the energy issue and the possible contribution of various nuclear energy production scenarios

Post on 16-Mar-2016

35 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

The energy issue and the possible contribution of various nuclear energy production scenarios. H.Nifenecker Scientific consultant LPSC/CNRS Chairman of « Sauvons le Climat ». Global Heating Challenge. Models for emission (a) and concentrations of CO2 (b). (a). (b). The effort to do. - PowerPoint PPT Presentation

TRANSCRIPT

The energy issue and the possible contribution of various nuclear

energy production scenarios

H.NifeneckerScientific consultant LPSC/CNRSChairman of « Sauvons le Climat »

Global Heating Challenge

(a)

(b)

Models for emission (a) and concentrations of CO2 (b)

Global Warming•2004 Emissions : 7,3 GtC (6,4 in 2000)•World population: 6,3 Billions (6,0 in 2000) •Emission/capita: 1,15 Ton C (1,06 in 2000)

Max. emission for temperature stabilization: 3GtC

•Objective for 2050•World Population(minimum) : 9 Billions•Emission/capita: 0.33 Ton

The effort to do

•World average: 1,15 ton C/capita•USA: 5,4 tons C/capita•Germany : 2,8 tons C/capita•France: 1.7 tons C/capita•China: 0.75 tons C/capita

2004 emissions

Origin of world CO2 emissions

Factors to control

EnergyQ

GDPEnergy

NGDP

NQ CO

poppop

CO 22

GDPEnergy

EnergyQCO2

Energy intensities

CO2 intensities

tCO2/tep (1995)

0

0,5

1

1,5

2

2,5

3

3,5

Danem

ark

Irland

e

Portug

al

Luxe

mbourg Ita

lie

Allemag

neUSA GB

Autrich

e

Espag

ne

Pays B

asJa

pon

Finlan

de

Belgiqu

e

Canad

a

France

tCO

2/te

ptCO2/tep

tCO2/elec

tCO2/tep

Role of electricity

Strategic role of Electricity

Electricity substitute to fossiles

•Mass transportation •Electric car•Hydrogen (electrolysis or reforming + CS (CO2)•Bio-Fuels

-Transportation

-Heating

•Insulation•Thermal Solar•Biomass (wood, wastes, bio-gas)•Geothermal•Heat Pump •Electric Heat

Learn from the past

Comparison of electricity mixOECD vs France

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

80,00

90,00

100,00

Coal Oil Gas Nucl+Ren.

Fuel

%

OECDFrance

First step: electricity mix

Assume same mix for OECD as for France

Comparison of CO2 emissions for observed and potential mix

Gain: 0.67

0

500

1000

1500

2000

2500

3000

3500

4000

observed potential

Mt C

O2

emitt

ed

electricnon electric

Second step: Heatproduction with electricity

Total gain: 0.3Residual « transport » CO2

0

500

1000

1500

2000

2500

3000

3500

4000

observed clean electricity clean elec.+heat

MtC

O2 electricity

heattransport

Evolution of world GHG Emissions

Increase dominatedby CO2

Evolution of GHG emissions

Origin of GHG emissions

GHG emissions by sectorDominant rôle of energy sector

Building of scenariosExample of IAASA-WEC

scenarios

Population projections

0

2000

4000

6000

8000

10000

12000

14000

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Popu

latio

n M

illio

ns

A2RB1B2

GDP Projections

0

50

100

150

200

250

300

350

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Trill

ions

dol

lars

A2RB1B2

Energy Demand

0,00

5,00

10,00

15,00

20,00

25,00

30,00

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Gte

p A2RB1B2

Energy demand per aggregate

0,00

2,00

4,00

6,00

8,00

10,00

12,00

Gte

p

AsiaTransitionOECDLAM+AFRICA

Total primary energy B2

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Gte

p 480 ppmv670 ppmvBase

Nuclear B2

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

9,00

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Gte

p 480670Base

% electricity in B2

0

10

20

30

40

50

60

70

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090

%

480670base

Coal B2

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

8,00

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Gte

p 480 ppmv670 ppmvBase

% nuclear electricity

0

10

20

30

40

50

60

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

%

480670Base

IIASANuclear electricity in 2050

compared to 2000•Baseline:

