stability of some string-beam systems · 2017-05-19 · introduction feedback stabilization...

Post on 13-Mar-2020

2 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

IntroductionFeedback stabilization

Thermoelastic case

Stability of some string-beam systems

Farhat Shel

Faculte des Sciences de Monastir

ContrOpt 2017

15-19 Mai 2017, Monastir, Tunisie

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Outline

1 Introduction

2 Feedback stabilizationAbstract settingAsymptotic behavior

3 Thermoelastic caseAbstract settingAsymptotic behavior

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Outline

1 Introduction

2 Feedback stabilizationAbstract settingAsymptotic behavior

3 Thermoelastic caseAbstract settingAsymptotic behavior

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Outline

1 Introduction

2 Feedback stabilizationAbstract settingAsymptotic behavior

3 Thermoelastic caseAbstract settingAsymptotic behavior

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Models

E. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx = 0 , u2,tt − u2,xxxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

Boundary conditions

u1(`1, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Models

Energy

E (t) =

∫ `1

0|u1,t |2 dx+

∫ `1

0|u1,x |2 dx+

∫ `2

0|u2,t |2 dx+

∫ `2

0|u2,xx |2 dx

d

dtE (t) = 0.

The system is conservative.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Models

E. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx

+ βθx

= 0

θt + βvtx − κθxx = 0

, u2,tt + u2,xxxx

+ βθx

= 0

θt + βvtx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

Boundary conditions

u1(`1, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

The system is

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Models

E. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx

+ βθx

= 0

θt + βvtx − κθxx = 0

, u2,tt + u2,xxxx

+ βθx

= 0

θt + βvtx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

Boundary conditions

u1(`1, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

The system is

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Models

E. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx

+ βθx

= 0

θt + βvtx − κθxx = 0

, u2,tt + u2,xxxx

+ βθx

= 0

θt + βvtx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

Boundary conditions

u1,x(`1, t) = −u1,t(`1, t),

u2(`2, t) = 0, u2,xx(`2, t) = 0.

The system is

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Models

E. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx

+ βθx

= 0

θt + βvtx − κθxx = 0

, u2,tt + u2,xxxx

+ βθx

= 0

θt + βvtx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

Boundary conditions

u1,x(`1, t) = −u1,t(`1, t),

u2(`2, t) = 0, u2,xx(`2, t) = 0.

The system is exponentially stable.Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Models

E. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx

+ βθx

= 0

θt + βvtx − κθxx = 0

, u2,tt + u2,xxxx

+ βθx

= 0

θt + βvtx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

Boundary conditions

u1(`1, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

The system is

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Models

E. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx

+ βθx

= 0

θt + βvtx − κθxx = 0

, u2,tt + u2,xxxx

+ βθx

= 0

θt + βvtx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

Boundary conditions

u1(`1, t) = 0,

u2,x(`2, t) = 0, u2,xxx(`2, t) = u2,t(`2, t).

The system is

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Models

E. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx

+ βθx

= 0

θt + βvtx − κθxx = 0

, u2,tt + u2,xxxx

+ βθx

= 0

θt + βvtx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

Boundary conditions

u1(`1, t) = 0,

u2,x(`2, t) = 0, u2,xxx(`2, t) = u2,t(`2, t).

The system is polynomially stable.Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Models

E. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx

+ βθx

= 0

θt + βutx − κθxx = 0

, u2,tt + u2,xxxx

+ βθx

= 0

θt + βutxx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

θ(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

θx(0, t)

.

Boundary conditions

u1(`1, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

The system is

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Models

TE. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx + βθx = 0θt + βutx − κθxx = 0

, u2,tt + u2,xxxx

+ βθx

= 0

θt + βutxx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

θ(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

θx(0, t)

.

Boundary conditions

u1(`1, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

The system is

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Models

TE. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx + βθx = 0θt + βutx − κθxx = 0

, u2,tt + u2,xxxx

+ βθx

= 0

θt + βutxx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0, θ(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

θx(0, t)

.

Boundary conditions

u1(`1, t) = 0, θ(`1, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

The system is

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Models

TE. String E. Beamℓ2ℓ1 0

u1,tt − u1,xx + βθx = 0θt + βutx − κθxx = 0

, u2,tt + u2,xxxx

+ βθx

= 0

θt + βutxx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0, θ(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = 0.

θx(0, t)

.

Boundary conditions

u1(`1, t) = 0, θ(`1, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

The system is exponentially stable.Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Models

E. String TE. Beamℓ2ℓ1 0

u1,tt − u1,xx

+ βθx

= 0

θt + βutx − κθxx = 0

, u2,tt + u2,xxxx + βθx = 0θt + βutxx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0, θ(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = θx(0, t).

Boundary conditions

u1(`1, t) = 0, θ(`2, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

The system is

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Models

E. String TE. Beamℓ2ℓ1 0

u1,tt − u1,xx

+ βθx

= 0

θt + βutx − κθxx = 0

, u2,tt + u2,xxxx + βθx = 0θt + βutxx − κθxx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0, θ(0, t) = 0,

u2,xxx(0, t)− u1,x(0, t) = θx(0, t).

Boundary conditions

u1(`1, t) = 0, θ(`2, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

The system is polynomially stable.Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

References

Coupled string-beam systemAmmari, Jellouli, Mehrenberger, 2009.

Chain of beams and stringsAmmari et al, 2012.

String beams networkAmmari, Mehrenberger 2012

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

References

Coupled string-beam systemAmmari, Jellouli, Mehrenberger, 2009.

Chain of beams and stringsAmmari et al, 2012.

String beams networkAmmari, Mehrenberger 2012

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

References

Coupled string-beam systemAmmari, Jellouli, Mehrenberger, 2009.

Chain of beams and stringsAmmari et al, 2012.

String beams networkAmmari, Mehrenberger 2012

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Energy space

E. String E. Beamℓ2ℓ1 0

L2(G) = L2(0, `1)× L2(0, `2).

V ={

f = (f1, f2) ∈ H1(0, `1)× H2(0, `2) | f satisfies (1)},

f2(`2) = 0,

δ ∈ {0, 1}

f1(0) = f2(0),∂x f2(0) = 0.

(1)

Energy space:H = V × L2(G),

〈y1, y2〉H :=⟨∂x f 1

1 , ∂x f 21

⟩+⟨∂2x f 1

2 , ∂2x f 2

2

⟩+⟨g 1

1 , g21

⟩+⟨g 1

2 , g22

⟩Hilbert space.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Energy space

E. String E. Beamℓ2ℓ1 0

L2(G) = L2(0, `1)× L2(0, `2).

V ={

f = (f1, f2) ∈ H1(0, `1)× H2(0, `2) | f satisfies (1)},

f1(`1) = 0,

δ ∈ {0, 1}

f1(0) = f2(0),∂x f2(0) = 0.

(1)

Energy space:H = V × L2(G),

〈y1, y2〉H :=⟨∂x f 1

1 , ∂x f 21

⟩+⟨∂2x f 1

2 , ∂2x f 2

2

⟩+⟨g 1

1 , g21

⟩+⟨g 1

2 , g22

⟩Hilbert space.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Energy space

E. String E. Beamℓ2ℓ1 0

L2(G) = L2(0, `1)× L2(0, `2).

