qsp basel nvan riel 4sharing

Post on 24-Jan-2017

361 Views

Category:

Health & Medicine

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Roche QSP methodology workshop

Bringing multi-level systems pharmacology models to life February 5, 2016Natal van Riel Eindhoven University of Technology, the NetherlandsDepartment of Biomedical EngineeringSystems Biology and Metabolic Diseasesn.a.w.v.riel@tue.nl

@nvanriel

Outline

• Model parameterization / calibration• Prediction Uncertainty Analysis (PUA)• Analysis of Dynamic Adaptations in

Parameter Trajectories (ADAPT)• Examples:

• modelling of longitudinal data in a cohort of Type 2 Diabetics

• effect of liver X receptor activation on HDL metabolism and liver steatosis

PAGE 2

SlideShare http://www.slideshare.net/natalvanriel

measuringmodelling

Systems Biology and Metabolic Diseases

Metabolic Syndrome and comorbidities• A multifaceted, multi-scale

problem• macro-models• micro-models

• Models of metabolism and its regulatory systems

• Models for science (understanding)

• Computational diagnostics

PAGE 3

Rask-Madsen et al. (2012) Arterioscler Thromb Vasc Biol, 32(9):2052-2059

Different views on model parameterization

• A reductionistic view:the whole can be understood by adding information of the parts

• Building models from existing subcomponentstuning as little parameters as possible

• A ‘system identification’ approach: calibrating model to data(PK-PD,…)

PAGE 4

/ biomedical engineering PAGE 505/01/2023

Disease progression in type 2 diabetes

Disease progression and treatment of T2DM

• 1 year follow-up of treatment-naïve T2DM patients (n=2408)• 3 treatment arms: monotherapy with different hypoglycemic

agents• Pioglitazone - insulin

sensitizer− enhances peripheral

glucose uptake− reduces hepatic glucose

production • Metformin - insulin sensitizer

− decreases hepatic glucose production• Gliclazide - insulin secretogogue

− stimulates insulin secretion by the pancreatic beta-cells

6

FPG

[mm

ol/L

]

Schernthaner et al, Clin. Endocrinol. Metab. 89:6068–6076 (2004)Charbonnel et al, Diabetic Med. 22:399–405 (2004)

Glucose-insulin homeostasis model

• Population PD model • 3 ODE’s, 15 structural parameters

PAGE 7

hepatic glucose production

glucose utilization

insulin secretion

glucose (FPG)

insulinsensitivity (S)

insulin (FSI)HbA1c

beta-cell function (B)

OHA(insulin sensitizer)

OHA(insulin secretagogue)

1 2

1 2

1 2

1

2

compensation phase: hyperinsulinemiaexhaustion phase: disease onsettreatment effects

De Winter et al. (2006) J Pharmacokinet Pharmcodyn, 33(3):313-343

FPG: fasting plasma glucoseFSI: fasting serum insulinHbA1c: glycosylated hemoglobin A1c

T2DM disease progression model

PAGE 8

Assumption for B(t): fraction of remainingbeta-cell function

Assumption for S(t): fraction of remaininghepatic insulin-sensitivity

Room for improvement?

Bias – Variance trade-off

PAGE 9

Model complexity / granularity

Room for more flexibility

• Given complexity of the model and limited data the bias - variance trade-off is often reached for rather large bias

• Typically, we are far away from the asymptotic situation in which Maximum Likelihood Estimation (MLE) provides the best possible estimates

PAGE 10

Increasing model size

PAGE 11

hepatic glucose production

glucose utilization

insulin secretion

glucose (FPG)

insulinsensitivity (S)

insulin (FSI)HbA1c

beta-cell function (B)

OHA(insulin sensitizer)

OHA(insulin secretagogue)

1 2

1 2

1 2

1

2

compensation phase: hyperinsulinemiaexhaustion phase: disease onsettreatment effects

Do we need a Systems Pharmacology model

here?

