research article higher order commutators of fractional ...usual lebesgue spaces 1 (r ) to 2 (r )...

Post on 10-Feb-2021

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

  • Hindawi Publishing CorporationJournal of Function Spaces and ApplicationsVolume 2013, Article ID 257537, 7 pageshttp://dx.doi.org/10.1155/2013/257537

    Research ArticleHigher Order Commutators of Fractional Integral Operator onthe Homogeneous Herz Spaces with Variable Exponent

    Liwei Wang,1 Meng Qu,2 and Lisheng Shu2

    1 School of Mathematics and Physics, Anhui Polytechnic University, Wuhu 241000, China2 School of Mathematics and Computer Science, Anhui Normal University, Wuhu 241003, China

    Correspondence should be addressed to Liwei Wang; wangliwei8013@163.com

    Received 28 March 2013; Accepted 20 May 2013

    Academic Editor: Dachun Yang

    Copyright © 2013 Liwei Wang et al. This is an open access article distributed under the Creative Commons Attribution License,which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

    By decomposing functions, we establish estimates for higher order commutators generated by fractional integral with BMOfunctions or the Lipschitz functions on the homogeneous Herz spaces with variable exponent.These estimates extend some knownresults in the literatures.

    1. Introduction

    Let 𝑏 be a locally integrable function, 0 < 𝛜 < 𝑛, and 𝑚 ∈ N;the higher order commutators of fractional integral operator𝐌𝑚

    𝛜,𝑏are defined by

    𝐌𝑚

    𝛜,𝑏𝑓 (𝑥) = ∫

    R𝑛

    [𝑏 (𝑥) − 𝑏 (𝑊)]𝑚

    𝑥 − 𝑊𝑛−𝛜

    𝑓 (𝑊) 𝑑𝑊. (1)

    Obviously, 𝐌0𝛜,𝑏

    = 𝐌𝛜and 𝐌1

    𝛜,𝑏= [𝑏, 𝐌

    𝛜]. The famous

    Hardy-Littlewood-Sobolev theorem tells us that the frac-tional integral operator 𝐌

    𝛜is a bounded operator from the

    usual Lebesgue spaces 𝐿𝑝1(R𝑛) to 𝐿𝑝2(R𝑛) when 0 < 𝑝1

    <

    𝑝2

    < ∞ and 1/𝑝1− 1/𝑝

    2= 𝛜/𝑛. Also, many generalized

    results about 𝐌𝛜and the commutator [𝑏, 𝐌

    𝛜] on some function

    spaces have been studied; see [1–3] for details.It is well known that the main motivation for studying

    the spaces with variable exponent arrived in the nonlinearelasticity theory and differential equations with nonstandardgrowth. Since the fundamental paper [4] by Kováčik andRákosnı́k appeared in 1991, the Lebesgue spaces with variableexponent 𝐿𝑝(⋅)(R𝑛) have been extensively investigated. In therecent twenty years, boundedness of some important operat-ors, for example, the Calderón-Zygmund operators, frac-tional integrals, and commutators, on 𝐿𝑝(⋅)(R𝑛) has beenobtained; see [5–7]. Recently, Diening [8] extended the

    (𝐿𝑝1(R𝑛), 𝐿𝑝2(R𝑛)) boundedness of 𝐌

    𝛜to the Lebesgue spaces

    with variable exponent. Izuki [7] first introduced the Herzspaces with variable exponent ᅵ̇ᅵ𝛌,𝑞

    𝑝(⋅)(R𝑛), which is a general-

    ized space of the Herz space ᅵ̇ᅵ𝛌,𝑞𝑝

    (R𝑛); see [9, 10], and in caseof 𝑏 ∈ BMO(R𝑛), he obtained the boundedness propertiesof the commutator [𝑏, 𝐌

    𝛜]. The paper [11] by Lu et al. indi-

    cates that the commutator [𝑏, 𝐌𝛜] with 𝑏 ∈ BMO(R𝑛) and

    with 𝑏 ∈ Lip𝛌(R𝑛) (0 < 𝛌 ≀ 1) has many different pro-

    perties. In 2012, Zhou [12] studied the boundedness of 𝐌𝛜

    on the Herz spaces with variable exponent and proved thatthe boundedness properties of the commutator [𝑏, 𝐌

    𝛜] also

    hold in case of 𝑏 ∈ Lip𝛌(R𝑛) (0 < 𝛌 ≀ 1). The higher

    order commutators 𝐌𝑚𝛜,𝑏

    are recently considered byWang et al.in the paper [13, 14]; they established the BMO and theLipschitz estimates for 𝐌𝑚

    𝛜,𝑏on the Lebesgue spaces with vari-

    able exponent 𝐿𝑝(⋅)(R𝑛). Motivated by [7, 12–14], in thisnote, we establish the boundedness of the higher order com-mutators 𝐌𝑚

    𝛜,𝑏on the Herz spaces with variable exponent.

    For brevity, |𝐞| denotes the Lebesgue measure for ameasurable set 𝐞 ⊂ R𝑛, and 𝑓

    𝐞denotes the mean value of 𝑓

    on 𝐞 (𝑓𝐞= (1/|𝐞|) ∫

    𝐞

    𝑓(𝑥)𝑑𝑥). The exponent 𝑝(⋅)means theconjugate of 𝑝(⋅), that is, 1/𝑝(⋅)+1/𝑝(⋅) = 1.𝐶 denotes a pos-itive constant, which may have different values even in thesame line. Let us first recall some definitions and nota-tions.

    CORE Metadata, citation and similar papers at core.ac.uk

    Provided by MUCC (Crossref)

    https://core.ac.uk/display/186894263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

  • 2 Journal of Function Spaces and Applications

    Definition 1. For 0 < 𝛟 ≀ 1, the Lipschitz space Lip𝛟(R𝑛) is

    the space of functions 𝑓 satisfying

    𝑓Lip𝛟

    = sup𝑥,𝑊∈R𝑛,𝑥 Ìž= 𝑊

    𝑓 (𝑥) − 𝑓 (𝑊)

    𝑥 − 𝑊𝛟

    < ∞. (2)

    Definition 2. For𝑓 ∈ 𝐿1loc(R𝑛

    ), the boundedmean oscillationspace BMO(R𝑛) is the space of functions 𝑓 satisfying

    𝑓BMO = sup

    𝐵

    1

    |𝐵|∫𝐵

    𝑓 (𝑥) − 𝑓𝐵 𝑑𝑥 < ∞, (3)

    where the supremum is taken over all balls 𝐵 in R𝑛.

    Definition 3. Let 𝑝(⋅) : 𝐞 → [1,∞) be a measurable func-tion.