V ={

f = (f1, f2) ∈ H1(0, `1)× H2(0, `2) | f satisfies (1)},

δf2(`2) = 0, (1− δ)f1(`1) = 0,

δ ∈ {0, 1}

f1(0) = f2(0),∂x f2(0) = 0.

(1)

Energy space:H = V × L2(G),

〈y1, y2〉H :=⟨∂x f 1

1 , ∂x f 21

⟩+⟨∂2x f 1

2 , ∂2x f 2

2

⟩+⟨g 1

1 , g21

⟩+⟨g 1

2 , g22

⟩Hilbert space.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Energy space

E. String E. Beamℓ2ℓ1 0

L2(G) = L2(0, `1)× L2(0, `2).

V ={

f = (f1, f2) ∈ H1(0, `1)× H2(0, `2) | f satisfies (1)},

δf2(`2) = 0, (1− δ)f1(`1) = 0, δ ∈ {0, 1}f1(0) = f2(0),∂x f2(0) = 0.

(1)

Energy space:H = V × L2(G),

〈y1, y2〉H :=⟨∂x f 1

1 , ∂x f 21

⟩+⟨∂2x f 1

2 , ∂2x f 2

2

⟩+⟨g 1

1 , g21

⟩+⟨g 1

2 , g22

⟩Hilbert space.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Energy space

E. String E. Beamℓ2ℓ1 0

L2(G) = L2(0, `1)× L2(0, `2).

V ={

f = (f1, f2) ∈ H1(0, `1)× H2(0, `2) | f satisfies (1)},

δf2(`2) = 0, (1− δ)f1(`1) = 0, δ ∈ {0, 1}f1(0) = f2(0),∂x f2(0) = 0.

(1)

Energy space:H = V × L2(G),

〈y1, y2〉H :=⟨∂x f 1

1 , ∂x f 21

⟩+⟨∂2x f 1

2 , ∂2x f 2

2

⟩+⟨g 1

1 , g21

⟩+⟨g 1

2 , g22

Hilbert space.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Energy space

E. String E. Beamℓ2ℓ1 0

L2(G) = L2(0, `1)× L2(0, `2).

V ={

f = (f1, f2) ∈ H1(0, `1)× H2(0, `2) | f satisfies (1)},

δf2(`2) = 0, (1− δ)f1(`1) = 0, δ ∈ {0, 1}f1(0) = f2(0),∂x f2(0) = 0.

(1)

Energy space:H = V × L2(G),

〈y1, y2〉H :=⟨∂x f 1

1 , ∂x f 21

⟩+⟨∂2x f 1

2 , ∂2x f 2

2

⟩+⟨g 1

1 , g21

⟩+⟨g 1

2 , g22

⟩Hilbert space.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Evolution equation

Then the system (S) may be rewritten as the first order evolutionequation on H,

{y ′(t) = Ay(t), t > 0,y(0) = y0

(2)

where y = (u, ut), y0 = (u0, u1).

A

u1

u2

v1

v2

=

v1

v2

∂2xu1

−∂4xu2

.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Evolution equation

Then the system (S) may be rewritten as the first order evolutionequation on H,

{y ′(t) = Ay(t), t > 0,y(0) = y0

(2)

where y = (u, ut), y0 = (u0, u1).

A

u1

u2

v1

v2

=

v1

v2

∂2xu1

−∂4xu2

.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Evolution equation

D(A) ={

y = (u, v) ∈ V 2 | u1 ∈ H2(0, `1),u2 ∈ H4(0, `2),y satisfies (3)}

(1− δ)∂xu1(`1) = −(1− δ)v1(`1),

(1− δ)∂2xu2(`2) = 0,

δ∂3xu2(`2) = δv2(`2), δ∂xu2(`2) = 0,

∂xu1(0)− ∂3xu2(0) = 0.

(3)

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Theorem

The operator A generates a C0-semigroup S(t) = eAt ofcontraction on H.

For an initial datum y0 ∈ H there exists a unique solution

y ∈ C ([0,+∞),H)

of the Cauchy problem (2).Moreover if y0 ∈ D(A), then

y ∈ C ([0,+∞),D(A)) ∩ C 1([0,+∞),H).

Proof (of the theorem).

A is a dissipative operator on H.

]0,+∞) ⊂ ρ(A): the resolvent set of A.Conclusion: by Lumer phillips theorem.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Theorem

The operator A generates a C0-semigroup S(t) = eAt ofcontraction on H.

For an initial datum y0 ∈ H there exists a unique solution

y ∈ C ([0,+∞),H)

of the Cauchy problem (2).

Moreover if y0 ∈ D(A), then

y ∈ C ([0,+∞),D(A)) ∩ C 1([0,+∞),H).

Proof (of the theorem).

A is a dissipative operator on H.

]0,+∞) ⊂ ρ(A): the resolvent set of A.Conclusion: by Lumer phillips theorem.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Theorem

The operator A generates a C0-semigroup S(t) = eAt ofcontraction on H.

For an initial datum y0 ∈ H there exists a unique solution

y ∈ C ([0,+∞),H)

of the Cauchy problem (2).Moreover if y0 ∈ D(A), then

y ∈ C ([0,+∞),D(A)) ∩ C 1([0,+∞),H).

Proof (of the theorem).

A is a dissipative operator on H.

]0,+∞) ⊂ ρ(A): the resolvent set of A.Conclusion: by Lumer phillips theorem.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Theorem

The operator A generates a C0-semigroup S(t) = eAt ofcontraction on H.

For an initial datum y0 ∈ H there exists a unique solution

y ∈ C ([0,+∞),H)

of the Cauchy problem (2).Moreover if y0 ∈ D(A), then

y ∈ C ([0,+∞),D(A)) ∩ C 1([0,+∞),H).

Proof (of the theorem).

A is a dissipative operator on H.

]0,+∞) ⊂ ρ(A): the resolvent set of A.Conclusion: by Lumer phillips theorem.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Theorem

The operator A generates a C0-semigroup S(t) = eAt ofcontraction on H.

For an initial datum y0 ∈ H there exists a unique solution

y ∈ C ([0,+∞),H)

of the Cauchy problem (2).Moreover if y0 ∈ D(A), then

y ∈ C ([0,+∞),D(A)) ∩ C 1([0,+∞),H).

Proof (of the theorem).

A is a dissipative operator on H.

]0,+∞) ⊂ ρ(A): the resolvent set of A.Conclusion: by Lumer phillips theorem.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Theorem

The operator A generates a C0-semigroup S(t) = eAt ofcontraction on H.

For an initial datum y0 ∈ H there exists a unique solution

y ∈ C ([0,+∞),H)

of the Cauchy problem (2).Moreover if y0 ∈ D(A), then

y ∈ C ([0,+∞),D(A)) ∩ C 1([0,+∞),H).

Proof (of the theorem).

A is a dissipative operator on H.

]0,+∞) ⊂ ρ(A): the resolvent set of A.