Time-varying parameters

• Instead of increasing model size• Introduce more freedom in model parameters to compensate

for bias (‘undermodelling’) in the original model structure

•ADAPTAnalysis of Dynamic Adaptations in Parameter Trajectories

PAGE 12

Adaptive changes in -cell function (B) and insulin sensitivity (S)

• Parameter trajectories B(t), S(t)

PAGE 13

PAGE 14

/ biomedical engineering PAGE 1505/01/2023

ADAPT

Time-continuous description of the data

PAGE 16

data interpolation: splinesyield continuous descriptions

Bootstrap:include uncertainty in data

raw data: longitudinal dataof different phenotypic stages

Vanlier et al. Math Biosci. 2013 Mar 25Vanlier et al. Bioinformatics. 2012, 28(8):1130-5

Modelling phenotype transition

treatment

disease progression

longitudinal discrete data: different phenotypes

Introducing time-dependent parameters

steady state model

Parameter trajectory estimation

steady state model iteratively calibrate model to data: estimate parameters over time

minimize difference between data and model simulation

Parameter trajectory estimation

steady state model iteratively calibrate model to data: estimate parameters over time

Parameter trajectory estimation

steady state model iteratively calibrate model to data: estimate parameters over time

ADAPT – time-varying parameters

longitudinal discrete data: different phenotypes estimate continuous data: cubic smooth spline population modelling: ensemble of describing functions can also be applied to individual data

PAGE 22

Estimating time-dependent parameters

Dividing the simulation of the system in Nt steps of Dt time period

Fit model to the data for each time interval (weighted nonlinear least-squares)

PAGE 23

• State variables

• Outputs

• Initial conditions

Estimated parameter trajectories

PAGE 24

Flexibility in parameters not constrained by

model+data might be abused for overfitting

Regularization of parameter trajectories

• Identifying minimal adaptations that are necessary to describe the change in phenotype

PAGE 25

changing a parameter is “costly”

2

[ ]

ˆ[ ] argmin ( [ ]) ( [ ])d r rn

n n n

r

r r r

2

2

1

[ ] ( )( [ ])( )

yNi i

di i

Y n d n tnn t

D D

r

1

[ ] [ 1] 1( [ ])[0]

pNi

ri i

n nnt

Dr

Regularization of parameter trajectories

• Tune regularization strength

PAGE 26

Tiemann et al, 2011 BMC Syst. Biol.

2d r

=0.1

Regularization of parameter trajectories

PAGE 27

ADAPT vs regularization approaches in statistics• Lasso (least absolute shrinkage and selection operator) solves the

l1-penalized regression problem of finding the parameters to minimize

• l1-penalty in ADAPT accomplishes:• Shrinkage of changes in parameters values• Selection of parameters that change

• It enforces sparsity in models that have too many degrees of freedom

PAGE 28

2

1 1

pN

i ij j ji j j

y x

1

[ ] [ 1] 1( [ ])[0]

pNi

ri i

n nnt

Dr

/ biomedical engineering PAGE 2905/01/2023

Progressive changes in lipoprotein metabolism after pharmacological intervention

Mouse models of Metabolic Syndrome

• dynamics of whole body energy metabolism• organ specific metabolism

PAGE 30

Time span of weeks/months

• High fat diet• Genetic manipulation

• Pharmacological compounds

PAGE 31

experimentsphenotype A

experimentsphenotype B

Identify adaptations

Time span of weeks/months

Organ specific metabolism in MetSyn

• Glucose metabolism – Lipid / lipoprotein metabolism

PAGE 32

Where it went wrong…

• ‘easy to get readouts’

PAGE 33

Metabolic cages for indirect calorimetry

Omics from different tissues

• Specific research question

• Data

• Domain expert

• Bit of ‘technology push’• And scientific serendipity

PAGE 34

Liver X Receptor

• Liver X Receptor (LXR, nuclear receptor),induces transcription of multiple genes modulating metabolism of fatty acids, triglycerides, and lipoproteins

• LXR agonists increase plasma high density lipoprotein cholesterol (HDLc)

• LXR as target for anti-atherosclerotic therapy?

