steps in the exact kohn-sham potential of ensemble density ... · ensemble density functional...

Post on 24-Jun-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Steps in the Exact Kohn-Sham Potential of Ensemble Density Functional Theory for Excited

States and Their Relation to the Derivative Discontinuity

Matt Hodgson1, Eli Kraisler1, Mike Entwistle2, Axel Schild3 and E. K. U. Gross1,4

1Max-Planck-Institute für Mikrostrukturphysik, Halle (Saale), Germany, 2Department of Physics, University of York, Heslington, York, UK,

3Laboratorium für Physikalische Chemie, ETH Zürich, Zürich, Switzerland,4Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem

91904, Israel

Ensemble Density Functional Theory

E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988)E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988) E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2821 (1988) 

The electron density of an excited system of N interacting electrons is modelled using an auxiliary system of non-interacting electrons:

Ensemble Density Functional Theory

E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988)E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988) E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2821 (1988) 

The electron density of an excited system of N interacting electrons is modelled using an auxiliary system of non-interacting electrons:

!

−1

2∇

2 + vs

"

φi(r) = εiφi(r)Kohn-Sham equations:

Ensemble Density Functional Theory

E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988)E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988) E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2821 (1988) 

The electron density of an excited system of N interacting electrons is modelled using an auxiliary system of non-interacting electrons:

!

−1

2∇

2 + vs

"

φi(r) = εiφi(r)Kohn-Sham equations:

Electron density:

Ensemble Density Functional Theory

n(r) = δ |φN+1(r)|2 + (1− δ) |φN(r)|

2 +N−1!

i=1

|φi(r)|2

E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988)E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988) E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2821 (1988) 

The electron density of an excited system of N interacting electrons is modelled using an auxiliary system of non-interacting electrons:

!

−1

2∇

2 + vs

"

φi(r) = εiφi(r)

The accuracy of the density relies on the approximation to the exchange-correlation part of vs.

Kohn-Sham equations:

Electron density:

Ensemble Density Functional Theory

n(r) = δ |φN+1(r)|2 + (1− δ) |φN(r)|

2 +N−1!

i=1

|φi(r)|2

E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988)E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988) E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2821 (1988) 

The iDEA code

ee

Model simple 1D systems consisting of a few electrons

Choose any external potential we like

The iDEA code

1. Calculate the exact ground-state and first excited-state electron density

2. The electron density is a linear combination of these two densities:

3. Next reverse-engineer the exact Kohn-Sham potential

n(r) = (1− δ) · n0(r) + δ · n1(r)

Model simple 1D systems consisting of a few electrons

Choose any external potential we like

ee

The iDEA code

ee e

vs

N = 3

Derivative discontinuity of an atom

ee e

δ∆

vs

∆ = I − A+ εho

− εlu

N = 3+δ 0 < δ << 1

Derivative discontinuity of an atom

Charge transfer excitation in a 1D molecule

vext

n0(x)

Charge transfer excitation in a 1D molecule

vext

n1(x)

Charge transfer excitation in a 1D molecule

δ

vext

n(x) = (1− δ)n0(x) + δn1(x)

0 < δ << 1

n(x)

Ground-state 1D molecule

Ground-state 1D molecule

S = IR − IL + ηhoR − ηhoL

Ground-state 1D molecule

S = IR − IL + ηhoR − ηhoL

Ionisation energy

Ground-state 1D molecule

S = IR − IL + ηhoR − ηhoL

Kohn-Sham molecular energies

Bonded case: ηho

R = ηho

L

⇒ S = IR − IL

Almbladh, C. O.; von Barth, U. In Density Functional Methods inPhysics; Dreizler, R. M., da Providência, J., Eds.; NATO ASI Series;Plenum Press, 1985; Vol. 123, pp 209−231.

Charge transfer excitation in a 1D moleculeδ

Charge transfer excitation in a 1D molecule

∆CT

L→R = IL − AR + ηhoL − ηluR

∆R = IR − AR + εho

R − εlu

R

Derivative discontinuity of Atom R:δ

Charge transfer excitation in a 1D molecule

∆CT

L→R = IL − AR + ηhoL − ηluR

∆R = IR − AR + εho

R − εlu

R

Derivative discontinuity of Atom R:

What’s this?

δ

Charge-transfer derivative discontinuity

∆CT

L→R = IL − AR + ηhoL − ηluR

Charge-transfer derivative discontinuity

∆CT

L→R = IL − AR + ηhoL − ηluR

∆R = IR − AR + εhoR − εluR = IR − AR + ηhoR − ηluR

Derivative discontinuity of Atom R:

Charge-transfer derivative discontinuity

∆CT

L→R = IL − AR + ηhoL − ηluR

S = S1 + S2 = ∆R −∆CT

L→R = IR − IL + ηhoR − ηhoL

∆R = IR − AR + εhoR − εluR = IR − AR + ηhoR − ηluR

Derivative discontinuity of Atom R:

Charge-transfer derivative discontinuity

S = S1 + S2 = ∆R −∆CT

L→R = IR − IL + ηhoR − ηhoL

Conclusions1. Ensemble density functional theory can be used to model charge transfer

2. Upon charge transfer two plateaus form around the atoms of a diatomic molecule – one corresponds to the derivative discontinuity of the acceptor and the other corresponds to the ‘charge-transfer derivative discontinuity’

3. The steps which correspond to the two derivative discontinuities add together to make the interatomic step which determines the distribution of charge in the molecule

Conclusions1. Ensemble density functional theory can be used to model charge transfer

2. Upon charge transfer two plateaus form around the atoms of a diatomic molecule – one corresponds to the derivative discontinuity of the acceptor and the other corresponds to the ‘charge-transfer derivative discontinuity’

3. The steps which correspond to the two derivative discontinuities add together to make the interatomic step which determines the distribution of charge in the molecule

Thanks for listening!

Publication: M. J. P. Hodgson et al., J. Phys. Chem. Lett., 2017, 8 (24), pp 5974–5980Email: mhodgson@mpi-halle.mpg.de Website: http://www-users.york.ac.uk/~mjph501/index.html

top related