Conclusion: by Lumer phillips theorem.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Theorem

The operator A generates a C0-semigroup S(t) = eAt ofcontraction on H.

For an initial datum y0 ∈ H there exists a unique solution

y ∈ C ([0,+∞),H)

of the Cauchy problem (2).Moreover if y0 ∈ D(A), then

y ∈ C ([0,+∞),D(A)) ∩ C 1([0,+∞),H).

Proof (of the theorem).

A is a dissipative operator on H.

]0,+∞) ⊂ ρ(A): the resolvent set of A.Conclusion: by Lumer phillips theorem.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

exponential stability ⇐⇒ S(t) = eAt is exponentially stable:

‖S(t)y0‖ ≤ Ce−wt ‖y0‖ ∀t > 0.

Lemma [Gearhard-Pruss-Huang]

A C0-semigroup of contraction etB is exponentially stable if, andonly if,

iR = {iβ | β ∈ R} ⊆ ρ(B) (4)

andlim sup|β|→∞

∥∥(iβ − B)−1∥∥ <∞. (5)

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

exponential stability ⇐⇒ S(t) = eAt is exponentially stable:

‖S(t)y0‖ ≤ Ce−wt ‖y0‖ ∀t > 0.

Lemma [Gearhard-Pruss-Huang]

A C0-semigroup of contraction etB is exponentially stable if, andonly if,

iR = {iβ | β ∈ R} ⊆ ρ(B) (4)

andlim sup|β|→∞

∥∥(iβ − B)−1∥∥ <∞. (5)

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

polynomial stability ⇐⇒ S(t) = eAt is polynomially stable:

‖S(t)y0‖ ≤C

tα‖y0‖D(A) ∀t > 0.

Lemma [Borichev-Tomilov]

A C0-semigroup of contraction etB on a Hilbert space H satisfies∥∥etBy0

∥∥ ≤ C

t1α

‖y0‖D(B)

for some constant C > 0 and for α > 0 if, and only if, (4) holdsand

lim|β|→∞

sup1

βα∥∥(iβ − B)−1

∥∥ <∞ (6)

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

polynomial stability ⇐⇒ S(t) = eAt is polynomially stable:

‖S(t)y0‖ ≤C

tα‖y0‖D(A) ∀t > 0.

Lemma [Borichev-Tomilov]

A C0-semigroup of contraction etB on a Hilbert space H satisfies∥∥etBy0

∥∥ ≤ C

t1α

‖y0‖D(B)

for some constant C > 0 and for α > 0 if, and only if, (4) holdsand

lim|β|→∞

sup1

βα∥∥(iβ − B)−1

∥∥ <∞ (6)

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Exponential stability

Theorem

If the feedback is applied at the exterior end of the string then, thesystem (S) is exponentially stable.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

The operator A satisfies condition (4). It suffices to prove that (5)holds. Suppose the conclusion is false. Then there exists asequense (βn) of real numbers, without loss of generality, withβn −→ +∞, and a sequence of vectors (yn) = (un, vn) in D(A)with ‖yn‖H = 1, such that

‖(iβnI −A)yn‖H −→ 0.

We prove that this condition yields the contradiction ‖yn‖H −→ 0as n −→ 0.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

The operator A satisfies condition (4). It suffices to prove that (5)holds. Suppose the conclusion is false. Then there exists asequense (βn) of real numbers, without loss of generality, withβn −→ +∞, and a sequence of vectors (yn) = (un, vn) in D(A)with ‖yn‖H = 1, such that

‖(iβnI −A)yn‖H −→ 0.

We prove that this condition yields the contradiction ‖yn‖H −→ 0as n −→ 0.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Exponential stability

iβnu1,n − v1,n = f1,n −→ 0, in H1(0, `1),

iβnu2,n − v2,n = f2,n −→ 0, in H2(0, `2),

iβnv2,n − ∂2xu2,n = g2,n −→ 0, in L2(0, `1),

iβnv2,n + ∂4xu2,n = g2,n −→ 0, in L2(0, `2).

Then

−β2nu1,n − ∂2

xu1,n = g1,n + iβnf1,n, (7)

−β2nu2,n + ∂4

xu2,n = g2,n + iβnf2,n (8)

and‖vj ,n‖2 − β2

n ‖uj ,n‖2 −→ 0, j = 1, 2.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Exponential stability

iβnu1,n − v1,n = f1,n −→ 0, in H1(0, `1),

iβnu2,n − v2,n = f2,n −→ 0, in H2(0, `2),

iβnv2,n − ∂2xu2,n = g2,n −→ 0, in L2(0, `1),

iβnv2,n + ∂4xu2,n = g2,n −→ 0, in L2(0, `2).

Then

−β2nu1,n − ∂2

xu1,n = g1,n + iβnf1,n, (7)

−β2nu2,n + ∂4

xu2,n = g2,n + iβnf2,n (8)

and‖vj ,n‖2 − β2

n ‖uj ,n‖2 −→ 0, j = 1, 2.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Exponential stability

I βnu1,n(`1) −→ 0, ∂xu1,n(`1) −→ 0.

I (7) ∗ q∂xu1,n : ‖∂xu1,n‖2 + β2n ‖u1,n‖2 −→ 0,

I βnu1,n(0), ∂xu1,n(0), Re (iβnf1,n(0)u1,n(0)) −→ 0,

I (8) ∗ q∂xu2,n :

−12

∣∣∂2xu2,n(`2)

∣∣2 + 12β

2n ‖u2,n‖2 + 3

2

∥∥∂2xu2,n

∥∥2 → 0,

I (8) ∗ 1

β1/2n

e−β1/2n x : ∂2

xu2,n(`2)→ 0,

I1

2β2n ‖u2,n‖2 +

3

2

∥∥∂2xu2,n

∥∥2 → 0.

In conclusion ‖yn‖ converge to 0, which contradict the hypothesisthat ‖yn‖ = 1.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Exponential stability

I βnu1,n(`1) −→ 0, ∂xu1,n(`1) −→ 0.

I (7) ∗ q∂xu1,n : ‖∂xu1,n‖2 + β2n ‖u1,n‖2 −→ 0,

I βnu1,n(0), ∂xu1,n(0), Re (iβnf1,n(0)u1,n(0)) −→ 0,

I (8) ∗ q∂xu2,n :

−12

∣∣∂2xu2,n(`2)

∣∣2 + 12β

2n ‖u2,n‖2 + 3

2

∥∥∂2xu2,n

∥∥2 → 0,

I (8) ∗ 1

β1/2n

e−β1/2n x : ∂2

xu2,n(`2)→ 0,

I1

2β2n ‖u2,n‖2 +

3

2

∥∥∂2xu2,n

∥∥2 → 0.

In conclusion ‖yn‖ converge to 0, which contradict the hypothesisthat ‖yn‖ = 1.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Exponential stability

I βnu1,n(`1) −→ 0, ∂xu1,n(`1) −→ 0.