    (1) The Lebesgue space with variable exponent 𝐿𝑝(⋅)(𝐞) isdefined by

    𝐿𝑝(⋅)

    (𝐞) = {𝑓 is measurable : ∫𝐞

    (

    𝑓 (𝑥)

    𝜆)

    𝑝(𝑥)

    𝑑𝑥

    < ∞ for some constant 𝜆 > 0} .

    (4)

    (2) The space with variable exponent 𝐿𝑝(⋅)loc (𝐞) is definedby

    𝐿𝑝(⋅)

    loc (𝐞)

    = {𝑓 : 𝑓 ∈ 𝐿𝑝(⋅)

    (𝐟) for all compact subsets 𝐟 ⊂ 𝐞 } .(5)

    The Lebesgue space 𝐿𝑝(⋅)(𝐞) is a Banach space with theLuxemburg norm

    𝑓𝐿𝑝(⋅)(𝐞) = inf {𝜆 > 0 : ∫

    𝐞

    (

    𝑓 (𝑥)

    𝜆)

    𝑝(𝑥)

    𝑑𝑥 ≀ 1} . (6)

    We denote

    𝑝−= ess inf {𝑝 (𝑥) : 𝑥 ∈ 𝐞} ,

    𝑝+= ess sup {𝑝 (𝑥) : 𝑥 ∈ 𝐞} ,

    P (𝐞) = {𝑝 (⋅) : 𝑝−> 1, 𝑝

    +< ∞} ,

    B (𝐞) = {𝑝 (⋅) : 𝑝 (⋅) ∈ P (𝐞) ,

    𝑀 is bounded on 𝐿𝑝(⋅) (𝐞)} ,

    (7)

    where the Hardy-Littlewood maximal operator 𝑀 is definedby

    𝑀𝑓(𝑥) = sup𝑟>0

    𝑟−𝑛

    ∫𝐵(𝑥,𝑟)∩𝐞

    𝑓 (𝑊) 𝑑𝑊, (8)

    where 𝐵(𝑥, 𝑟) = {𝑊 ∈ R𝑛 : |𝑥 − 𝑊| < 𝑟}.

    Proposition 4 (see [15]). If 𝑝(⋅) ∈ P(𝐞) satisfies

    𝑝 (𝑥) − 𝑝 (𝑊) ≀

    −𝐶

    log (𝑥 − 𝑊),

    𝑥 − 𝑊 ≀

    1

    2,

    𝑝 (𝑥) − 𝑝 (𝑊) ≀

    𝐶

    log (𝑒 + |𝑥|),

    𝑊 ≀ |𝑥| ,

    (9)

    then one has 𝑝(⋅) ∈ B(𝐞).

    Let 𝐵𝑘= {𝑥 ∈ R𝑛 : |𝑥| â©œ 2𝑘}, 𝑅

    𝑘= 𝐵𝑘\𝐵𝑘−1

    , and 𝜒𝑘= 𝜒𝑅𝑘

    be the characteristic function of the set 𝑅𝑘for 𝑘 ∈ Z. For

    𝑚 ∈ N, we denote 𝜒𝑚

    = 𝜒𝑅𝑚

    if𝑚 ≥ 1, and 𝜒0= 𝜒𝐵0

    .

    Definition 5 (see [7]). For 𝛌 ∈ R, 0 < 𝑞 ≀ ∞ and 𝑝(⋅) ∈P(R𝑛).

    (1) The homogeneous Herz spaces ᅵ̇ᅵ𝛌,𝑞𝑝(⋅)

    (R𝑛) are definedby

    ᅵ̇ᅵ𝛌,𝑞

    𝑝(⋅)(R𝑛

    ) = {𝑓 ∈ 𝐿𝑝(⋅)

    loc (R𝑛

    \ {0}) :𝑓

    ᅵ̇ᅵ𝛌,𝑞

    𝑝(⋅)(R𝑛)

    < ∞} , (10)

    where𝑓

    ᅵ̇ᅵ𝛌,𝑞

    𝑝(⋅)(R𝑛)

    ={2𝛌𝑘𝑓𝜒𝑘

    𝐿𝑝(⋅)(R𝑛)}∞

    𝑘=−∞

    ℓ𝑞(Z). (11)

    (2) The nonhomogeneous Herz spaces 𝐟𝛌,𝑞𝑝(⋅)

    (R𝑛) are de-fined by

    𝐟𝛌,𝑞

    𝑝(⋅)(R𝑛

    ) = {𝑓 ∈ 𝐿𝑝(⋅)

    loc (R𝑛

    ) :𝑓

    𝐟𝛌,𝑞

    𝑝(⋅)(R𝑛)

    < ∞} , (12)

    where𝑓

    𝐟𝛌,𝑞

    𝑝(⋅)(R𝑛)

    ={2𝛌𝑚𝑓𝜒𝑚

    𝐿𝑝(⋅)(R𝑛)}∞

    𝑚=0

    ℓ𝑞(N). (13)

    In this note, we obtain the following results.

    Theorem 6. Suppose that 𝑏 ∈ Lip𝛜1

    (R𝑛) (0 < 𝛜1

    < 1),𝑝2(⋅) ∈ P(R𝑛) satisfies conditions (9) in Proposition 4. If

    0 < 𝑟 < min {1/(𝑝1)+, 1/(𝑝

    2)+}, 0 < 𝛜 + 𝑚𝛜

    1< 𝑛𝑟, 0 <

    𝛌 < 𝑛𝑟 − 𝛜 − 𝑚𝛜1, 0 < 𝑞

    1≀ 𝑞2

    < ∞, and 1/𝑝1(𝑥) −

    1/𝑝2(𝑥) = (𝛜 + 𝑚𝛜

    1)/𝑛, then the higher order commutators

    𝐌𝑚

    𝛜,𝑏are bounded from ᅵ̇ᅵ𝛌,𝑞1

    𝑝1(⋅)(R𝑛) to ᅵ̇ᅵ𝛌,𝑞2

    𝑝2(⋅)(R𝑛).

    Theorem 7. Suppose that 𝑏 ∈ BMO(Rn), 𝑝2(⋅) ∈ P(R𝑛)

    satisfies conditions (9) in Proposition 4. If 0 < 𝑟 <min {1/(𝑝

    1)+, 1/(𝑝

    2)+}, 0 < 𝛜 < 𝑛𝑟, 0 < 𝛌 < 𝑛𝑟 − 𝛜,

    0 < 𝑞1

    ≀ 𝑞2

    < ∞, and 1/𝑝1(𝑥) − 1/𝑝

    2(𝑥) = 𝛜/𝑛, then the

    higher order commutators 𝐌𝑚𝛜,𝑏

    are bounded from ᅵ̇ᅵ𝛌,𝑞1𝑝1(⋅)(R𝑛) to

    ᅵ̇ᅵ𝛌,𝑞2

    𝑝2(⋅)(R𝑛).