PAGE 35

Levin et al, (2005) Arterioscler Thromb Vasc Biol. 25(1):135-42

LDLR-/-

RXR: retinoid X receptor Calkin & Tontonoz 2012

Multi-scale model of lipid and lipoprotein metabolism

• Metabolism and its multi-scale regulation

• Coarse-grained when possible, detailed when necessary

PAGE 36

Iterative process

PAGE 37

• 1.0 Tiemann et al, 2011 BMC Syst Biol• 2.0 Tiemann et al, 2013 PLOS Comput Biol• 3.0 Tiemann et al, 2014

rejected

Hypothesis 1: increase in HDLc is the result of increased peripheral cholesterol efflux to HDL• C57Bl/6J mice• control, treated with T0901317 for 1, 2, 4, 7, 14, and 21 days

/ biomedical engineering PAGE 3801-05-2023Grefhorst et al. Atherosclerosis, 2012, 222: 382– 389

0 10 200

100

200Hepatic TG

Time [days]

[um

ol/g

]

0 10 200

1

2

3Hepatic CE

Time [days]

[um

ol/g

]

0 10 200

2

4

6Hepatic FC

Time [days]

[um

ol/g

]

0 10 200

50

100Hepatic TG

Time [days]

[um

ol]

0 10 200

0.5

1

1.5Hepatic CE

Time [days]

[um

ol]

0 10 200

2

4Hepatic FC

Time [days]

[um

ol]

0 10 200

1000

2000

3000Plasma CE

Time [days]

[um

ol/L

]

0 10 200

1000

2000

3000HDL-CE

Time [days]

[um

ol/L

]

0 10 200

500

1000

1500Plasma TG

Time [days]

[um

ol/L

]

0 10 206

8

10

12VLDL clearance

Time [days]

[-]

0 10 20100

200

300

400ratio TG/CE

Time [days]

[-]

0 10 200

5

10

15VLDL diameter

Time [days]

[nm

]

0 10 200

1

2

3VLDL-TG production

Time [days]

[um

ol/h

]

0 10 201

2

3Hepatic mass

Time [days]

[gra

m]

0 10 200

0.2

0.4DNL

Time [days]

[-]

ADAPT: Metabolic trajectories

‘Connecting’ the data in time, and with each other

PAGE 39

Data: black bars and white dots

Model: the darker the more likely

variability in data

differences in accuracy of

mathematical parameters

quantification of uncertainty in

predictions

• Calculating unobserved quantities

• Does LXR agonist improve lipid/lipoprotein profile?

Flux Distribution Analysis

PAGE 40

white lines enclose the central 67% of the densities

Analysis: HDL cholesterol

PAGE 41

Analysis: increased excretion of cholesterol

Observation: increased concentration of HDLc

• SR-B1 (Scavenger Receptor-B1)

• Protein expression/ activity:

Experimental testing of model prediction

• HDL excretion and uptake flux are increased

• Transcription:

PAGE 42

Transcription of cholesterol efflux transporters

SR-B1 protein content is decreased in hepatic membranes

Srb1 mRNA expression not changed

model: decreased hepatic capacity to clear cholesterol

/ biomedical engineering PAGE 4305/01/2023

Conclusions / Take home messages

Propagation of uncertainty

Parameter identification and identifiability• Data uncertainty • Parameter uncertainty• Prediction uncertainty

/ biomedical engineering PAGE 4405/01/2023

ComputationalmodelParameter space

Solution / predictionspace

forward

Data spaceinverse

Vanlier et al, Bioinformatics. 2012; 28(8):1130-5Vanlier et al, Math Biosci. 2013; 246(2):305-14

Some predictions can be constrained although not all parameters are precisely known (‘sloppy’)

• MLE as "the best estimates", with optimal asymptotic properties

• But in Systems Pharmacology, we are far from the asymptotics and model quality is determined more by a well balance bias-variance trade-off

• Complement the estimation tools for dynamical systems with well tuned methods for regularization

PAGE 45

ADAPT

• Analysis of Dynamic Adaptations in Parameter Trajectories

• Dynamical modelling framework:• time-dependent parameters (parameters are updated during a

simulation run)• time-series data integration• extract information of unobserved species• extract information at unobserved time points

• Identify underlying adaptations in network• Identify missing regulation / interactions

Acknowledgements

• Peter Hilbers• Christian Tiemann• Joep Vanlier• Yvonne Rozendaal• Fianne Sips

• Bert Groen• Maaike Oosterveer• Brenda Hijmans

• Ko Willems-van Dijk

Systems Biology of Disease Progression - ADAPT modelinghttp://www.youtube.com/watch?v=x54ysJDS7i8

• Gunnar Cedersund• Elin Nyman

PAGE 48

top related