pricing central tendency in volatility

Post on 20-Jan-2015

296 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

NES 20th Anniversary Conference, Dec 13-16, 2012 Pricing Central Tendency in Volatility (based on the article presented by Stanislav Khrapov at the NES 20th Anniversary Conference). Author: Stanislav Khrapov, NES

TRANSCRIPT

Pricing Central Tendency in Volatility

Stanislav Khrapov

NES Anniversary, Moscow

December 14, 2012

Motivation and Contribution The Model Results

Market Returns

400600800

1000120014001600

S&P500 index

SPX

19971999

20012003

20052007

20092011

−10−5

05

1015

S&P500 log returns

logR

Motivation and Contribution The Model Results

Volatility

020406080

100120140

Volatility measures

RVVIX

19971999

20012003

20052007

20092011

−40−20

0204060

Difference

RV-VIX

Motivation and Contribution The Model Results

Persistence

0 10 20 30 40 50 60 70 80 90Lags, days

−0.2

0.0

0.2

0.4

0.6

0.8

1.0Autocorrelation function

VIXRVlogR

Motivation and Contribution The Model Results

Thick Tails

Min Max Mean Std Skewness Kurtosis

logR -9.47 10.96 0.01 1.32 -0.25 7.98

VIX 9.89 80.86 21.69 8.83 2.09 7.40

RV 2.38 118.75 13.37 8.61 3.41 20.12

Motivation and Contribution The Model Results

Contribution

Two-component volatility (central tendency)Engle and Lee (1996), Andersen and Lund (1997),Balduzzi, Das, and Foresi (1998), Reschreiter (2010, 2011)

Both volatility risks are pricedAdrian and Rosenberg (2008), Todorov (2010)

Explicit expressions for innovations, moments, etcBollerslev and Zhou (2002), Eraker (2009), Todorov (2010)

Joint estimation under P and QChernov and Ghysels (2000), Garcia, Lewis, Pastorello,and Renault (2011), Bollerslev, Gibson, and Zhou (2011)

Motivation and Contribution The Model Results

Contribution

Two-component volatility (central tendency)Engle and Lee (1996), Andersen and Lund (1997),Balduzzi, Das, and Foresi (1998), Reschreiter (2010, 2011)

Both volatility risks are pricedAdrian and Rosenberg (2008), Todorov (2010)

Explicit expressions for innovations, moments, etcBollerslev and Zhou (2002), Eraker (2009), Todorov (2010)

Joint estimation under P and QChernov and Ghysels (2000), Garcia, Lewis, Pastorello,and Renault (2011), Bollerslev, Gibson, and Zhou (2011)

Motivation and Contribution The Model Results

Contribution

Two-component volatility (central tendency)Engle and Lee (1996), Andersen and Lund (1997),Balduzzi, Das, and Foresi (1998), Reschreiter (2010, 2011)

Both volatility risks are pricedAdrian and Rosenberg (2008), Todorov (2010)

Explicit expressions for innovations, moments, etcBollerslev and Zhou (2002), Eraker (2009), Todorov (2010)

Joint estimation under P and QChernov and Ghysels (2000), Garcia, Lewis, Pastorello,and Renault (2011), Bollerslev, Gibson, and Zhou (2011)

Motivation and Contribution The Model Results

Contribution

Two-component volatility (central tendency)Engle and Lee (1996), Andersen and Lund (1997),Balduzzi, Das, and Foresi (1998), Reschreiter (2010, 2011)

Both volatility risks are pricedAdrian and Rosenberg (2008), Todorov (2010)

Explicit expressions for innovations, moments, etcBollerslev and Zhou (2002), Eraker (2009), Todorov (2010)

Joint estimation under P and QChernov and Ghysels (2000), Garcia, Lewis, Pastorello,and Renault (2011), Bollerslev, Gibson, and Zhou (2011)