    Remark A. The previous main results generalize the(𝐿𝑝(⋅)

    (R𝑛), 𝐿𝑞(⋅)(R𝑛)) boundedness of the higher ordercommutators 𝐌𝑚

    𝛜,𝑏in [13] to the case of the Herz spaces with

    variable exponent. If 𝑚 = 1, our conclusions coincide withthe corresponding results in [7, 12]. Moreover, the sameboundedness also holds for the nonhomogeneous case.

  • Journal of Function Spaces and Applications 3

    2. Proof of Theorems 6 and 7

    To prove our main results, we need the following lemmas.

    Lemma 8 (see [4]). Let 𝑝(⋅) ∈ P(R𝑛); if 𝑓 ∈ 𝐿𝑝(⋅)(R𝑛) and𝑔 ∈ 𝐿𝑝

    (⋅)

    (R𝑛), then

    ∫R𝑛

    𝑓 (𝑥) 𝑔 (𝑥) 𝑑𝑥 ≀ 𝑟𝑝

    𝑓𝐿𝑝(⋅)(R𝑛)

    𝑔𝐿𝑝(⋅)(R𝑛)

    , (14)

    where 𝑟𝑝= 1 + 1/𝑝

    −− 1/𝑝

    +.

    Lemma 9 (see [7]). Let 𝑝(⋅) ∈ B(R𝑛); then for all balls 𝐵 inR𝑛,

    1

    |𝐵|

    𝜒𝐵𝐿𝑝(⋅)(R𝑛)

    𝜒𝐵𝐿𝑝(⋅)(R𝑛)

    ≀ 𝐶. (15)

    Lemma 10 (see [7]). Let 𝑝2(⋅) ∈ B(R𝑛); then for all balls 𝐵 in

    R𝑛 and all measurable subsets 𝑆 ⊂ 𝐵, one can take a constant0 < 𝑟 < 1/(𝑝

    2)+, so that

    𝜒𝑆𝐿𝑝

    2(⋅)

    (R𝑛)𝜒𝐵

    𝐿𝑝

    2(⋅)

    (R𝑛)

    ≀ 𝐶(|𝑆|

    |𝐵|)

    𝑟

    . (16)

    Lemma 11 (see [8]). Suppose that 𝑝1(⋅) ∈ P(R𝑛) satisfies

    conditions (9) in Proposition 4, 0 < 𝛜 < 𝑛/(𝑝1)+and 1/𝑝

    1(𝑥)−

    1/𝑝2(𝑥) = 𝛜/𝑛; then

    𝐌𝛜(𝑓)

    𝐿𝑝2(⋅)(R𝑛)≀ 𝐶

    𝑓𝐿𝑝1(⋅)(R𝑛). (17)

    Lemma 12 (see [13]). Suppose that 𝑝1(⋅), 𝑝2(⋅) ∈ P(R𝑛).

    (1) Let 0 < 𝛜 < 𝑛/(𝑝1)+, 𝑏 ∈ BMO(Rn). If 𝑝

    2(⋅) satisfies

    conditions (9) in Proposition 4 and 1/𝑝1(𝑥)−1/𝑝

    2(𝑥) =

    𝛜/𝑛, then𝐌𝑚

    𝛜,𝑏(𝑓)

    𝐿𝑝2(⋅)(R𝑛)≀ 𝐶‖𝑏‖

    𝑚

    BMO𝑓

    𝐿𝑝1(⋅)(R𝑛). (18)

    (2) Let 0 < 𝛜 + 𝑚𝛜1< 𝑛/(𝑝

    1)+, 𝑏 ∈ Lip

    𝛜1

    (R𝑛) (0 < 𝛜1<

    1). If 𝑝2(⋅) satisfies conditions (9) in Proposition 4 and

    1/𝑝1(𝑥) − 1/𝑝

    2(𝑥) = (𝛜 + 𝑚𝛜

    1)/𝑛, then

    𝐌𝑚

    𝛜,𝑏(𝑓)

    𝐿𝑝2(⋅)(R𝑛)≀ 𝐶‖𝑏‖

    𝑚

    Lip𝛜1

    𝑓𝐿𝑝1(⋅)(R𝑛). (19)

    Lemma 13 (see [16]). Let 𝑏 ∈ BMO(Rn), 𝑘 > 𝑗 (𝑘, 𝑗 ∈ N);one has

    (1) 𝐶−1||𝑏||𝑚BMO ≀ sup𝐵⊂R𝑛(1/||𝜒𝐵||𝐿𝑝(⋅)(R𝑛))||(𝑏 −𝑏𝐵)𝑚

    𝜒𝐵||𝐿𝑝(⋅)(R𝑛) ≀ 𝐶||𝑏||

    𝑚

    BMO;(2) ||(𝑏 − 𝑏

    𝐵𝑗

    )𝑚

    𝜒𝐵𝑘

    ||𝐿𝑝(⋅)(R𝑛) ≀ 𝐶(𝑘 − 𝑗)

    𝑚

    ||𝑏||𝑚

    BMO×||𝜒𝐵𝑘

    ||𝐿𝑝(⋅)(R𝑛).

    Proof of Theorem 6. Let 𝑓 ∈ ᅵ̇ᅵ𝛌,𝑞1𝑝1(⋅)(R𝑛); we can write

    𝑓 (𝑥) =

    ∞

    ∑

    𝑗=−∞

    𝑓 (𝑥) 𝜒𝑗(𝑥) =

    ∞

    ∑

    𝑗=−∞

    𝑓𝑗(𝑥) . (20)

    For 0 < 𝑞1/𝑞2≀ 1, applying the inequality

    (

    ∞

    ∑

    𝑖=1

    𝑎𝑖)

    𝑞1/𝑞2

    ≀

    ∞

    ∑

    𝑖=1

    𝑎𝑞1/𝑞2

    𝑖(𝑎𝑖> 0, 𝑖 = 1, 2 . . .) , (21)

    we obtain𝐌𝑚

    𝛜,𝑏(𝑓)

    𝑞1

    ᅵ̇ᅵ𝛌,𝑞2

    𝑝2(⋅)(R𝑛)

    = 𝐶(

    ∞

    ∑

    𝑘=−∞

    2𝛌𝑞2𝑘𝐌𝑚

    𝛜,𝑏(𝑓) 𝜒𝑘

    𝑞2

    𝐿𝑝2(⋅)(R𝑛)

    )

    𝑞1/𝑞2

    ≀ 𝐶

    ∞

    ∑

    𝑘=−∞

    2𝛌𝑞1𝑘

    (

    𝑘−2

    ∑

    𝑗=−∞

    𝐌𝑚

    𝛜,𝑏(𝑓𝑗) 𝜒𝑘

    𝐿𝑝2(⋅)(R𝑛))

    𝑞1

    + 𝐶

    ∞

    ∑

    𝑘=−∞

    2𝛌𝑞1𝑘

    (

    ∞

    ∑

    𝑗=𝑘−1

    𝐌𝑚

    𝛜,𝑏(𝑓𝑗) 𝜒𝑘

    𝐿𝑝2(⋅)(R𝑛))

    𝑞1

    = 𝑈1+ 𝑈2.