I (7) ∗ q∂xu1,n : ‖∂xu1,n‖2 + β2n ‖u1,n‖2 −→ 0,

I βnu1,n(0), ∂xu1,n(0), Re (iβnf1,n(0)u1,n(0)) −→ 0,

I (8) ∗ q∂xu2,n :

−12

∣∣∂2xu2,n(`2)

∣∣2 + 12β

2n ‖u2,n‖2 + 3

2

∥∥∂2xu2,n

∥∥2 → 0,

I (8) ∗ 1

β1/2n

e−β1/2n x : ∂2

xu2,n(`2)→ 0,

I1

2β2n ‖u2,n‖2 +

3

2

∥∥∂2xu2,n

∥∥2 → 0.

In conclusion ‖yn‖ converge to 0, which contradict the hypothesisthat ‖yn‖ = 1.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Exponential stability

I βnu1,n(`1) −→ 0, ∂xu1,n(`1) −→ 0.

I (7) ∗ q∂xu1,n : ‖∂xu1,n‖2 + β2n ‖u1,n‖2 −→ 0,

I βnu1,n(0), ∂xu1,n(0), Re (iβnf1,n(0)u1,n(0)) −→ 0,

I (8) ∗ q∂xu2,n :

−12

∣∣∂2xu2,n(`2)

∣∣2 + 12β

2n ‖u2,n‖2 + 3

2

∥∥∂2xu2,n

∥∥2 → 0,

I (8) ∗ 1

β1/2n

e−β1/2n x : ∂2

xu2,n(`2)→ 0,

I1

2β2n ‖u2,n‖2 +

3

2

∥∥∂2xu2,n

∥∥2 → 0.

In conclusion ‖yn‖ converge to 0, which contradict the hypothesisthat ‖yn‖ = 1.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Exponential stability

I βnu1,n(`1) −→ 0, ∂xu1,n(`1) −→ 0.

I (7) ∗ q∂xu1,n : ‖∂xu1,n‖2 + β2n ‖u1,n‖2 −→ 0,

I βnu1,n(0), ∂xu1,n(0), Re (iβnf1,n(0)u1,n(0)) −→ 0,

I (8) ∗ q∂xu2,n :

−12

∣∣∂2xu2,n(`2)

∣∣2 + 12β

2n ‖u2,n‖2 + 3

2

∥∥∂2xu2,n

∥∥2 → 0,

I (8) ∗ 1

β1/2n

e−β1/2n x : ∂2

xu2,n(`2)→ 0,

I1

2β2n ‖u2,n‖2 +

3

2

∥∥∂2xu2,n

∥∥2 → 0.

In conclusion ‖yn‖ converge to 0, which contradict the hypothesisthat ‖yn‖ = 1.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Exponential stability

I βnu1,n(`1) −→ 0, ∂xu1,n(`1) −→ 0.

I (7) ∗ q∂xu1,n : ‖∂xu1,n‖2 + β2n ‖u1,n‖2 −→ 0,

I βnu1,n(0), ∂xu1,n(0), Re (iβnf1,n(0)u1,n(0)) −→ 0,

I (8) ∗ q∂xu2,n :

−12

∣∣∂2xu2,n(`2)

∣∣2 + 12β

2n ‖u2,n‖2 + 3

2

∥∥∂2xu2,n

∥∥2 → 0,

I (8) ∗ 1

β1/2n

e−β1/2n x : ∂2

xu2,n(`2)→ 0,

I1

2β2n ‖u2,n‖2 +

3

2

∥∥∂2xu2,n

∥∥2 → 0.

In conclusion ‖yn‖ converge to 0, which contradict the hypothesisthat ‖yn‖ = 1.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Polynomial stability

Theorem

If no control is applied on the string then, the C0-semigroup ispolynomially stable. More precisely, there is C > 0 such that∥∥etAy0

∥∥ ≤ C

t‖y0‖D(A)

for every y0 ∈ D(A).

ProofIt suffices to prove that (6) holds for α = 1. Suppose theconclusion is false. There exists a sequence (βn) of real numbers,without loss of generality, with βn −→ +∞, and a sequence ofvectors (yn) = (un, vn) in D(A) with ‖yn‖H = 1, such that

‖βαn (iβnI −A)yn‖H −→ 0

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Polynomial stability

Lemma [Gagliardo-Nirenberg]

(1) There are two positive constants C1 and C2 such that for anyw in H1(0, `j),

‖w‖∞ ≤ C1 ‖∂xw‖1/2 ‖w‖1/2 + C2 ‖w‖ . (9)

(2) There are two positive constants C3 and C4 such that for anyw in H2(0, `j),

‖∂xw‖ ≤ C3

∥∥∂2xw∥∥1/2 ‖w‖1/2 + C4 ‖w‖ . (10)

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Non exponential stability

u1,tt − u1,xx = 0 in (0, π)× (0,∞),u2,tt + u2,xxxx = 0 in (0, π)× (0,∞),

u1(0, t) = u2(0, t), u2,x(0, t) = 0, u2,xxx(0, t) = u1,x(0, t),u1(π, t) = 0, u2,xxx(π, t) = u2,t(π, t), u2,x(π, t) = 0,

uj(x , 0) = u0j (x), uj ,t(x , 0) = u1

j (x), j = 1, 2.

The system is not exponentially stable.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Non exponential stability

u1,tt − u1,xx = 0 in (0, π)× (0,∞),u2,tt + u2,xxxx = 0 in (0, π)× (0,∞),

u1(0, t) = u2(0, t), u2,x(0, t) = 0, u2,xxx(0, t) = u1,x(0, t),u1(π, t) = 0, u2,xxx(π, t) = u2,t(π, t), u2,x(π, t) = 0,

uj(x , 0) = u0j (x), uj ,t(x , 0) = u1

j (x), j = 1, 2.

The system is not exponentially stable.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

We prove that the corresponding semigroup etA is notexponentially stable. Let

I βn = n2 + 2√

n + 1n , βn → +∞

I fn = (0, 0,− sinβnx , 0), fn is in H and is bounded.

I yn = (u1,n, u2,n, v1,n, v2,n) ∈ D(A) such that (A− iβn)yn = fn.We will prove that yn → +∞.

Iu1,n = c1 sin(βnx) + (− x

2βn+ c2) cos(βnx),

u2,n = d1 sin(√βnx) + d2 cos(

√βnx)

+d3 sinh(√βnx) + d4 cosh(

√βnx).

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

We prove that the corresponding semigroup etA is notexponentially stable. Let

I βn = n2 + 2√

n + 1n , βn → +∞

I fn = (0, 0,− sinβnx , 0), fn is in H and is bounded.

I yn = (u1,n, u2,n, v1,n, v2,n) ∈ D(A) such that (A− iβn)yn = fn.We will prove that yn → +∞.

Iu1,n = c1 sin(βnx) + (− x

2βn+ c2) cos(βnx),

u2,n = d1 sin(√βnx) + d2 cos(

√βnx)

+d3 sinh(√βnx) + d4 cosh(

√βnx).

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

We prove that the corresponding semigroup etA is notexponentially stable. Let

I βn = n2 + 2√

n + 1n , βn → +∞

I fn = (0, 0,− sinβnx , 0), fn is in H and is bounded.

