probabilistic methods in open earth tools ferdinand diermanse kees den heijer bas hoonhout

Post on 19-Jan-2016

215 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Probabilistic methods in Open Earth Tools

Ferdinand Diermanse

Kees den Heijer

Bas Hoonhout

2

Open Earth Tools

• Deltares software• Open source• Sharing code for users of matlab, python, R, …• https://publicwiki.deltares.nl/display/OET/OpenEarth

3

Application: probabilities of unwanted events (failure)

Floods (too much)

Droughts (too little)

Contamination (too dirty)

4

Example application: flood risk analysis

Rainfall

Upstream river

Discharge

Sea water

level

Sobek

5

General problem definition

X1

System/model

X2

Xn

.

.

.

Z

“Boundary

conditions”

“system

variable”

6

Notation

X1

X2

Xn

.

.

.

Z

X = (X1, X2, …, Xn)

Z = Z(X)

System/model

7

General problem definition

X1

model

X2

Xn

.

.

.

Z

?

Statistical

analysis

Probabilistic

analysis

complex

Time consuming

8

failure domain: unwanted events

x1

x2

“failure”

Z(x)=0no “failure”

Z(x)>0

Z(x)<0

Wanted: probability of failure, i.e. probability that Z<0

9

Example Z-function

Failure: if water level (h) exceeds crest height (k): Z = k - h

10

Probability functions of x-variables

-4 -3 -2 -1 0 1 2 3 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x2

f(x 2)

-4 -2 0 2 40

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x1

f(x 1)

11

Correlations need to be included

x2

f(x)

x1

x1

x2

f(x)

Multivariate distribution function

12

Combination of f(x) and Z(x)

x2

x1

f(x)

Z(x)=C*

“failure”

no “failure”

13

Probability of failure

x2

x1

f(x)

fail

0

P

Z

f d

x

x x

Z(x)=0

14

Problem definition

Problem cannot be solved analytically

Probabilistic estimation techniques are required

Evaluation of Z(x) can be very time consuming

fail

0

P

Z

f d

x

x x

15

Probabilistic methods in Open Earth Tools

Crude Monte Carlo

Monte Carlo with importance sampling

First Order Reliability Method (FORM)

Directional sampling

1616

Crude Monte Carlo sampling

X1

X2

Z=0

failureno failure

1. Take N random samples of the x-variables 2. Count the number of samples (M) that lead to “failure” 3. Estimate Pf = M/N

-4 -2 0 2 40

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

x1

f(x 1)

-4 -3 -2 -1 0 1 2 3 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x2

f(x 2)

17

Simple example Crude Monte Carlo: ¼ circle

Uniform 0,1f x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x 2

4

14

18

Samples crude Monte Carlo

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x1

x 2

no failure

failure

19

MC estimate

100

101

102

103

104

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

number of samples

MC

est

imat

e

1-/4

20

New example: smaller probability of failure

-5 -4 -3 -2 -1 0 1 2 3 4 5-5

-4

-3

-2

-1

0

1

2

3

4

5

z=0

u1

u 2

example limit state: Z = 5 - (u1+u

2)

failure probability: 0.00020

-3 -2 -1 0 1 2 30

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

U1;U2

1000 samples

-5 -4 -3 -2 -1 0 1 2 3 4 5-5

-4

-3

-2

-1

0

1

2

3

4

5

z=0

u1

u 2

1000 samples crude MC

21

How many samples required?

100

101

102

103

104

105

106

0

1

2

x 10-4

number of samples

estim

ated

fai

lure

pro

babi

lity

exact

crude MC

22

23

Crude Monte Carlo

• Can handle a large number of random variables

• Number of samples required for a sufficiently accurate estimate is inversely proportional to the probability of failure

• For small failure probabilities, crude MC is not a good choice, especially if each sample brings with it a time consuming computation/simulation

2424

“Smart” MC method 1: importance sampling

x

f(x)h(x)

f xh x

Manipulation of probability denstity function

Allowed with the use of a correction:

Potentially much faster than Crude Monte Carlo

25

-8 -6 -4 -2 0 2 4 6 80

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

u

prob

abili

ty d

ensi

tyexample strategy: increase standard deviation by a factor 2

f(u)

h(u)