Share of electricity multiplied by 1.64Share of nuclear multiplied by 1.38Nuclear multiplied by 2,26

•670 ppmShare of electricity multiplied by 1.73Share of nuclear multiplied by 1,55 Nuclear multiplied by 2,68

•480 ppmShare of electricity multiplied by 1.98Share of nuclear multiplied by 1,65 Nuclear multiplied by 3,26

Share of CO2less in electricityB2 470 ppm

0

10

20

30

40

50

60

70

80

90

100

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

nuclearHydrobiomasswind+PV

Share of CO2less in electricityBaseline

0

10

20

30

40

50

60

70

80

90

100

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

nuclearhydroBiomassWind+PV

Share of CO2less in electricityOECD

0

10

20

30

40

50

60

70

80

90

100

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

nuclearhydrobiomasswindPV

Share of CO2less in electricityAsia

0

10

20

30

40

50

60

70

80

90

100

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

nuclearhydrobiomasswindPV

Share of CO2less in electricityALM

0

10

20

30

40

50

60

70

80

90

100

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

nuclearhydrobiomasswindPV

Share of CO2less in electricityREF

0

10

20

30

40

50

60

70

80

90

100

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

nuclearhydrobiomasswindPV

CO2 concentrations

0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

conc

entr

atio

n CO

2 eq

u. p

pmv

480670 ppmBase

Relation GHG concentrationtemperature

IPCC scenarios

Evolution of CO2 emissionsin IPCC scenarios

IPCC projections

2030tCO2<50$/tonRenewables: 35% electricityNuclear: 18% electricity

IEA’s successive Prospects fo Nuclear (World Energy Outlook)

2020 2030Mtoe TWh % Mtoe TWh %

WEO 1998 604 2317 8 WEO 2000 617 2369 9 WEO 2002 719 2758 11 703 2697 9 WEO 2004 776 2975 12 764 2929 9 WEO 2006 861 3304 10 Alt. 2006 1070 4106 14

Prospect for nuclear production 2000-2030 TWh (AIEA July 2006)

0

200

400

600

800

1000

1200

1400

Am N W Eur Afr Pacif

2000

2010 b2010 H2020 b2020 H2030 b2030 H

Am L Eur E MO+As S Ext. O

Nuclear Intensive Scenarios

•Scenarios by difference:P.A.BauquisD.Heuer and E.Merle

•Objective oriented ScenariosH.Nifenecker et al.

No miracle from renewables•Hydro:

Limitation of ressource (Europe-USA)Environment and localization (Am.Sud, Asie, Afrique, Russie)Large Investments Reliable, availableMight provide 20% of world electricity.

France: 70TWh/450•Wind

« fatal » EnergyLimit: 10-15% of electricity production

No miracle with renewables•Solar

PV: Ideal for isolated sites (Africa, SE Asia). Mostly artificial in Developed Countries and very expansive

Thermal: interesting for heating and warm water

Thermodynamic: Fiability? Hot and dry climates Hot and dry climate.

•Biomass

Bio-fuels (10 Mtep/50)

Wood energy.

Competition with food, energy and environmental balance

Pierre René Bauquis

Renewable energies

7 J o u r n é e d e l ’ É n e r g i e 1 4 - 1 8 m a i 2 0 0 1

É l e c t r i c i t é d ’ o r i g i n e r e n o u v e l a b l e e n 1 9 9 5 e t 2 0 5 0 *

G l o b a l F o u n d a t i o n - N o v e m b e r 2 6 / 2 8 , 2 0 0 0 0 P R B 9 _ 0 1 . p p t - P i e r r e R e n é B A U Q U I S

* É q u i v a l e n c e r e t e n u e p o u r l ’ é l e c t r i c i t é : l e n u c l é a i r e e t l e s r e n o u v e l a b l e s o n t é t é c o m p t a b i l i s é s c o m m e s ’ i l s a v a i e n t é t é g é n é r é s p a r u n e f i l i è r e t h e r m i q u e a v e c u n r e n d e m e n t d e 4 0 % ( c o n v e n t i o n u t i l i s é e p a r l e g r o u p e T O T A L ) d o n t p l u s d e 9 5 % d e «   g r a n d e h y d r a u l i q u e   »