I yn = (u1,n, u2,n, v1,n, v2,n) ∈ D(A) such that (A− iβn)yn = fn.We will prove that yn → +∞.

Iu1,n = c1 sin(βnx) + (− x

2βn+ c2) cos(βnx),

u2,n = d1 sin(√βnx) + d2 cos(

√βnx)

+d3 sinh(√βnx) + d4 cosh(

√βnx).

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

I

2β3/2n d1 ∼+∞

π2

2

√n.

I

−π2

∣∣∣∣− 1

2βn+ βnc1

∣∣∣∣2 − π

2|βnc2|2

= −1

2(β2

n

∥∥u1n

∥∥2+∥∥∂xu1

n

∥∥2) + Re(

∫ π

0sin(βnx)(π − x)∂xu1

ndx).

β2n

∥∥u1n

∥∥2+∥∥∂xu1

n

∥∥2must be not bounded. In conclusion yn is

not bounded.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

I

2β3/2n d1 ∼+∞

π2

2

√n.

I

−π2

∣∣∣∣− 1

2βn+ βnc1

∣∣∣∣2 − π

2|βnc2|2

= −1

2(β2

n

∥∥u1n

∥∥2+∥∥∂xu1

n

∥∥2) + Re(

∫ π

0sin(βnx)(π − x)∂xu1

ndx).

β2n

∥∥u1n

∥∥2+∥∥∂xu1

n

∥∥2must be not bounded. In conclusion yn is

not bounded.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

I

2β3/2n d1 ∼+∞

π2

2

√n.

I

−π2

∣∣∣∣− 1

2βn+ βnc1

∣∣∣∣2 − π

2|βnc2|2

= −1

2(β2

n

∥∥u1n

∥∥2+∥∥∂xu1

n

∥∥2) + Re(

∫ π

0sin(βnx)(π − x)∂xu1

ndx).

β2n

∥∥u1n

∥∥2+∥∥∂xu1

n

∥∥2must be not bounded. In conclusion yn is

not bounded.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Remarks

Let ε > 0. By taking βn = n2 + 2n1−α + 1n2α with 0 < α < ε

and such that n1−α is integer and even and yn is such that

fn = (β12−ε

n (A− iβn))yn, then we can prove that yn is notbounded and then the polynomial stability of (S) can’t bebutter than 1

t2 .

If we replace the boundary conditions by the followings

δu1(`1, t) = 0, (1− δ)u1xx(`1, t) = 0,

(1− δ)u1,x(`1, t) = −(1− δ)u1,t(`1, t),

δu2,xx(`2, t) = −δu2,tx(`2, t), u2(`2, t) = 0.

then we obtain the same results.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Remarks

Let ε > 0. By taking βn = n2 + 2n1−α + 1n2α with 0 < α < ε

and such that n1−α is integer and even and yn is such that

fn = (β12−ε

n (A− iβn))yn, then we can prove that yn is notbounded and then the polynomial stability of (S) can’t bebutter than 1

t2 .

If we replace the boundary conditions by the followings

δu1(`1, t) = 0, (1− δ)u1xx(`1, t) = 0,

(1− δ)u1,x(`1, t) = −(1− δ)u1,t(`1, t),

δu2,xx(`2, t) = −δu2,tx(`2, t), u2(`2, t) = 0.

then we obtain the same results.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Remarks

Let ε > 0. By taking βn = n2 + 2n1−α + 1n2α with 0 < α < ε

and such that n1−α is integer and even and yn is such that

fn = (β12−ε

n (A− iβn))yn, then we can prove that yn is notbounded and then the polynomial stability of (S) can’t bebutter than 1

t2 .

If we replace the boundary conditions by the followings

δu1(`1, t) = 0, (1− δ)u1xx(`1, t) = 0,

(1− δ)u1,x(`1, t) = −(1− δ)u1,t(`1, t),

δu2,xx(`2, t) = −δu2,tx(`2, t), u2(`2, t) = 0.

then we obtain the same results.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

System

E. String E. Beamℓ2ℓ1 0

u1,tt − α1u1,xx

+ β1θ1,x

= 0

θ1,t + β1u1,tx − κ1θ1,xx = 0

, u2,tt + α2u2,xxxx

+ β2θ2,x

= 0

θ2,t + β2u2,txx − κ2θ2,xx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

θ1(0, t) = θ2(0, t),

α2u2,xxx(0, t)

− β2θ2,x(0, t)

= α1u1,x(0, t)

− β1θ1(0, t)

,

κ1κ2(κ1θ1,x(0, t) + κ2θ2,x(0, t)) = 0

.

Boundary conditions

u1(`1, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

System

TE. String TE. Beamℓ2ℓ1 0

u1,tt − α1u1,xx

+ β1θ1,x

= 0

θ1,t + β1u1,tx − κ1θ1,xx = 0

, u2,tt + α2u2,xxxx

+ β2θ2,x

= 0

θ2,t + β2u2,txx − κ2θ2,xx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

θ1(0, t) = θ2(0, t),

α2u2,xxx(0, t)

− β2θ2,x(0, t)

= α1u1,x(0, t)

− β1θ1(0, t)

,

κ1κ2(κ1θ1,x(0, t) + κ2θ2,x(0, t)) = 0

.

Boundary conditions

u1(`1, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

System

TE. String TE. Beamℓ2ℓ1 0

u1,tt − α1u1,xx + β1θ1,x = 0θ1,t + β1u1,tx − κ1θ1,xx = 0

, u2,tt + α2u2,xxxx + β2θ2,x = 0θ2,t + β2u2,txx − κ2θ2,xx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0,

θ1(0, t) = θ2(0, t),

α2u2,xxx(0, t)

− β2θ2,x(0, t)

= α1u1,x(0, t)

− β1θ1(0, t)

,

κ1κ2(κ1θ1,x(0, t) + κ2θ2,x(0, t)) = 0

.

Boundary conditions

u1(`1, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

System

TE. String TE. Beamℓ2ℓ1 0

u1,tt − α1u1,xx + β1θ1,x = 0θ1,t + β1u1,tx − κ1θ1,xx = 0

, u2,tt + α2u2,xxxx + β2θ2,x = 0θ2,t + β2u2,txx − κ2θ2,xx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0, θ1(0, t) = θ2(0, t),α2u2,xxx(0, t)− β2θ2,x(0, t) = α1u1,x(0, t)− β1θ1(0, t),

κ1κ2(

κ1θ1,x(0, t) + κ2θ2,x(0, t)

)

= 0.

Boundary conditions

u1(`1, t) = 0, θ(`1, t) = 0, θ(`2, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

System

TE. String TE. Beamℓ2ℓ1 0

u1,tt − α1u1,xx + β1θ1,x = 0θ1,t + β1u1,tx − κ1θ1,xx = 0

, u2,tt + α2u2,xxxx + β2θ2,x = 0θ2,t + β2u2,txx − κ2θ2,xx = 0

Transmission conditions

u1(0, t) = u2(0, t), u2,x(0, t) = 0, θ1(0, t) = θ2(0, t),α2u2,xxx(0, t)− β2θ2,x(0, t) = α1u1,x(0, t)− β1θ1(0, t),κ1κ2(κ1θ1,x(0, t) + κ2θ2,x(0, t)) = 0.