    (22)

    We first estimate 𝑈1. Noting that if 𝑥 ∈ 𝑅

    𝑘, 𝑊 ∈ 𝑅

    𝑗, and

    𝑗 ≀ 𝑘 − 2, then |𝑥 − 𝑊| ∌ |𝑥| ∌ 2𝑘, we get

    𝐌𝑚

    𝛜,𝑏(𝑓𝑗) 𝜒𝑘

    ≀ ∫𝑅𝑗

    𝑏 (𝑥) − 𝑏 (𝑊)𝑚

    𝑥 − 𝑊𝑛−𝛜

    𝑓𝑗(𝑊)

    𝑑𝑊 ⋅ 𝜒

    𝑘(𝑥)

    ≀ 𝐶2𝑘(𝛜−𝑛)

    ∫𝑅𝑗

    𝑏 (𝑥)− 𝑏 (𝑊)𝑚

    𝑓𝑗(𝑊)

    𝑑𝑊 ⋅ 𝜒

    𝑘(𝑥)

    ≀ 𝐶2𝑘(𝛜+𝑚𝛜

    1−𝑛)

    ‖𝑏‖𝑚

    Lip𝛜1

    ∫𝑅𝑗

    𝑓𝑗(𝑊)

    𝑑𝑊 ⋅ 𝜒

    𝑘(𝑥) .

    (23)

    By Hölder’s inequality, Lemmas 9 and 10, we have𝐌𝑚

    𝛜,𝑏(𝑓𝑗) 𝜒𝑘

    𝐿𝑝2(⋅)(R𝑛)

    ≀ 𝐶2𝑘(𝛜+𝑚𝛜

    1−𝑛)

    ‖𝑏‖𝑚

    Lip𝛜1

    𝑓𝑗

    𝐿𝑝1(⋅)(R𝑛)

    ×𝜒𝐵𝑘

    𝐿𝑝2(⋅)(R𝑛)

    𝜒𝐵𝑗

    𝐿𝑝

    1(⋅)

    (R𝑛)

    ≀ 𝐶2𝑘(𝛜+𝑚𝛜

    1)

    ‖𝑏‖𝑚

    Lip𝛜1

    𝑓𝑗

    𝐿𝑝1(⋅)(R𝑛)

    ×𝜒𝐵𝑗

    𝐿𝑝

    1(⋅)

    (R𝑛)

    𝜒𝐵𝑘

    −1

    𝐿𝑝

    2(⋅)

    (R𝑛)

    ≀ 𝐶2𝑘(𝛜+𝑚𝛜

    1)

    ‖𝑏‖𝑚

    Lip𝛜1

    𝑓𝑗

    𝐿𝑝1(⋅)(R𝑛)

    ×𝜒𝐵𝑗

    𝐿𝑝

    1(⋅)

    (R𝑛)

    𝜒𝐵𝑗

    −1

    𝐿𝑝

    2(⋅)

    (R𝑛)

    𝜒𝐵𝑗

    𝐿𝑝

    2(⋅)

    (R𝑛)𝜒𝐵𝑘

    𝐿𝑝

    2(⋅)

    (R𝑛)

    ≀ 𝐶2𝑘(𝛜+𝑚𝛜

    1)

    2𝑛𝑟(𝑗−𝑘)

    ‖𝑏‖𝑚

    Lip𝛜1

    𝑓𝑗

    𝐿𝑝1(⋅)(R𝑛)

    ×𝜒𝐵𝑗

    𝐿𝑝

    1(⋅)

    (R𝑛)

    𝜒𝐵𝑗

    −1

    𝐿𝑝

    2(⋅)

    (R𝑛).

    (24)

  • 4 Journal of Function Spaces and Applications

    Note that

    𝐌𝛜+𝑚𝛜

    1

    (𝜒𝐵𝑗

    ) (𝑥) ≥ 𝐌𝛜+𝑚𝛜

    1

    (𝜒𝐵𝑗

    ) (𝑥) ⋅ 𝜒𝐵𝑗

    (𝑥)

    = ∫𝐵𝑗

    𝑑𝑊

    𝑥 − 𝑊𝑛−𝛜−𝑚𝛜

    1

    ⋅ 𝜒𝐵𝑗

    (𝑥)

    ≥ 𝐶2𝑗(𝛜+𝑚𝛜

    1)

    ⋅ 𝜒𝐵𝑗

    (𝑥) .

    (25)

    By Lemmas 8 and 11, we obtain

    𝜒𝐵𝑗

    −1

    𝐿𝑝

    2(⋅)

    (R𝑛)≀ 𝐶2−𝑛𝑗

    𝜒𝐵𝑗

    𝐿𝑝2(⋅)(R𝑛)

    ≀ 𝐶2−𝑛𝑗

    2−𝑗(𝛜+𝑚𝛜

    1)𝐌𝛜+𝑚𝛜

    1

    (𝜒𝐵𝑗

    )𝐿𝑝2(⋅)(R𝑛)

    ≀ 𝐶2−𝑗(𝛜+𝑚𝛜

    1)

    2−𝑛𝑗

    𝜒𝐵𝑗

    𝐿𝑝1(⋅)(R𝑛)

    ≀ 𝐶2−𝑗(𝛜+𝑚𝛜

    1)𝜒𝐵𝑗

    −1

    𝐿𝑝

    1(⋅)

    (R𝑛).

    (26)

    Combining (24) and (26), we have the estimate

    𝐌𝑚

    𝛜,𝑏(𝑓𝑗) 𝜒𝑘

    𝐿𝑝2(⋅)(R𝑛)≀ 𝐶2(𝑘−𝑗)(𝛜+𝑚𝛜

    1−𝑛𝑟)

    × ‖𝑏‖𝑚

    Lip𝛜1

    𝑓𝑗

    𝐿𝑝1(⋅)(R𝑛).