H y d r a u l i q u eH y d r a u l i q u eÉ o l i e nÉ o l i e n

B i o m a s s e B i o m a s s e ( f i l i è r e s ( f i l i è r e s é l e c té l e c t . ). )

G é o t h e r m i eG é o t h e r m i e

S o l a i r e S o l a i r e ( p h o t o v o l t a ï q u e )( p h o t o v o l t a ï q u e )

S o l a i r e S o l a i r e t h e r m i q u et h e r m i q u e

7 2 2 . 6 0 07 2 2 . 6 0 0

7 0 0 . 0 0 07 0 0 . 0 0 0

5 . 0 0 05 . 0 0 0

1 0 . 0 0 01 0 . 0 0 0

7 . 0 0 07 . 0 0 0

6 0 06 0 0

--

1 . 0 0 0 . 0 0 01 . 0 0 0 . 0 0 0

2 0 0 . 0 0 02 0 0 . 0 0 0

1 0 0 . 0 0 01 0 0 . 0 0 0

2 0 . 0 0 02 0 . 0 0 0

3 0 . 0 0 03 0 . 0 0 0

--

2 . 4 0 02 . 4 0 0

1 01 0

5 05 0

3 03 0

11

1 01 0

3 . 0 0 03 . 0 0 0

5 0 05 0 0

5 0 05 0 0

1 0 01 0 0

1 0 01 0 0

5 05 0

1 . 3 5 0 . 0 0 01 . 3 5 0 . 0 0 0 2 . 5 0 12 . 5 0 1 4 . 2 5 04 . 2 5 0T o t a lT o t a l

1 9 9 51 9 9 5 2 0 5 02 0 5 0 1 9 9 51 9 9 5 2 0 5 02 0 5 0

P u i s s a n c e s i n s t a l l é e sP u i s s a n c e s i n s t a l l é e sM WM W

É l e c t r i c i t é g é n é r é eÉ l e c t r i c i t é g é n é r é eT W hT W h

S o u r c e : R e v u e d e l ’ É n e r g i e ,5 0 a n s , n ° 5 0 9 S e p t . 9 9

Renewable electricity

8 J o u r n é e d e l ’ É n e r g i e 1 4 - 1 8 m a i 2 0 0 1

É l e c t r i c i t é d ’ o r i g i n e r e n o u v e l a b l e e n 1 9 9 5 e t 2 0 5 0 *

G l o b a l F o u n d a t i o n - N o v e m b e r 2 6 / 2 8 , 2 0 0 0 0 P R B 9 _ 0 1 . p p t - P i e r r e R e n é B A U Q U I S

* É q u i v a l e n c e r e t e n u e p o u r l ’ é l e c t r i c i t é : l e n u c l é a i r e e t l e s r e n o u v e l a b l e s o n t é t é c o m p t a b i l i s é s c o m m e s ’ i l s a v a i e n t é t é g é n é r é s p a r u n e f i l i è r e t h e r m i q u e a v e c u n r e n d e m e n t d e 4 0 % ( c o n v e n t i o n u t i l i s é e p a r l e g r o u p e T O T A L )* * d o n t p l u s d e 9 5 % d e «   g r a n d e h y d r a u l i q u e   »

C o n s o m mC o n s o m m . é l e c t r i c i t é. é l e c t r i c i t é( t o u t e s o r i g i n e s )( t o u t e s o r i g i n e s )

H y d r a u l i q u e * *H y d r a u l i q u e * *

A u t r e s r e n o u v e l a b l e sA u t r e s r e n o u v e l a b l e s

T o t a l r e n o u v e l a b l e sT o t a l r e n o u v e l a b l e s 2 5 0 02 5 0 0

1 3 0 0 01 3 0 0 0

2 4 0 02 4 0 0

1 0 0 1 0 0

1 9 9 51 9 9 5

É l e c t r i c i t é g é n é r é eÉ l e c t r i c i t é g é n é r é ee n e n T W h T W h e n e n G t e p G t e p **