Boundary conditions

u1(`1, t) = 0, θ(`1, t) = 0, θ(`2, t) = 0,

u2(`2, t) = 0, u2,xx(`2, t) = 0.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

System

For a solution (u, v , θ) of (S) the energy is defined as

E (t) =1

2

∫ `1

0

(|u1,t |2 + α1 |u1,x |2 + |θ1|2

)dx

+1

2

∫ `2

0

(|u2,t |2 + α2 |u2,xx |2 + |θ2|2

)dx .

Differentiate formally the energy function with respect to time t,weget

d

dtE (t) = −κ1 ‖∂xθ1‖2 − κ2 ‖∂xθ2‖2

and the system is dissipative.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Let us consider

V ={

f = (f1, f2) ∈ H1(0, `1)× H2(0, `2) | f satisfies (11)}

where

f1(`1) = 0, f2(`2) = 0, f1(0) = f2(0) and ∂x f2(0) = 0. (11)

Define the Hilbert space H

H = V ×(L2(0, `1)× L2(0, `2)

)×W

with W = L2(0, `1)× L2(0, `2) if e1 and e2 are thermoelastic,W = L2(0, `1)× {0} if only e1 is thermoelastic andW = {0} × L2(0, `2) if only e1 is purely elastic, and norm given by

‖z‖H := α1 ‖∂x f1‖2 + α2

∥∥∂2x f2

∥∥2+

2∑j=1

(‖gj‖2 + ‖hj‖2

)where z = (f = (f1, f2), g = (g1, g2), h = (h1, h2)) .

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

D(A) =

{y = (u, v , θ) ∈ V ∩ (H2(0, `1)× H4(0, `2))× V ×W2 |

and y satisfies (12)

}with W2 = H2(0, `1)× H2(0, `2) if e1 and e2 are T.... and where

∂2xu2(`2) = 0, θ1(`1) = θ2(`2) = 0,θ1(0) = θ2(0),α2∂

3xu2(0)− β2∂xθ2(0) = α1∂xu1(0)− β1θ1(0),

κ1κ2 (κ1∂xθ1(0) + κ2∂xθ2(0)) = 0.

(12)

with βj = 0 and κj = 0 if ej is purely elastic, and

A

u1

u2

v1

v2

θ1

θ2

=

v1

v2

α1∂2xu1 − β1∂xθ1

−α2∂4xu2 + β2∂

2xθ2

−β1∂xv1 + κ1∂2xθ1

−β2∂xxv2 + κ2∂2xθ2

.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

D(A) =

{y = (u, v , θ) ∈ V ∩ (H2(0, `1)× H4(0, `2))× V ×W2 |

and y satisfies (12)

}with W2 = H2(0, `1)× H2(0, `2) if e1 and e2 are T.... and where

∂2xu2(`2) = 0, θ1(`1) = θ2(`2) = 0,θ1(0) = θ2(0),α2∂

3xu2(0)− β2∂xθ2(0) = α1∂xu1(0)− β1θ1(0),

κ1κ2 (κ1∂xθ1(0) + κ2∂xθ2(0)) = 0.

(12)

with βj = 0 and κj = 0 if ej is purely elastic,

and

A

u1

u2

v1

v2

θ1

θ2

=

v1

v2

α1∂2xu1 − β1∂xθ1

−α2∂4xu2 + β2∂

2xθ2

−β1∂xv1 + κ1∂2xθ1

−β2∂xxv2 + κ2∂2xθ2

.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

D(A) =

{y = (u, v , θ) ∈ V ∩ (H2(0, `1)× H4(0, `2))× V ×W2 |

and y satisfies (12)

}with W2 = H2(0, `1)× H2(0, `2) if e1 and e2 are T.... and where

∂2xu2(`2) = 0, θ1(`1) = θ2(`2) = 0,θ1(0) = θ2(0),α2∂

3xu2(0)− β2∂xθ2(0) = α1∂xu1(0)− β1θ1(0),

κ1κ2 (κ1∂xθ1(0) + κ2∂xθ2(0)) = 0.

(12)

with βj = 0 and κj = 0 if ej is purely elastic, and

A

u1

u2

v1

v2

θ1

θ2

=

v1

v2

α1∂2xu1 − β1∂xθ1

−α2∂4xu2 + β2∂

2xθ2

−β1∂xv1 + κ1∂2xθ1

−β2∂xxv2 + κ2∂2xθ2

.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Then, putting y = (u, ut , θ), we write the system (S) in the threecases, into the following first order evolution equation{

ddt y = Ayy(0) = y0

(13)

on the energy space H, where y0 = (u0, v 0, θ0).We have the following result,

Lemma

The operator A is the infinitesimal generator of a C0-semigroup ofcontraction S(t).

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Exponential stability

Lemma

The semigroup S(t), generated by the operator A is asymptoticallystable.

Theorem

If the string is thermoelastic, then the system (S) is exponentiallystable.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

It suffices to prove that (5) holds. Suppose the conclusion is false.Then there exists a sequence (wn) of real numbers, withwn −→ +∞ and a sequence of vectors (yn) = (un, vn, θn) in D(A)with ‖yn‖H = 1, such that

‖(iwnI −A)yn‖HF−→ 0

which is equivalent to

iwnu1,n − v1,n = f1,n −→ 0, in H1(0, `1),

iwnv1,n − α1∂2xu1,n + β1∂xθ1,n = g1,n −→ 0, in L2(0, `1),

iwnθ1,n + β1∂xv1,n − κ1∂2xθ1,n = h1,n −→ 0, in L2(0, `1),

and

iw2,nu2,n − v2,n = f2,n −→ 0, in H2(0, `2),

iwnv2,n + α2∂4xu2,n = g2,n −→ 0, in L2(0, `2),

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

We get

w 2nu1,n + α1∂

2xu1,n − β1∂xθ1,n = −g1,n − iwnf1,n, (14)

−w 2nu2,n + α2∂

4xu2,n = g2,n + iwnf2,n, (15)

and‖vj ,n‖2 − w 2

n ‖uj ,n‖2 −→ 0, j = 1, 2.

First, since

Re(〈(iwn −A)yn, yn〉H) = −κ1 ‖∂xθ1‖2

we obtain that ∂xθ1,n converges to 0 in L2(0, `2).As in [?] one can get

‖wnu1,n‖ , ‖∂xu1,n‖ , ‖θ1,n‖ −→ 0.

Moreoverwnu1,n(0), ∂xu1,n(0), θ1,n(0) −→ 0. (16)

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

Taking the inner product of (15) with p = (`2 − x)∂xu2,n(x),

−1

2α2

∣∣∂2xu2,n(0)

∣∣2 `2+1

2

∫ `2

0w 2n |u2,n|2 dx+

3

2α2

∫ `2

0

∣∣∂2xu2,n

∣∣2 dx → 0

Now the inner product of the first member of (15) by 1

w1/2n

e−aw1/2n x

gives, with a = 1

α1/42

,

α2

w1/2n

∂3xu2,n(0) + α2a∂2

xu2,n(0) = o(1)

then∂2xu2,n(0) = o(1)

Return back to(4),∫ `2

0w 2n |u2,n|2 dx ,

∫ `2

0

∣∣∂2xu2,n

∣∣2 dx , converge to zero

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Lack of exponential stability

In this part the string is purely elastic.

