technological concepts and future applications of ag and ...susnano.org/sno2017/pdf/8a de la...

Post on 30-Apr-2020

13 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Technological concepts and future applications of Ag and TiO2 anatase nanoparticles

produced by Green methods

Sustainable Nanotechnology Organization Conference

November, 2017

Guadalupe de la Rosa, Víctor M. Escalante-Gómez, María C. García-Castañeda, J. Antonio Reyes-Aguilera, Edgar Vázquez-Núñez, J. Jesús Ibarra-Sánchez

http://www.cnano.fr/spip.php?article8&lang=en“I don't know how to do this on a small

scale in a practical way, but I do know thatcomputing machines are very large; theyfill rooms. Why can't we make them very

small, make them of little wires, littleelements, and by little, I mean little?” R.F.

Nu

mb

er

of

pro

du

cts

Project on Emerging Nanotechnologies http://www.nanotechproject.org/cpi (Tomado el 19 de mayo del 2014)

Ag

and

TiO2 NPs

4

Aplications

Any given method to obtain NPs

– Advantages

– Disadvantages

http://www.cell.com/trends/biotechnology/fulltext/S0167-7799(16)00040-8

Green Chemistry

– If NPs are intended for biomedical

purposes

– No toxic chemicals

– If medicinal plants are used…….

07/61

Using plant

extracts:

DISADVANTAGES:- Available Resouce

throughout the year

- Concentration of metabolites in the plant

- Modification of chemicalstructure of metabolitesduring the process

- Reproducibility

9

Optimization

Reproducibility

Target

19/61

Synthesis and characterization

Surface modification

Applications

Nanoparticles

09/61

1. Ag

1. Biosynthesis optimisation determining the most favorable

conditions: pH, metabolite extractant, precursor

concentration.

2. TiO2

1. Biosynthesis optimisation: pH, Relationship

extractant/TIPO; Water/TIPO, using alfalfa extracts

(isopropanol)

3. Potential applications

Obje

ctiv

es

(NPs)

22/61

Ag NPs

– Plant metabolite extractant

– H2O

– Isopropanol

– Methanol

– pH

– [Ag]

Particle size (nm)

5 10 15 20

Rela

tive F

requency

0

5

10

15

20

25

30

35

9.0 2.6 nm

σP = 0.29

20 nm

20 nm

Particle size (nm)

5 10 15 20 25 30

Rela

tive F

requency

0

10

20

30

40

12.7 5.2 nm

σP = 0.41S05

20 nm

Particle size (nm)

5 10 15 20

Rela

tive F

requency

0

5

10

15

20

25

30

8.9 2.7 nm

σP = 0.31

(c) (d)

S08

20 nm

Particle size (nm)

5 10 15 20 25 30 35

Rela

tive F

requency

0

10

20

30

40

12.1 2.9 nm

σP = 0.24S10

(e)

20 nm

Particle size (nm)

5 10 15 20

Rela

tive F

requency

0

5

10

15

20

25

30

35

8.9 2.5 nm

σP = 0.28

(f)S11

50 nm

Particle size (nm)

10 15 20 25 30 35 40 45

Rela

tive F

requency

0

5

10

15

20

25

24.1 12.0 nm

σP = 0.50S12

(g)

50 nm

Particle size (nm)

5 10 15 20 25 30

Rela

tive F

requency

0

5

10

15

20

25

30

14.9 4.7 nm

σP = 0.32S01

(a)

S02(b)(a) pH = 10, [Ag+] = 5.5 mM

and agua como PMES (S01);

(b) pH = 7, [Ag+] = 5.5 mM y

agua como PMES (S02);

(c) pH = 7, [Ag+] = 5.5 mM e

Isopropanol–Agua como

PMES: (S05);

(d) pH = 7, [Ag+] = 5.5 mM,

and Metanol–Agua como

PMES (S08);

(e) pH = 7, [Ag+] = 10 mM y

agua como PMES (S10);

(f) pH = 7, [Ag+] = 5.5 mM y

agua como PMES (S11);

(g) pH = 7, [Ag+] = 1 mM y

agua como PMES (S12).

28/61

Ag NPs synthesis

TD: Thermal decomposition; S11: H2OS08: MethanolS05: Isopropanol

Preliminary micro XAS/EXAFS

– Mixture AgCl, Ag, Ag2O

– Different proportions

– Reproducibility to be

determined

18

https://ec.europa.eu/jrc/en/science-update/intercomparison-study-silver-nanoparticles-

food-simulants

Ag NPs

–Leather fungi

–Cancer cells

TiO2

– Anatase

– Patents:

– TiCl4

– Ti hydroxide

– PMES, TIPO/H2O

40/61

https://www.nature.com/articles/srep01959

Conditions21

(a) pH: 1, 3, 6(b) IsOH/ TIPO; 1.5:1(c) Extract/ TIPO; 0.1, 0.2, 0.3(d) TIPOReflux

Particle size (nm)

6 7 8 9 10 11 12 13

Rela

tive F

requency

0

5

10

15

20

25

9.2 2.5 nm

σP = 0.27

Particle size (nm)

11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0

Rela

tive F

requency

0

2

4

6

8

10

12

14

16

18

20

13.3 1.9 nm

σP = 0.14

Particle size (nm)

7.0 7.5 8.0 8.5 9.0

Rela

tive F

requency

0

5

10

15

20

25

8.2 1.5 nm

σP = 0.18

Particle size (nm)