4 2 5 04 2 5 0

4 2 0 0 04 2 0 0 0

3 0 0 03 0 0 0

1 2 5 01 2 5 0

2 0 5 02 0 5 0

0 . 5 20 . 5 2

2 . 82 . 8

0 . 50 . 5

0 . 0 20 . 0 2

1 9 9 51 9 9 5

0 . 90 . 9

9 . 09 . 0

0 . 60 . 6

0 . 30 . 3

2 0 5 02 0 5 0

1 8 . 8 %1 8 . 8 %

1 0 0 %1 0 0 %

1 8 . 0 %1 8 . 0 %

0 . 8 %0 . 8 %

1 9 9 51 9 9 5

1 0 . 0 %1 0 . 0 %

1 0 0 %1 0 0 %

7 . 0 %7 . 0 %

3 . 0 %3 . 0 %

2 0 5 02 0 5 0

6 . 8 %6 . 8 %

3 4 . 0 %3 4 . 0 %

6 . 5 %6 . 5 %

0 . 3 %0 . 3 %

1 9 9 51 9 9 5

5 . 0 %5 . 0 %

5 0 . 0 %5 0 . 0 %

3 . 5 %3 . 5 %

1 . 5 %1 . 5 %

2 0 5 02 0 5 0

S o i t e n % d e sS o i t e n % d e sc o n s o m m a t i o n sc o n s o m m a t i o n s

é l e c t r i q u e s 2 0 5 0é l e c t r i q u e s 2 0 5 0

S o i t e n % d e sS o i t e n % d e sc o n s o m m a t i o n sc o n s o m m a t i o n s

é n e r g é t i q u e sé n e r g é t i q u e st o t a l e st o t a l e s

A vision of energy mix by 2050

9 J o u r n é e d e l ’ É n e r g i e 1 4 - 1 8 m a i 2 0 0 1

U n e v i s i o n d e s b i l a n s é n e r g é t i q u e s 2 0 0 0 - 2 0 2 0 -2 0 5 0

G l o b a l F o u n d a t i o n - N o v e m b e r 2 6 / 2 8 , 2 0 0 0 0 P R B 9 _ 0 1 . p p t - P i e r r e R e n é B A U Q U I S

S o u r c e : R e v u e d e l ’ É n e r g i e ,5 0 a n s , n ° 5 0 9 S e p t . 9 9

2 0 0 02 0 0 0

G t e pG t e p %%

2 0 2 02 0 2 0

G t e pG t e p %%

2 0 5 02 0 5 0

G t e pG t e p

P é t r o l eP é t r o l eG a zG a z

C h a r b o nC h a r b o n

3 . 73 . 72 . 12 . 12 . 22 . 2

4 04 02 22 22 42 4

5 . 05 . 04 . 04 . 03 . 03 . 0

4 04 02 72 72 02 0

3 . 53 . 54 . 54 . 54 . 54 . 5

2 02 02 52 52 52 5

%%

E n s e m b l e é n e r g i e s f o s s i l e sE n s e m b l e é n e r g i e s f o s s i l e s 8 . 08 . 0 8 68 6 1 2 . 01 2 . 0 8 78 7 1 2 . 51 2 . 5 7 07 0

R e n o u v e l a b l e sR e n o u v e l a b l e sd o n t f i l i è r e s é l e c t r i q u e sd o n t f i l i è r e s é l e c t r i q u e s

0 . 70 . 7( 0 . 5 )( 0 . 5 )

7 . 57 . 5

11( 0 . 7 )( 0 . 7 )

6 . 56 . 5

1 . 51 . 5( 0 . 9 )( 0 . 9 )

88

N u c l é a i r eN u c l é a i r e 0 . 60 . 6 6 . 56 . 5 11 6 . 56 . 5 44 2 22 2

T o t a l t o u t e s é n e r g i e sT o t a l t o u t e s é n e r g i e s 9 . 39 . 3 1 0 0 . 01 0 0 . 0 1 4 . 01 4 . 0 1 0 0 . 01 0 0 . 0 1 8 . 01 8 . 0 1 0 0 . 01 0 0 . 0