    (27)

    Thus,

    𝑈1≀ 𝐶‖𝑏‖

    𝑚𝑞1

    Lip𝛜1

    ×

    ∞

    ∑

    𝑘=−∞

    (

    𝑘−2

    ∑

    𝑗=−∞

    2𝛌𝑗𝑓𝑗

    𝐿𝑝1(⋅)(R𝑛)2(𝑘−𝑗)(𝛜+𝑚𝛜

    1−𝑛𝑟+𝛌)

    )

    𝑞1

    .

    (28)

    If 1 < 𝑞1

    < ∞, noting that 𝛜 + 𝑚𝛜1− 𝑛𝑟 + 𝛌 < 0, by

    Hölder’s inequality, we have

    𝑈1≀ 𝐶‖𝑏‖

    𝑚𝑞1

    Lip𝛜1

    ×

    ∞

    ∑

    𝑘=−∞

    (

    𝑘−2

    ∑

    𝑗=−∞

    2𝛌𝑗𝑞1

    𝑓𝑗

    𝑞1

    𝐿𝑝1(⋅)(R𝑛)

    2(𝑘−𝑗)(𝛜+𝑚𝛜

    1−𝑛𝑟+𝛌)𝑞

    1/2

    )

    × (

    𝑘−2

    ∑

    𝑗=−∞

    2(𝑘−𝑗)(𝛜+𝑚𝛜

    1−𝑛𝑟+𝛌)𝑞

    1/2

    )

    𝑞1/𝑞

    1

    ≀ 𝐶‖𝑏‖𝑚𝑞1

    Lip𝛜1

    ∞

    ∑

    𝑗=−∞

    2𝛌𝑗𝑞1

    𝑓𝑗

    𝑞1

    𝐿𝑝1(⋅)(R𝑛)

    ∞

    ∑

    𝑘=𝑗+2

    2(𝑘−𝑗)(𝛜+𝑚𝛜

    1−𝑛𝑟+𝛌)𝑞

    1/2

    ≀ 𝐶‖𝑏‖𝑚𝑞1

    Lip𝛜1

    𝑓𝑞1

    ᅵ̇ᅵ𝛌,𝑞1

    𝑝1(⋅)(R𝑛)

    .

    (29)

    If 0 < 𝑞1≀ 1, by inequality (21), we have

    𝑈1≀ 𝐶‖𝑏‖

    𝑚𝑞1

    Lip𝛜1

    ×

    ∞

    ∑

    𝑘=−∞

    𝑘−2

    ∑

    𝑗=−∞

    2𝛌𝑗𝑞1

    𝑓𝑗

    𝑞1

    𝐿𝑝1(⋅)(R𝑛)

    2(𝑘−𝑗)(𝛜+𝑚𝛜

    1−𝑛𝑟+𝛌)𝑞

    1

    ≀ 𝐶‖𝑏‖𝑚𝑞1

    Lip𝛜1

    ∞

    ∑

    𝑗=−∞

    2𝛌𝑗𝑞1

    𝑓𝑗

    𝑞1

    𝐿𝑝1(⋅)(R𝑛)

    ∞

    ∑

    𝑘=𝑗+2

    2(𝑘−𝑗)(𝛜+𝑚𝛜

    1−𝑛𝑟+𝛌)𝑞

    1

    ≀ 𝐶‖𝑏‖𝑚𝑞1

    Lip𝛜1

    𝑓𝑞1

    ᅵ̇ᅵ𝛌,𝑞1

    𝑝1(⋅)(R𝑛)

    .

    (30)

    Next, we estimate 𝑈2. By Lemma 12(2), we obtain

    𝑈2≀ 𝐶‖𝑏‖

    𝑚𝑞1

    Lip𝛜1

    ∞

    ∑

    𝑘=−∞

    (

    ∞

    ∑

    𝑗=𝑘−1

    2𝛌𝑗𝑓𝑗

    𝐿𝑝1(⋅)(R𝑛)2𝛌(𝑘−𝑗)

    )

    𝑞1

    . (31)

    If 1 < 𝑞1< ∞, by Hölder’s inequality, we have

    𝑈2≀ 𝐶‖𝑏‖

    𝑚𝑞1

    Lip𝛜1

    ∞

    ∑

    𝑘=−∞

    (

    ∞

    ∑

    𝑗=𝑘−1

    2𝛌𝑗𝑞1

    𝑓𝑗

    𝑞1

    𝐿𝑝1(⋅)(R𝑛)

    2𝛌(𝑘−𝑗)𝑞

    1/2

    )

    × (

    ∞

    ∑

    𝑗=𝑘−1

    2𝛌(𝑘−𝑗)𝑞

    1/2

    )

    𝑞1/𝑞

    1

    ≀ 𝐶‖𝑏‖𝑚𝑞1

    Lip𝛜1

    ∞

    ∑

    𝑗=−∞

    2𝛌𝑗𝑞1

    𝑓𝑗

    𝑞1

    𝐿𝑝1(⋅)(R𝑛)

    𝑗+1

    ∑

    𝑘=−∞

    2𝛌(𝑘−𝑗)𝑞

    1/2

    ≀ 𝐶‖𝑏‖𝑚𝑞1

    Lip𝛜1

    𝑓𝑞1

    ᅵ̇ᅵ𝛌,𝑞1

    𝑝1(⋅)(R𝑛)

    .

    (32)

    If 0 < 𝑞1≀ 1, by inequality (21), we have

    𝑈2≀ 𝐶‖𝑏‖

    𝑚𝑞1

    Lip𝛜1

    ∞

    ∑

    𝑘=−∞

    ∞

    ∑

    𝑗=𝑘−1

    2𝛌𝑗𝑞1

    𝑓𝑗

    𝑞1

    𝐿𝑝1(⋅)(R𝑛)

    2𝛌(𝑘−𝑗)𝑞

    1

    ≀ 𝐶‖𝑏‖𝑚𝑞1

    Lip𝛜1

    ∞

    ∑

    𝑗=−∞

    2𝛌𝑗𝑞1

    𝑓𝑗

    𝑞1

    𝐿𝑝1(⋅)(R𝑛)

    𝑗+1

    ∑

    𝑘=−∞

    2𝛌(𝑘−𝑗)𝑞

    1

    ≀ 𝐶‖𝑏‖𝑚𝑞1

    Lip𝛜1

    𝑓𝑞1

    ᅵ̇ᅵ𝛌,𝑞1

    𝑝1(⋅)(R𝑛)

    .