We take `1 = `2 = π, κ2 << α2.

Theorem

If the string is purely elastic then the system (S) is not exponentialstable in the energy space H.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Lack of exponential stability

In this part the string is purely elastic.

We take `1 = `2 = π, κ2 << α2.

Theorem

If the string is purely elastic then the system (S) is not exponentialstable in the energy space H.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Lack of exponential stability

In this part the string is purely elastic.

We take `1 = `2 = π, κ2 << α2.

Theorem

If the string is purely elastic then the system (S) is not exponentialstable in the energy space H.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

We prove that the corresponding semigroup (S(t))t≥0 is notexponentially stable.For n ∈ N, let fn = (0, 0,−α1 sinβnx , 0, 0), with βn → +∞ and fnis in H and is bounded. Let yn = (u1,n, u2,n, v1,n, v2,n, θ2,n) ∈ D(A)such that (A− idn)yn = fn. We will prove that yn → +∞.We have

w 2nu1,n + α1∂

2xu1,n = α1 sinβnx

with wn =√α1βn, and

iw2,nu2,n − v2,n = 0, in H2(0, π), (17)

−w 2nu2,n + α2∂

4xu2,n − β2∂

2xθ2,n = 0, in L2(0, π), (18)

iwnθ2,n + iwnβ2∂2xu2,n − κ2∂

2xθ2,n = 0, in L2(0, π). (19)

Notations: α2 = α, β2 = β, κ2 = κ.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

The function u1,n is of the form

u1,n = c1 sin(wnx) + (− x

2wn+ c2) cos(wnx),

Using (18) and (19) we obtain that

ακ∂6xu2,n − iwn(α + β2)∂4

xu2,n − κw 2n∂

2xu2,n + iw 3

nu2,n = 0, (20)

By taking A = 3ακ2 + (α + β2)2,B = 9ακ2(α + β2) + 2(α + β2)3 − 27α2κ2,

a1 = 121/3

(√B2 + 4A3 + B

)1/3, b1 = 1

21/3

(√B2 + 4A3 − B

)1/3

and r = α + β2, the squares of the solutions of (20) are

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

The function u1,n is of the form

u1,n = c1 sin(wnx) + (− x

2wn+ c2) cos(wnx),

Using (18) and (19) we obtain that

ακ∂6xu2,n − iwn(α + β2)∂4

xu2,n − κw 2n∂

2xu2,n + iw 3

nu2,n = 0, (20)

By taking A = 3ακ2 + (α + β2)2,B = 9ακ2(α + β2) + 2(α + β2)3 − 27α2κ2,

a1 = 121/3

(√B2 + 4A3 + B

)1/3, b1 = 1

21/3

(√B2 + 4A3 − B

)1/3

and r = α + β2, the squares of the solutions of (20) are

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

x1 =wn

3ακ

[√3

2(a1 − a2) + i

(r +

1

2(a1 − a2)

)]

x2 =wn

3ακ

[−√

3

2a1 + i

(r +

1

2a1 + a2

)],

x3 =wn

3ακ

[√3

2a2 + i

(r − a1 −

1

2a2

)]

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

Let x2, x ′2 and x ′′2 the squares of the real parts of solutions of(20).

2x2 =

(3

4(a1 − a2)2 + (r +

1

2(a1 − a2))2

)1/2

+

√3

2(a1 − a2),

2x ′2 =

(3

4(a2

1 + (r +1

2a1 + a2)2

)1/2

−√

3

2a1,

2x ′′2 =

(3

4(a2

2 + (r − a1 −1

2a2)2

)1/2

+

√3

2a2.

2x2 > 2x ′′2 > 2x ′2.The equation (20) admits six simple solutions

±√

wnR1, ±√

wnR2, ±√

wnR3,

with0 < Re(R3) < Re(R2) < Re(R1).

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

u2,n =3∑

k=1

(dke√wnRkx + bke−

√wnRkx).

Return back to (18),

β∂2xθ2,n = w 2

n

3∑k=1

(−1 + αR4k )(dke

√wnRkx + bke−

√wnRkx)

Then there exist two constants a′ and b′ such that

βθ2,n = wn

3∑k=1

(− 1

R2k

+αR2k )(dke

√wnRkx + bke−

√wnRkx) + a′x + b′.

Moreover, the equation (19) is verified if and only if a′ = b′ = 0.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

The transmission and boundary conditions are expressed as follow

3∑k=1

(dk + bk ) = c2,3∑

k=1

Rk (dk − bk ) = 0, (21)

w3/2n α

3∑k=1

1

Rk

(dk − bk ) = −1

2wn+ wnc1, (22)

3∑k=1

(−1

R2k

+ αR2k )(dk + bk ) = 0,

3∑k=1

(dk e√

wnRkπ + bk e−√wnRkπ) = 0, (23)

3∑k=1

R2k (dk e

√wnRkπ + bk e

−√wnRkπ) = 0,3∑

k=1

1

R2k

(dk e√

wnRkπ + bk e−√wnRkπ) = 0, (24)

c1 sin(βnπ) + (−π

2βn+ c2) cos(βnπ) = 0. (25)

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

After some calculus

[2a4e√

wn(R1+2R2)π + ...]

(−1

2βn+ βnc1) = w3/2

n (π

2βn− c1 tan(βnπ))

[a3e√

wn(R1+2R2)π + ...].

and then

2a4(− 1

2βn+ βnc1) + a3w

3/2n c1 tan(βnπ) ∼ π

2

w3/2n

βn.

Hence, with βn = 2n + 1n , tan(βnπ) = π

n + ...

(− 1

2βn+ βnc1) ∼ π

4a4

w3/2n

βn=π√α1

4a4

√wn.

The real part of the inner product of (6) with (π − x)∂xu1,n gives

−π

2

∣∣∣∣− 1

2wn+ wnc1

∣∣∣∣2 − π

2|wnc2|

2 = −1

2(w2

n

∥∥u1,n∥∥2 +

∥∥∂xu1,n∥∥2) + Re(

∫ π0

sin(wnx)(π − x)∂xu1,ndx).

In conclusion yn is not bounded.Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Polynomial stability

Theorem

If the string is purely elastic, then the system (S) is polynomiallystable. More precisely, (for every γ < 2) there exists c > 0 suchthat

‖S(t)y0‖ ≤1

tγ‖y0‖D(A) .