Example strategy: increase variance

26

-5 -4 -3 -2 -1 0 1 2 3 4 5-5

-4

-3

-2

-1

0

1

2

3

4

5

u1

u 21000 samples MC-IS

Samples

27

Convergence of MC estimate

100

101

102

103

104

105

106

0

1

2

3

4

5

6x 10

-4

number of samples

estim

ated

fai

lure

pro

babi

lity

importance sampling; scaling factor 2

exact

crude MCimportance sampling

28

Example strategy 2

-8 -6 -4 -2 0 2 4 6 8 100

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

u

prob

abili

ty d

ensi

tyexample strategy: mu=2 sigma=2

f(u)

h(u)

29

Samples

-3 -2 -1 0 1 2 3 4 5 6 7-3

-2

-1

0

1

2

3

4

5

6

7

u1

u 2

1000 samples MC-IS

30

Convergence of MC estimate

100

101

102

103

104

105

106

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5x 10

-4

number of samples

estim

ated

fai

lure

pro

babi

lity

exact

crude MC

importance sampling

31

Monte Carlo with importance sampling

• Potentially much faster than Crude Monte Carlo

• Proper choice of h(x) is crucial

• Therefore: Proper system knowledge is crucial

32

FORM

Design point: most likely combination leading to failure

33

x

u

F(x)

real world variable X

transformed normallydistributed variable u

(u) = F(x)

f(x)

(u )

(u)

Method is executed with standard normally distributed variables

Paul Hölscher
Moet deze sheet niet eerder opgenomen worden?

34

Probability density independent normal values

Probability density decreases

away from origin

35

example

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4 -10-9-8

-7

-6

-6

-5

-5

-4

-4

-3

-3

-2

-2

-2

-1

-1

-1

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

44

55

5

5 5 5

u

v

0.8 1.25Z u v

u en v standard

normally distributed

36

Design point

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4 -10-9-8

-7

-6

-6

-5

-5

-4

-4

-3

-3

-2

-2

-2

-1

-1

-1

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

44

55

5

5 5 5

u

v

Z=0 & shortest distance to origin

37

Start iterative procedure

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4 -10-9

-8-7

-6-5

-5

-4

-4

-3

-3

-2

-2

-1

-1

-1

0

0

0

1

1

1

2

2

2

2

3

3

3

3

44

4

4

55

5 5 5

u1

u 2

38

Estimation of derivatives

0.4 0.6 0.8 1 1.2 1.4 1.60.4

0.6

0.8

1

1.2

1.4

1.6

u

v

3.5

4

4.5

u

v

39

Resulting tangent

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4

55

5

5 5 5

u

v

40

Linearisation of Z-function based on tangent

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4

-10

0

1

1

1

2

2

2

3

3

4

u1

u 2

41

First estimate of design point

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4 -1

0

0

1

1

1

2

2

2

3

3

4

u1

u 2

42

3D view: Z-function

43

3D view: linearisation of Z-function

44

Smaller steps to prevent “accidents” (relaxation)

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4

-1

0

0

1

1

1

2

2

2

3

3

4

u1

u 2

45

2nd iteration step

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4

55

5

5 5 5

u

v

46

Linearisation in 2nd iteration step

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4

u

v

47

3D view

48

All iteration steps

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4 -10-9-8-7-6

-6

-5

-5

-4

-4

-3

-3

-2

-2

-2

-1

-1

-1

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

44

55

55 5 5

u

v

49

-value of design point in standard normal space

0 0.5 1 1.5 2 2.5 3 3.5 40

0.5

1

1.5

2

2.5

3

3.5

4 -10-9-8

-7

-6

-6

-5

-5

-4

-4

-3

-3

-2

-2

-2

-1

-1

-1

0

0

0

1

1

1

1

2

2

2

2

3

3

3

3

44

4

44

55

5

5 5 5

u

v

||||

Pfail

50

-values in design point

Limit state(Z = 0)

Design point

u1

u2 Z < 0

β

u2,d = -α2β

u1,d = -α1β

51

FORM

• Very fast method

• Risk: iteration method does not converge, or converges to the wrong design point

52

Directional sampling

Z=0Selected directions

Z-function evaluations

u1

u2

1

2

34

Z<0

Z>0

0

53

Search along 1 direction

z

0

1

2

4

3

54

Resume

Crude Monte Carlo (MC)

Monte Carlo with importance sampling (MC-IS)

First Order Reliability Method (FORM)

Directional Sampling (DS)

Towards the exercises

56

Generic problem statement

x2

x1

f(x)

fail

0

P

Z

f d

x

x x

Z(x)=0

57

Generic problem statement

fail

0

P

Z

f d

x

x x

1. Probability functions, f(x): P -> X

2. Z-function: X -> Z

top related