    (33)

    Combining the estimates for 𝑈1and 𝑈

    2, the proof of

    Theorem 6 is completed.

    Proof of Theorem 7. Let 𝑓 ∈ ᅵ̇ᅵ𝛌,𝑞1𝑝1(⋅)(R𝑛); we can write

    𝑓 (𝑥) =

    ∞

    ∑

    𝑗=−∞

    𝑓 (𝑥) 𝜒𝑗(𝑥) =

    ∞

    ∑

    𝑗=−∞

    𝑓𝑗(𝑥) . (34)

  • Journal of Function Spaces and Applications 5

    By inequality (21), we obtain

    𝐌𝑚

    𝛜,𝑏(𝑓)

    𝑞1

    ᅵ̇ᅵ𝛌,𝑞2

    𝑝2(⋅)(R𝑛)

    = 𝐶(

    ∞

    ∑

    𝑘=−∞

    2𝛌𝑞2𝑘𝐌𝑚

    𝛜,𝑏(𝑓) 𝜒𝑘

    𝑞2

    𝐿𝑝2(⋅)(R𝑛)

    )

    𝑞1/𝑞2

    ≀ 𝐶

    ∞

    ∑

    𝑘=−∞

    2𝛌𝑞1𝑘

    (

    𝑘−2

    ∑

    𝑗=−∞

    𝐌𝑚

    𝛜,𝑏(𝑓𝑗) 𝜒𝑘

    𝐿𝑝2(⋅)(R𝑛))

    𝑞1

    + 𝐶

    ∞

    ∑

    𝑘=−∞

    2𝛌𝑞1𝑘

    (

    ∞

    ∑

    𝑗=𝑘−1

    𝐌𝑚

    𝛜,𝑏(𝑓𝑗) 𝜒𝑘

    𝐿𝑝2(⋅)(R𝑛))

    𝑞1

    = 𝑉1+ 𝑉2.

    (35)

    For 𝑉1, using Hölder’s inequality and Lemma 8, we have

    𝐌𝑚

    𝛜,𝑏(𝑓𝑗) 𝜒𝑘

    ≀ 𝐶2𝑘(𝛜−𝑛)

    ∫𝑅𝑗

    𝑏 (𝑥) − 𝑏 (𝑊)𝑚

    𝑓𝑗(𝑊)

    𝑑𝑊 ⋅ 𝜒

    𝑘(𝑥)

    ≀ 𝐶2𝑘(𝛜−𝑛)

    𝑚

    ∑

    𝑖=0

    𝐶𝑖

    𝑚

    𝑏 (𝑥) − 𝑏

    𝐵𝑗

    𝑚−𝑖

    × ∫𝑅𝑗

    𝑏𝐵𝑗

    − 𝑏 (𝑊)

    𝑖 𝑓𝑗(𝑊)

    𝑑𝑊

    ≀ 𝐶2𝑘(𝛜−𝑛)

    𝑓𝑗

    𝐿𝑝1(⋅)(R𝑛)

    ×

    𝑚

    ∑

    𝑖=0

    𝐶𝑖

    𝑚

    𝑏 (𝑥) − 𝑏

    𝐵𝑗

    𝑚−𝑖(𝑏𝐵𝑗

    − 𝑏)𝑖

    𝜒𝑗

    𝐿𝑝

    1(⋅)

    (R𝑛).

    (36)

    By Lemmas 9, 10, and 13, we have

    𝐌𝑚

    𝛜,𝑏(𝑓𝑗) 𝜒𝑘

    𝐿𝑝2(⋅)(R𝑛)

    ≀ 𝐶2𝑘(𝛜−𝑛)

    𝑓𝑗

    𝐿𝑝1(⋅)(R𝑛)

    ×

    𝑚

    ∑

    𝑖=0

    𝐶𝑖

    𝑚

    (𝑏 (𝑥) − 𝑏

    𝐵𝑗

    )𝑚−𝑖

    𝜒𝑘

    𝐿𝑝2(⋅)(R𝑛)

    ×

    (𝑏𝐵𝑗

    − 𝑏)𝑖

    𝜒𝑗

    𝐿𝑝

    1(⋅)

    (R𝑛)

    ≀ 𝐶2𝑘(𝛜−𝑛)

    𝑓𝑗

    𝐿𝑝1(⋅)(R𝑛)

    ×

    𝑚

    ∑

    𝑖=0

    𝐶𝑖

    𝑚(𝑘 − 𝑗)

    𝑚−𝑖

    ‖𝑏‖𝑚−𝑖

    BMO𝜒𝐵𝑘

    𝐿𝑝2(⋅)(R𝑛)

    × ‖𝑏‖𝑖

    BMO𝜒𝐵𝑗

    𝐿𝑝

    1(⋅)

    (R𝑛)

    = 𝐶(𝑘 − 𝑗 + 1)𝑚

    ‖𝑏‖𝑚

    BMO𝑓𝑗

    𝐿𝑝1(⋅)(R𝑛)

    × 2𝑘(𝛜−𝑛)

    𝜒𝐵𝑘

    𝐿𝑝2(⋅)(R𝑛)

    𝜒𝐵𝑗

    𝐿𝑝

    1(⋅)

    (R𝑛)

    ≀ 𝐶(𝑘 − 𝑗 + 1)𝑚

    ‖𝑏‖𝑚

    BMO𝑓𝑗

    𝐿𝑝1(⋅)(R𝑛)

    × 2𝑘𝛜𝜒𝐵𝑗

    𝐿𝑝

    1(⋅)

    (R𝑛)

    𝜒𝐵𝑘

    −1

    𝐿𝑝

    2(⋅)

    (R𝑛)

    ≀ 𝐶(𝑘 − 𝑗 + 1)𝑚

    ‖𝑏‖𝑚

    BMO𝑓𝑗

    𝐿𝑝1(⋅)(R𝑛)

    × 2𝑘𝛜𝜒𝐵𝑗

    𝐿𝑝

    1(⋅)

    (R𝑛)

    𝜒𝐵𝑘

    −1

    𝐿𝑝

    2(⋅)

    (R𝑛)

    𝜒𝐵𝑗

    𝐿𝑝

    2(⋅)

    (R𝑛)𝜒𝐵𝑘

    𝐿𝑝

    2(⋅)

    (R𝑛)

    ≀ 𝐶(𝑘 − 𝑗 + 1)𝑚

    ‖𝑏‖𝑚

    BMO𝑓𝑗

    𝐿𝑝1(⋅)(R𝑛)

    × 2𝑘𝛜

    2𝑛𝑟(𝑗−𝑘)

    𝜒𝐵𝑗

    𝐿𝑝

    1(⋅)

    (R𝑛)

    𝜒𝐵𝑗

    −1

    𝐿𝑝

    2(⋅)

    (R𝑛).