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

Let 1 > α > 12 . It suffices to prove that (5) holds. Suppose the

conclusion is false. Then there exists a sequence (wn) of realnumbers, with wn −→ +∞ and a sequence of vectors(yn) = (un, vn, θn) in D(A) with ‖yn‖H = 1, such that

‖wαn (iwnI −A)yn‖H −→ 0

which is equivalent to

wαn (iwnu1,n − v1,n) = f1,n −→ 0, in H1, (26)

wαn

(iwnv1,n − α1∂

2xu1,n

)= g1,n −→ 0 in L2, (27)

and

wαn (iwnu2,n − v2,n) = f2,n −→ 0, in H2,(28)

wαn

(iwnv2,n + α2∂

4xu2,n − β2∂

2xθ2,n

)= g2,n −→ 0, in L2,(29)

wαn

(iwnθ2,n + β2∂

2xv2,n − κ2∂

2xθ2,n

)= h2,n −→ 0, in L2.(30)

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Substituting (26) into (27) and (28) into (30) respectively to get

wαn

(w 2nu1,n + α1∂

2xu1,n

)= −g1,n − iwnf1,n, (31)

wαn

(θ2,n −

1

iwnκ2∂

2xθ2,n + β2∂

2xu2,n

)=

1

iwn(h2,n + ∂2

x f2,n)(32)

First, wα/2n ∂xθ2,n converge to 0 in L2(0, `2). Then w

α/2n θ2,n

converge to 0 in L2(0, `2) since θ2,n(0) = 0.

Multiplying (32) by 1

wα/2n

∂2xu2,n

β2wα/2n

∥∥∂2xu2,n

∥∥2+ w

α/2n

⟨θ2,n, ∂

2xu2,n

⟩(33)

−iκ2wα/2−1∂xθ2,n(0)∂2xu2,n(0)− iκ2w

α/2−1n

⟨∂xθ2,n, ∂

3xu2,n

⟩= 0.

Then we prove that

β2wα/2n

∥∥∂2xu2,n

∥∥2 −→ 0.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Substituting (26) into (27) and (28) into (30) respectively to get

wαn

(w 2nu1,n + α1∂

2xu1,n

)= −g1,n − iwnf1,n, (31)

wαn

(θ2,n −

1

iwnκ2∂

2xθ2,n + β2∂

2xu2,n

)=

1

iwn(h2,n + ∂2

x f2,n)(32)

First, wα/2n ∂xθ2,n converge to 0 in L2(0, `2). Then w

α/2n θ2,n

converge to 0 in L2(0, `2) since θ2,n(0) = 0.Multiplying (32) by 1

wα/2n

∂2xu2,n

β2wα/2n

∥∥∂2xu2,n

∥∥2+ w

α/2n

⟨θ2,n, ∂

2xu2,n

⟩(33)

−iκ2wα/2−1∂xθ2,n(0)∂2xu2,n(0)− iκ2w

α/2−1n

⟨∂xθ2,n, ∂

3xu2,n

⟩= 0.

Then we prove that

β2wα/2n

∥∥∂2xu2,n

∥∥2 −→ 0.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

Using (29) we prove that wα/8n ‖v2,n‖2 → 0.

We built two sequences of positive numbers rm and sm suchthat

wrm/2n

∥∥∂2xu2,n

∥∥→ 0, wrm/2n ‖θ2,n‖ → 0, w

sm/2n ‖v2,n‖ → 0

and rm and sm converge to 1 + α.

α2∂3xu2,n(0)− β2∂xθ(0)→ 0.

wn ‖u2,n(0)‖ → 0.∫ `2

0

(|∂xu1,n(x)|2 + w 2

n |u1,n(x)|2)

dx −→ 0.

In summary, we have ‖yn‖H −→ 0. This resul contradicts thehypothesis that yn has the unit norm.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

Using (29) we prove that wα/8n ‖v2,n‖2 → 0.

We built two sequences of positive numbers rm and sm suchthat

wrm/2n

∥∥∂2xu2,n

∥∥→ 0, wrm/2n ‖θ2,n‖ → 0, w

sm/2n ‖v2,n‖ → 0

and rm and sm converge to 1 + α.

α2∂3xu2,n(0)− β2∂xθ(0)→ 0.

wn ‖u2,n(0)‖ → 0.∫ `2

0

(|∂xu1,n(x)|2 + w 2

n |u1,n(x)|2)

dx −→ 0.

In summary, we have ‖yn‖H −→ 0. This resul contradicts thehypothesis that yn has the unit norm.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

Using (29) we prove that wα/8n ‖v2,n‖2 → 0.

We built two sequences of positive numbers rm and sm suchthat

wrm/2n

∥∥∂2xu2,n

∥∥→ 0, wrm/2n ‖θ2,n‖ → 0, w

sm/2n ‖v2,n‖ → 0

and rm and sm converge to 1 + α.

α2∂3xu2,n(0)− β2∂xθ(0)→ 0.

wn ‖u2,n(0)‖ → 0.∫ `2

0

(|∂xu1,n(x)|2 + w 2

n |u1,n(x)|2)

dx −→ 0.

In summary, we have ‖yn‖H −→ 0. This resul contradicts thehypothesis that yn has the unit norm.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

Using (29) we prove that wα/8n ‖v2,n‖2 → 0.

We built two sequences of positive numbers rm and sm suchthat

wrm/2n

∥∥∂2xu2,n

∥∥→ 0, wrm/2n ‖θ2,n‖ → 0, w

sm/2n ‖v2,n‖ → 0

and rm and sm converge to 1 + α.

α2∂3xu2,n(0)− β2∂xθ(0)→ 0.

wn ‖u2,n(0)‖ → 0.

∫ `2

0

(|∂xu1,n(x)|2 + w 2

n |u1,n(x)|2)

dx −→ 0.

In summary, we have ‖yn‖H −→ 0. This resul contradicts thehypothesis that yn has the unit norm.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

Using (29) we prove that wα/8n ‖v2,n‖2 → 0.

We built two sequences of positive numbers rm and sm suchthat

wrm/2n

∥∥∂2xu2,n

∥∥→ 0, wrm/2n ‖θ2,n‖ → 0, w

sm/2n ‖v2,n‖ → 0

and rm and sm converge to 1 + α.

α2∂3xu2,n(0)− β2∂xθ(0)→ 0.

wn ‖u2,n(0)‖ → 0.∫ `2

0

(|∂xu1,n(x)|2 + w 2

n |u1,n(x)|2)

dx −→ 0.

In summary, we have ‖yn‖H −→ 0. This resul contradicts thehypothesis that yn has the unit norm.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

Proof

Using (29) we prove that wα/8n ‖v2,n‖2 → 0.

We built two sequences of positive numbers rm and sm suchthat

wrm/2n

∥∥∂2xu2,n

∥∥→ 0, wrm/2n ‖θ2,n‖ → 0, w

sm/2n ‖v2,n‖ → 0

and rm and sm converge to 1 + α.

α2∂3xu2,n(0)− β2∂xθ(0)→ 0.

wn ‖u2,n(0)‖ → 0.∫ `2

0

(|∂xu1,n(x)|2 + w 2

n |u1,n(x)|2)

dx −→ 0.

In summary, we have ‖yn‖H −→ 0. This resul contradicts thehypothesis that yn has the unit norm.

Farhat Shel Stability of some string-beam systems

IntroductionFeedback stabilization

Thermoelastic case

Abstract settingAsymptotic behavior

THANKS!

Farhat Shel Stability of some string-beam systems

top related