8.0 8.5 9.0 9.5 10.0

Rela

tive F

requency

0

5

10

15

20

25

8.9 1.9 nm

σP = 0.21

Particle size (nm)

9.0 9.5 10.0 10.5 11.0 11.5 12.0

Rela

tive F

requency

0

5

10

15

20

25

10.8 1.1 nm

σP = 0.10

Particle size (nm)

6 7 8 9 10 11 12 13

Rela

tive F

requency

0

5

10

15

20

25

30

9.3 2.4 nm

σP = 0.26

Particle size (nm)

6 7 8 9 10 11

Rela

tive F

requency

0

2

4

6

8

10

12

8.1 1.2 nm

σP = 0.15

Particle size (nm)

22 24 26 28 30 32 34 36

Rela

tive F

requency

0

5

10

15

20

25

30

9.4 2.1 nm

σP = 0.22

S35

S10

S34

S02

S14 S25

S33S30

20 30 40 50 60 70 80

0

25

50

75

100

125

150

175

200

u.a

.

2*Theta

20 30 40 50 60 70 80 90

0

25

50

75

100

125

150

175

200A (101)

A (004) A (200) A (105) A (213)

A (116) A (215)

S10

S06

S02

R (101)R (111)

S34

S30

S28

S27

S26

S25

S22

S18

S14

Yield24

1.Removal of colorants in water using NPs de TiO2

2.Tannery effluent treatment

3.Kinetic studies

TiO

2te

st

https://www.google.com/search?tbm=isch&q=tannery+industry&sa=X&ved=0ahUKEwjcreDuxqnXAhUF1WMKHe5

MC6EQhyYIJg#imgrc=KIdYCJmlPlTWfM:

Concentration (mg/L)

NP size (nm)

500 1500

Average SD Average SD

300 97.9967 0.4179 95.2967 0.2701

560 95.7267 1.1091 93.2833 0.6035

WTHT NPs 3.7633 0.6258

% o

range

meth

ylre

moval

46/61

Concentration (mg/L)

NP size (nm)

500 1500

Average SD Average SD

300 97.7300 0.4004 97.7533 0.4315

560 55.4367 1.4981 95.2367 0.1274

Wtht NPs 5.6300 3.2509

% re

movalm

eth

yle

ne

blu

e

47/61

4000 3600 3200 2800 2400 2000 1600 1200 800 400

0

50

100

150

200

250

% T

ran

sm

ita

ncia

Numero de onda (cm-1)

Azul de metileno

TiO2

TiO2 con azul

Teneria

TiO2 con naranja

4000 3600 3200 2800 2400 2000 1600 1200 800 400

0

50

100

150

200

250Befo

reand a

fter

degra

datio

n

1hr12620 .k Cin

étic

a d

e d

egra

dació

n

1hr16820 .k

Methyl orange

Methylene blue

▪ Summary of findings, Ag

▪ Size and size distribution depend on pH, PMES, and initial Ag

concentration

▪ best numbers were obtained when PMES was water, pH 7 (8.9 ± 2.5

nm, σP = 0.28)

▪ Kinetics indicated a complex reaction

▪ NPs contain a mixture of Ag, AgCl, Ag2O 38/61

▪ Summary of findings, TiO2

▪ Size and size distribution depend on pH, H2O/TIPO, Extracts/TIPO

▪ Crystal phase may be controled (mostly, anatase is obtained)

▪ Best conditions to obtain anatase are pH 6, hydrolisis ratio 500, Extract/TIPO

ratio of 0.1

▪ Colorant degradation depends on particle size

44/61

What are we up to?

– Bouganvillea

– Vainillin

– guayacol

32

20 30 40 50 60 70

Inte

nsid

ad (

U.A

)

Ángulo de difracción (2)

TiO2 sol gel

B-agua 06

B-OH06

B-agua 03

B-OH03

20 30 40 50 60 70

Inte

nsid

ad (

U.A

)

Ángulo de difracción (2)

TiO2 sol gel

V-agua 06

V-OH 06

V-agua03

V-OH03

R. Vijayalakshmi and V. Rajendran. Arch.Appl.Sci.Res; 2012, 4(2): 1183-1190

Bouganvillea Vainillin

SEM

VANILLIN

Tannery effluent35

ZHANG Hui;ZHANG Guoliang*;YANG Zhihong;CHEN Jinyuan;NI Lijia; Degradation of Azo Dye Wastewater in a TiO2 Photocatalysis and Membrane

Separation Hybrid System ; Chinese J of Catalysis, 2009

J. Jesús IbarraVíctor EscalanteIturiel Arias

Gustavo CruzHiram Castillo

Ma. Concepción GarcíaEdgar VázquezSusana FigueroaRosalba Fuentes

37

QUESTIONS?

38

0 5 10 15 20 25 30 35

6

9

12

15

18

Data

Model

[Ag

+] (m

mo

l/L

)

Time (min)

99922.0

mol/L1033.7

6.4

2

6.36.36

R

sk

n

Cin

étic

ade re

acció

npara

la b

iosín

tesis

de la

SN

Ps

29/61

40

4000 3600 3200 2800 2400 2000 1600 1200 800

0

20

40

60

80

100

% T

ran

sm

ita

nce

Wave number, (cm-1)

IsOH-Water

MeOH-Water

Water

4000 3600 3200 2800 2400 2000 1600 1200 800

0

20

40

60

80

100Esp

ectro

s de IR

para

los d

istinto

s extra

cto

s

24/61

42

top related