    (37)

    Note that

    𝐌𝛜(𝜒𝐵𝑗

    ) (𝑥) ≥ ∫𝐵𝑗

    𝑑𝑊

    𝑥 − 𝑊𝑛−𝛜

    ⋅ 𝜒𝐵𝑗

    (𝑥) ≥ 𝐶2𝑗𝛜

    ⋅ 𝜒𝐵𝑗

    (𝑥) .

    (38)

    By Lemmas 8 and 11, we obtain

    𝜒𝐵𝑗

    −1

    𝐿𝑝

    2(⋅)

    (R𝑛)≀ 𝐶2−𝑛𝑗

    𝜒𝐵𝑗

    𝐿𝑝2(⋅)(R𝑛)

    ≀ 𝐶2−𝑛𝑗

    2−𝑗𝛜

    𝐌𝛜(𝜒𝐵𝑗

    )𝐿𝑝2(⋅)(R𝑛)

    ≀ 𝐶2−𝑗𝛜

    2−𝑛𝑗

    𝜒𝐵𝑗

    𝐿𝑝1(⋅)(R𝑛)

    ≀ 𝐶2−𝑗𝛜

    𝜒𝐵𝑗

    −1

    𝐿𝑝

    1(⋅)

    (R𝑛).

    (39)

    Combining (37) and (39), we have the estimate

    𝐌𝑚

    𝛜,𝑏(𝑓𝑗) 𝜒𝑘

    𝐿𝑝2(⋅)(R𝑛)≀ 𝐶(𝑘 − 𝑗 + 1)

    𝑚

    × ‖𝑏‖𝑚

    BMO2(𝑘−𝑗)(𝛜−𝑛𝑟)

    𝑓𝑗

    𝐿𝑝1(⋅)(R𝑛).

    (40)

    Thus,

    𝑉1≀ 𝐶‖𝑏‖

    𝑚𝑞1

    BMO

    ∞

    ∑

    𝑘=−∞

    (

    𝑘−2

    ∑

    𝑗=−∞

    2𝛌𝑗𝑓𝑗

    𝐿𝑝1(⋅)(R𝑛)

    ×(𝑘 − 𝑗 + 1)𝑚

    2(𝑘−𝑗)(𝛜−𝑛𝑟+𝛌)

    )

    𝑞1

    .

    (41)

  • 6 Journal of Function Spaces and Applications

    In case of 1 < 𝑞1

    < ∞, noting that 𝛜 − 𝑛𝑟 + 𝛌 < 0, byHölder’s inequality, we have

    𝑉1≀ 𝐶‖𝑏‖

    𝑚𝑞1

    BMO

    ×

    ∞

    ∑

    𝑘=−∞

    (

    𝑘−2

    ∑

    𝑗=−∞

    2𝛌𝑗𝑞1

    𝑓𝑗

    𝑞1

    𝐿𝑝1(⋅)(R𝑛)

    2(𝑘−𝑗)(𝛜−𝑛𝑟+𝛌)𝑞

    1/2

    )

    × (

    𝑘−2

    ∑

    𝑗=−∞

    (𝑘 − 𝑗 + 1)𝑚𝑞

    2(𝑘−𝑗)(𝛜−𝑛𝑟+𝛌)𝑞

    1/2

    )

    𝑞1/𝑞

    1

    ≀ 𝐶‖𝑏‖𝑚𝑞1

    BMO

    ∞

    ∑

    𝑗=−∞

    2𝛌𝑗𝑞1

    𝑓𝑗

    𝑞1

    𝐿𝑝1(⋅)(R𝑛)

    ∞

    ∑

    𝑘=𝑗+2

    2(𝑘−𝑗)(𝛜−𝑛𝑟+𝛌)𝑞

    1/2

    ≀ 𝐶‖𝑏‖𝑚𝑞1

    BMO𝑓

    𝑞1

    ᅵ̇ᅵ𝛌,𝑞1

    𝑝1(⋅)(R𝑛)

    .

    (42)

    In case of 0 < 𝑞1≀ 1, by inequality (21), we have

    𝑉1≀ 𝐶‖𝑏‖

    𝑚𝑞1

    BMO

    ×

    ∞

    ∑

    𝑘=−∞

    𝑘−2

    ∑

    𝑗=−∞

    2𝛌𝑗𝑞1

    𝑓𝑗

    𝑞1

    𝐿𝑝1(⋅)(R𝑛)

    × (𝑘 − 𝑗 + 1)𝑚𝑞1

    2(𝑘−𝑗)(𝛜−𝑛𝑟+𝛌)𝑞

    1

    ≀ 𝐶‖𝑏‖𝑚𝑞1

    BMO

    ∞

    ∑

    𝑗=−∞

    2𝛌𝑗𝑞1

    𝑓𝑗

    𝑞1

    𝐿𝑝1(⋅)(R𝑛)

    ×

    ∞

    ∑

    𝑘=𝑗+2

    (𝑘 − 𝑗 + 1)𝑚𝑞1

    2(𝑘−𝑗)(𝛜−𝑛𝑟+𝛌)𝑞

    1

    ≀ 𝐶‖𝑏‖𝑚𝑞1

    BMO𝑓

    𝑞1

    ᅵ̇ᅵ𝛌,𝑞1

    𝑝1(⋅)(R𝑛)

    .

    (43)

    For 𝑉2, by Lemma 12(1), we obtain

    𝑉2≀ 𝐶‖𝑏‖

    𝑚𝑞1

    BMO

    ∞

    ∑

    𝑘=−∞

    (

    ∞

    ∑

    𝑗=𝑘−1

    2𝛌𝑗𝑓𝑗

    𝐿𝑝1(⋅)(R𝑛)2𝛌(𝑘−𝑗)

    )

    𝑞1

    . (44)

    If 1 < 𝑞1< ∞, by Hölder’s inequality, we have

    𝑉2≀ 𝐶‖𝑏‖

    𝑚𝑞1

    BMO

    ∞

    ∑

    𝑘=−∞

    (

    ∞

    ∑

    𝑗=𝑘−1

    2𝛌𝑗𝑞1

    𝑓𝑗

    𝑞1

    𝐿𝑝1(⋅)(R𝑛)

    2𝛌(𝑘−𝑗)𝑞

    1/2

    )

    × (

    ∞

    ∑

    𝑗=𝑘−1

    2𝛌(𝑘−𝑗)𝑞

    1/2

    )

    𝑞1/𝑞

    1

    ≀ 𝐶‖𝑏‖𝑚𝑞1

    BMO

    ∞

    ∑

    𝑗=−∞

    2𝛌𝑗𝑞1

    𝑓𝑗

    𝑞1

    𝐿𝑝1(⋅)(R𝑛)

    𝑗+1

    ∑

    𝑘=−∞

    2𝛌(𝑘−𝑗)𝑞

    1/2

    ≀ 𝐶‖𝑏‖𝑚𝑞1

    BMO𝑓

    𝑞1

    ᅵ̇ᅵ𝛌,𝑞1

    𝑝1(⋅)(R𝑛)

    .

