

∫log f (θ)dθ

}G. Szego

it is a geometric mean. . .

exp{13

(log f1 + log f2 + log f3)} = 3√f1f2f3

New Orleans, December 2007 16

Degradation of prediction error variance

Use f2 to design a predictor (assuming uf2,time).

Then compare how this performs on uf1,time against the optimal based on f1.

degraded variance︷ ︸︸ ︷E{|uf1,present −

∑past

af2,past uf1,past|2}− optimal variance

optimal variance≥ 0

New Orleans, December 2007 17

Degradation of prediction variance

degraded variance︷ ︸︸ ︷E{|uf1,present −

∑past

af2,past uf1,past|2}

optimal variance=

arithmetic mean of(f1

f2

)geometric mean of

(f1

f2

)

=

(1

∫(f1

f2)dθ)

exp(

12π

∫log(f1

f2)dθ)

arithmetic over geometric mean (≥ 1)

New Orleans, December 2007 18

Riemannian metric

f1 = f,f2 = f + ∆

degraded variance︷ ︸︸ ︷E{|uf1,present −

∑past

af2,past uf1,past|2}− optimal variance

optimal variance'

δ(f, f + ∆) =1

∫ (∆

f

)2

dθ −(

1

∫ (∆

f

)dθ

)2

variance-like: (mean square) - (arithmetic-mean)2

New Orleans, December 2007 19

Geodesics

Paths fr (r ∈ [0, 1]) between f0, f1 of minimal length∫ 1

0

√δ (fr, fr+dr)

each point represents a different power spectral density

New Orleans, December 2007 20

Geodesics

The geodesics are exponential families:

fr = f0

(f1

f0

)r

, r∈[0, 1]

= exp{ (1− r) log (f0) + r log (f1) }

0 0.5 1 1.5 2 2.5 310

−6

10−5

10−4

10−3

10−2

10−1

0 0.5 1 1.5 2 2.5 310

−6

10−5

10−4

10−3

10−2

morphing

New Orleans, December 2007 21

Geodesic distance: metric

The path-length is

d(f0, f1) :=

√1

∫ π

−π

(log

f1

f0

)2

dθ −(

1

∫ π

−πlog

(f1

f0

)dθ

)2

variance-like distance on logarithms: (mean square) - (arithmetic-mean)2

scale-insensitive, “shape” recognizer

0 0.5 1 1.5 2 2.5 3 3.510

−5

10−4

10−3

10−2

10−1

100

0 0.5 1 1.5 2 2.5 3−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

In IEEE Trans. on Signal Processing, Aug. 2007 log f1

f0= log(f1)− log(f0)

New Orleans, December 2007 22

Prediction-basedgeometry

Informationgeometry

New Orleans, December 2007 23

Information geometry – parallels

f ; p : probability density

I = Ep{(∂λ log pλ)2} δλ2

Fisher information metric

I =∑∆2

p

R. Fisher

C.R. Rao

New Orleans, December 2007 24

Information geometry – parallels

Expected “message-length increase”:

H(p1|p0) =(−∑

p1 log(p0))−(−∑

p1 log(p1))

Fisher information metricp0 = pp1 = p + ∆

I =∑∆2

p

R. Leibler

S. Kullback

New Orleans, December 2007 25

Information geometry – parallels

Geodesics: great circles

p 7→ √p ∈ Sphere p(1)p(2)p(3)

7→√p(1)√p(2)√p(3)

Geodesic distance: ArclengthBattacharyya distance

New Orleans, December 2007 26

Information vs. prediction-based

∑∆2

pvs.

∫ (∆

f

)2

−(∫

f

)2

p 7→ √p vs. f 7→ log f

great circles vs. logarithmic families

New Orleans, December 2007 27

Information geometry – parallels

Ability to differentiate decreases p(1)p(2)p(3)

7→ M

p(1)p(2)p(3)

Chentsov’s theorem:

Stochastic maps are contractive

under Fisher metric

and

Fisher metric is the uniqueRiemannian metric with this property

New Orleans, December 2007 28

What is the analog for power spectra?

addititive noise

f 7→ f + fnoise

multiplicative noise

f 7→ f ? fnoise

continuity of moments (second-order statistics)

f 7→ integrals of f

New Orleans, December 2007 29

Prediction-basedgeometry

Informationgeometry

Transportgeometry

New Orleans, December 2007 30

Transport geometry

Monge-Kantorovich problemminimize cost of transferring mass∫

cost(x→ y) × mass(dx, dy)

G. Monge

L. Kantorovich

New Orleans, December 2007 31

Transport for power spectra

Transport-based metric

distances do not increase

under additive noiseand multiplicative noise

with power ≤ 1

+ continuity of statistics

metric = min (cost of transport(f0, f1) + normalization)

with Johan Karlsson (KTH) & Mir Shahrouz Takyar

New Orleans, December 2007 32

Prediction-basedgeometry

Transportgeometry

applications

New Orleans, December 2007 33

Fitting geodesics

K.F. Gauss

Least squares: The theory of motion of heavenly bodies, Gauss, K.F.

New Orleans, December 2007 34

Tracking with geodesics

with Xianhua Jiang

New Orleans, December 2007 35

Voice & sounds

John Weissmuller’s MGM Tarzan Yell

http://www.complxmind.com

New Orleans, December 2007 36

Images & more

Geometric active contours

∂∂tCurve = ∇Curve metric(finside, foutside)

with Romeil Sandhu and Allen Tannenbaum

New Orleans, December 2007 37

Images & more

with Romeil Sandhu and Allen Tannenbaum

New Orleans, December 2007 38

Concluding thoughtsMetricsin spectral analysis

• Operational significance

• Effect of natural transformations

New Orleans, December 2007 39

Thank you for your attention

thanks toXianhua Jiang Johan Karlsson Romeil Sandhu Mir Shahrouz Takyar

Allen Tannenbaum & Anders Lindquist

National Science Foundation, AFOSR, and Hermes-Luh endowment

New Orleans, December 2007 40

top related