Energy mix in 2050

11 Jou rn ée d e l’Énerg ie 14-18 m ai 2001

Sources d’énerg ies prim aires (m onde) : 1900 - 2050

0%

20%

40%

60%

80%

100%

1900 1950 2000 2050

Charbon Renouvelables (sauf hydro.)Pétrole G az naturelHydraulique Nucléaire

G lobal Foundation - Novem ber 26/28, 2000 0PRB 9_01.pp t - P ierre R en é BAUQ UIS

CO2 emissions

1 0 J o u rn é e d e l ’É n e rg ie 1 4 -1 8 m a i 2 0 0 1

É v o lu t io n e s tim é e d e s é m is s io n s d e C O 2

H y p o th è s e 1 : 1H y p o th è s e 1 : 1 G tC G tC g é n è re u n a c c ro is s e m e n t d e 0 .2 7 7 g é n è re u n a c c ro is s e m e n t d e 0 .2 7 7 p p m p p m C OC O 22 d a n s l’a tm o s p h è re d a n s l’a tm o s p h è reH y p o th è s e 2 : 1H y p o th è s e 2 : 1 G tC G tC g é n è re u n a c c ro is s e m e n t d e 0 .2 2 8 g é n è re u n a c c ro is s e m e n t d e 0 .2 2 8 p p m p p m C OC O 22 d a n s l’a tm o s p h è re d a n s l’a tm o s p h è re

C OC O 22 p p mp p m

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

5 0 0

5 5 0

1 9 6 0 1 9 8 0 2 0 0 0 2 0 2 0 2 0 4 0

H y p o th è s e 2H y p o th è s e 2

H y p o th è s e 1H y p o th è s e 1

M a u n a L o aM a u n a L o ad a tad a ta

G lo b a l F o u n d a tio n - N o v e m b e r 2 6 /2 8 , 2 0 0 0 0 P R B 9 _ 0 1 .p p t - P ie rre R e n é B A U Q U IS

c a lc u léc a lc u léo b s e rv éo b s e rv é

Nuclear production

In Bauquis ScenarioNuclear production

0.6 Gtep 4 Gtep i.e. x 6.5

Primary Energy (GTEP)

2000 2050

Fossils 7.5 7.5Hydro 0.7 1.4

Wood 1.2 1.1

Renewable 0.2 5.2

Nuclear 0.6 5.2

Total 10.2 20.4

– Stabilization of fossile contribution– World energy consumption x 2– Renewable = nuclear

Hypothesis 2050

Multiplication by factor 8 • Then increase by 1.2%/year up to 2100

Nuclear :

Elsa Merle and Daniel Heuer

Objective oriented scenariosH.Nifenecker et al.

2000 IIASA-WEC Scenarios

• A: strong growth– A1: Oil – A2: Coal– A3:Gaz

• B: Middle of the road• C: Low energy intensity. High electricity

– C1: Ren.+Gaz– C2: Ren.+Nuclear

GDP/capita 1000$

0

10

20

30

40

50

60

70

NorthAmerica

WesternEurope

PacificOECD

FormerSovietUnion

EasternEurope

LatinAmerica

M. East&N.Africa

Africa Centrallyplanned

Asia

OtherPacificAsia

South Asia

GD

P/C

apita

100

0$

1990

2050 A

2050 B

2050 C

GDP/cap

Energy Intensities

0,000

0,050

0,100

0,150

0,200

0,250

0,300

0,350

0,400

0,450

0,500

1990 2050 A 2050 B 2050 C

toe/

kilo

$

Energy intensities

World GDP

0

20000

40000

60000

80000

100000

120000

1990 2050 A 2050 B 2050 C

Scenarios

Wor

ld G

DP

billi

on$

World GDP

B2: 110 000

Primary energy per fuel MToe

0

2000

4000

6000

8000

10000

12000

14000

16000

Coal Oil Nat. Gas Nuclear Hydro Biomass(comm)

Biomass(nonc)

Solar Others CO2(MtC)

MTo

e

1990

2050 A1

2050 A2

2050 A3

2050 B

2060 C1

2050 C2

Primary energy per fuel

A1 A2 A3 B C1 C2 Reserves 1990 Coal+Lignite 200 275 158 194 125 123 540 Oil 300 260 245 220 180 180 146 Gas 210 211 253 196 181 171 133

Exhaustion of fossile reserves(Gtoe)