    (45)

    If 0 < 𝑞1≀ 1, by inequality (21), we have

    𝑉2≀ 𝐶‖𝑏‖

    𝑚𝑞1

    BMO

    ∞

    ∑

    𝑘=−∞

    ∞

    ∑

    𝑗=𝑘−1

    2𝛌𝑗𝑞1

    𝑓𝑗

    𝑞1

    𝐿𝑝1(⋅)(R𝑛)

    2𝛌(𝑘−𝑗)𝑞

    1

    ≀ 𝐶‖𝑏‖𝑚𝑞1

    BMO

    ∞

    ∑

    𝑗=−∞

    2𝛌𝑗𝑞1

    𝑓𝑗

    𝑞1

    𝐿𝑝1(⋅)(R𝑛)

    𝑗+1

    ∑

    𝑘=−∞

    2𝛌(𝑘−𝑗)𝑞

    1

    ≀ 𝐶‖𝑏‖𝑚𝑞1

    BMO𝑓

    𝑞1

    ᅵ̇ᅵ𝛌,𝑞1

    𝑝1(⋅)(R𝑛)

    .

    (46)

    Combining the estimates for 𝑉1and 𝑉

    2, consequently, we

    have provedTheorem 7.

    Acknowledgments

    The authors thank the referees for their valuable commentsto the original version of this note. This paper is supportedby the NSF of China (no. 11201003); the Natural ScienceFoundation of Anhui Higher Education Institutions of China(no. KJ2011A138; no. KJ2013B034).

    References

    [1] D. R. Adams, “A note on Riesz potentials,” Duke MathematicalJournal, vol. 42, no. 4, pp. 765–778, 1975.

    [2] S. Lu and D. Yang, “Hardy-Littlewood-Sobolev theorems offractional integration on Herz-type spaces and its applications,”Canadian Journal of Mathematics, vol. 48, no. 2, pp. 363–380,1996.

    [3] S. G. Shi and Z. W. Fu, “Boundedness of sublinear operatorswith rough kernels on weighted Morrey spaces,” Journal ofFunction Spaces and Applications, vol. 2013, Article ID 784983,9 pages, 2013.

    [4] O. Kováčik and J. Rákosnı́k, “On spaces 𝐿𝑝(𝑥) and 𝑊𝑘,𝑝(𝑥),”Czechoslovak Mathematical Journal, vol. 41, no. 4, pp. 592–618,1991.

    [5] L. Diening and M. Růžička, “Calderón-Zygmund operators ongeneralized Lebesgue spaces 𝐿𝑝(⋅) and problems related to fluiddynamics,” Journal für die Reine und Angewandte Mathematik,vol. 563, pp. 197–220, 2003.

    [6] C. Capone, D. Cruz-Uribe, and A. Fiorenza, “The fractionalmaximal operator and fractional integrals on variable 𝐿𝑝spaces,” Revista Mathemática Iberoamericana, vol. 23, no. 3, pp.743–770, 2007.

    [7] M. Izuki, “Commutators of fractional integrals on Lebesgueand Herz spaces with variable exponent,” Rendiconti del CircoloMatematico di Palermo, vol. 59, no. 3, pp. 461–472, 2010.

    [8] L. Diening, “Riesz potential and Sobolev embeddings on gene-ralized Lebesgue and Sobolev spaces 𝐿𝑝(⋅) and 𝑊𝑘,𝑝(⋅),” Mathe-matische Nachrichten, vol. 268, pp. 31–43, 2004.

    [9] S. Z. Lu, D. C. Yang, and G. E. Hu, Herz Type Spaces and TheirApplications, Science Press, Beijing, China, 2008.

    [10] Z.-W. Fu, Z.-G. Liu, S.-Z. Lu, andH.-B.Wang, “Characterizationfor commutators of 𝑛-dimensional fractional Hardy operators,”Science in China A, vol. 50, no. 10, pp. 1418–1426, 2007.

    [11] S. Lu, Q. Wu, and D. Yang, “Boundedness of commutators onHardy type spaces,” Science in China A, vol. 45, no. 8, pp. 984–997, 2002.

  • Journal of Function Spaces and Applications 7

    [12] T. Zhou, Commutators of Fractional Integrals on Spaces WithVariable Exponent, Dalian Maritime University, 2012.

    [13] H. B.Wang, Z.W. Fu, andZ.G. Liu, “Higher order commutatorsof Marcinkiewicz integrals on variable Lebesgue spaces,” ActaMathematica Scientia A, vol. 32, no. 6, pp. 1092–1101, 2012.

    [14] H. B.Wang, Function Spaces withVariable Exponent andRelatedTopics, China University of Mining and Technology, 2012.

    [15] A. Nekvinda, “Hardy-Littlewood maximal operator on𝐿𝑝(𝑥)

    (R𝑛),” Mathematical Inequalities & Applications, vol. 7, no.2, pp. 255–265, 2004.

    [16] M. Izuki, “Boundedness of commutators on Herz spaceswith variable exponent,” Rendiconti del Circolo Matematico diPalermo, vol. 59, no. 2, pp. 199–213, 2010.

  • Submit your manuscripts athttp://www.hindawi.com

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical Problems in Engineering

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Differential EquationsInternational Journal of

    Volume 2014

    Applied MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Probability and StatisticsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Mathematical PhysicsAdvances in

    Complex AnalysisJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    OptimizationJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    CombinatoricsHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Operations ResearchAdvances in

    Journal of

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Function Spaces

    Abstract and Applied AnalysisHindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    International Journal of Mathematics and Mathematical Sciences

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    The Scientific World JournalHindawi Publishing Corporation http://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Algebra

    Discrete Dynamics in Nature and Society

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Decision SciencesAdvances in

    Discrete MathematicsJournal of

    Hindawi Publishing Corporationhttp://www.hindawi.com

    Volume 2014 Hindawi Publishing Corporationhttp://www.hindawi.com Volume 2014

    Stochastic AnalysisInternational Journal of

top related