Exhaustion of fossile reserves

•Minimize use of fossils for Electricity• « Reasonable » Development of Nuclear

OECD: 85%Transition: 50%China, India, Latin America: 30%

3000 GWe Nuclear

2030-2050

2050•Minimize use of coal and gas•30% coal China, India; 30% gas Russia; 100% Africa

7500 GWe Nucléaire

2030

Scenario no coal no gaz in 2050

0

5000

10000

15000

20000

25000

30000

PrimaryEnergy(Mtoe)

PrimaryElectricity(Mtoe)

Nuclear(Mtoe) CO2(Mt C)

Mto

e

20002050 A22050 C22050 N2

B2=18000, Nuclear=1450

CO2/GDP

0

0,05

0,1

0,15

0,2

0,25

0,3

2000 A2 2050 A2 2050 N1 2050 N2 2050 C2

T(C

)/100

0$CO2/GDP

CO2/primen

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

2000 A2 2050 A2 2050 N1 2050 N2 2050 C2

CO

2 to

n(C

)/Toe

CO2/primen

Gestion of Natural Uranium Reserves

Unat exhaustion

0,00E+00

2,00E+06

4,00E+06

6,00E+06

8,00E+06

1,00E+07

1,20E+07

1,40E+07

1,60E+07

1,80E+07

2050 A2 2050 N1 2050 N2 2050 C2

Cum

ulat

ed U

nat M

tons

Unat exhaustion

Breeding Cycles

U-Pu versus Th-U cycles

•U-PuFast SpectraPu fuel1.2 GWe reactorsSolid fuels1 year cooling25 years doubling time

•Th-UThermal SpectraPu, then 233U fuel1 GWe reactorsMolten Salts fuel10 days fuel cycling25 years doubling time

U-Pu vs Th-U

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Years

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Num

ber o

f Gw

e

Total number of GweNumber of Gwe PWRNumber of Gwe fast reactors

Number of Gwe (PWR and FR) as function of time

Nb GWe

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Years

10000

20000

30000

40000

50000

60000

70000

80000

Pu

Inve

ntor

y to

ns Pu inventorry

Pu inventory

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

years

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Num

ber o

f GW

e

totalPWRThPUThU3

Evolution of the number of Gwe for the Th-U cycle

Nb GWe Th-U

2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Years

0

2000

4000

6000

8000

10000

12000

14000

16000

U3

inve

ntor

y to

nsEvolution of the U3 stockpile

U3 inventory

Trajectory

Stabilisation T

•Stabilization of CO2 concentration to 450 ppm•Stabilization of temperature

E.Merle, D.HeuerAlternative

3 components

Reactor type3rd

GenerationSodium Fast

Neutron Reactors Thorium

molten salt reactor

Power(GWe) 1.45 1.0 1.0Date 2010 2025 2030

Fuel UOX Mox U-Pu Thorium + 233U

Fissile component 4.9 % (235U) 11 % (239Pu) 3 % (233U)Scenario without Th :

•Plutonium Production 250 kg/year 300 kg/year (breeding) -Scenario with Th :

• 233U Balance 130 kg/year 500 kg/year breeding

• Pu Balance 130 kg/year -200 kg/yearincineration

4 kg/year

Reactor types

• Les RNR ferment le cycle U/Pu

• 233U production: 450 PWR and 300 FNR

•natU consumption: 7 million tons by 2100•10 times less fissile matter in fuel cycle•Minor actinides production minimized

3 components

R and D needsstandard reactors

•PWR reactorsSelective reprocessing: extraction of Cs, Sr and M.A.Th-Pu MOx fuel in order to produce U233

•Candu type reactors Use of Th-Pu and, then Th-U3 fuel Reprocssing of Th-U3 fuelOptimization of fuel regeneration

R and D needsfast neutron reactors

•Sodium cooledVoid coefficientCore Recompaction Th blanketReprocessing of Th blanket

•Lead cooled reactors Corrosion problems Pb-Bi alloys

•Molten salt cooled reactorsChemical compositionCorrosion

•Gas cooled reactors Reprocessing of refractory fuels

R and D needsmolten salt reactors

•Neutron spectrum optimization•Corrosion•Fuel reprocessing

Proliferation

• Political or technical question?

top related