Motivation and Contribution The Model Results

The Model

Historical:

dpt = (r + µπ)dt + σtdW rt

dσ2t = κσ

(yt − σ2

t

)dt + ησσtdW σ

t

dyt = κy (µ− yt)dt + ηy√

ytdW yt

κσ = κσ − λσησ, κy = κy − λyηy

pt - log priceσ2

t - stochastic volatilityyt - central tendency

Motivation and Contribution The Model Results

The Model

Risk-neutral:

dpt = rdt + σtdW rt

dσ2t = κσ

(yt − σ2

t

)dt + ησσtdW σ

t

dyt = κy (µ− yt)dt + ηy√

ytdW yt

κσ = κσ − λσησ, κy = κy − λyηy

pt - log priceσ2

t - stochastic volatilityyt - central tendency

Motivation and Contribution The Model Results

The Model

Risk-neutral:

dpt = rdt + σtdW rt

dσ2t = κσ

(yt − σ2

t

)dt + ησσtdW σ

t

dyt = κy (µ− yt)dt + ηy√

ytdW yt

κσ = κσ − λσησ, κy = κy − λyηy

pt - log priceσ2

t - stochastic volatilityyt - central tendency

Motivation and Contribution The Model Results

Data

Objective measure:

RVt ,1 ≡n∑

j=1

r2t+ j−1

n ,t+ jn

a.s.−→ Vt ,1

Risk-neutral measure:

VIXt ,22 = EQt[Vt ,22

]

Motivation and Contribution The Model Results

Data

Objective measure:

RVt ,1 ≡n∑

j=1

r2t+ j−1

n ,t+ jn

a.s.−→ Vt ,1

Risk-neutral measure:

VIXt ,22 = EQt[Vt ,22

]

Motivation and Contribution The Model Results

Discretization

[σ2

t+h, yt+h]′ - VAR(1)-type

Vt ,h ≡ 1h

´ t+ht σ2

s ds, Yt ,h ≡ 1h

´ t+ht ysds

[Vt ,h,Yt ,h

]′ - VARMA(1,1)-type

Vt ,h - ARMA(2,2)-type

Motivation and Contribution The Model Results

Discretization

[σ2

t+h, yt+h]′ - VAR(1)-type

Vt ,h ≡ 1h

´ t+ht σ2

s ds, Yt ,h ≡ 1h

´ t+ht ysds

[Vt ,h,Yt ,h

]′ - VARMA(1,1)-type

Vt ,h - ARMA(2,2)-type

Motivation and Contribution The Model Results

Discretization

[σ2

t+h, yt+h]′ - VAR(1)-type

Vt ,h ≡ 1h

´ t+ht σ2

s ds, Yt ,h ≡ 1h

´ t+ht ysds

[Vt ,h,Yt ,h

]′ - VARMA(1,1)-type

Vt ,h - ARMA(2,2)-type

Motivation and Contribution The Model Results

Discretization

[σ2

t+h, yt+h]′ - VAR(1)-type

Vt ,h ≡ 1h

´ t+ht σ2

s ds, Yt ,h ≡ 1h

´ t+ht ysds

[Vt ,h,Yt ,h

]′ - VARMA(1,1)-type

Vt ,h - ARMA(2,2)-type

Motivation and Contribution The Model Results

Moment Conditions

First moment:

EPt[(

1− AyhL)× (1− AσhL)× Vt+2h,h

]= Const

EPt[Vt+2h,h − ρ0 − ρ1Vt+h,h − ρ2Vt ,h

]= 0

Motivation and Contribution The Model Results

Moment Conditions

First moment:

EPt[(

1− AyhL)× (1− AσhL)× Vt+2h,h

]= Const

EPt[Vt+2h,h − ρ0 − ρ1Vt+h,h − ρ2Vt ,h

]= 0

Motivation and Contribution The Model Results

Moment Conditions

Second moment:

EPt

(1− γ1L) ×(1− γ2L) ×(1− γ3L) ×(1− γ4L) ×(1− γ5L) × V2

t+5h,h

= Const

Motivation and Contribution The Model Results

Premia

Volatility premium

VPt ,H = EPt[Vt ,H

]− EQ

t[Vt ,H

]

Central tendency premium

CPt ,H = EPt[Yt ,H

]− EQ

t[Yt ,H

]Transient premium

TPt ,H = VPt ,H − CPt ,H

Motivation and Contribution The Model Results

Premia

Volatility premium

VPt ,H = EPt[Vt ,H

]− EQ

t[Vt ,H

]Central tendency premium

CPt ,H = EPt[Yt ,H

]− EQ

t[Yt ,H

]

Transient premium

TPt ,H = VPt ,H − CPt ,H

Motivation and Contribution The Model Results

Premia

Volatility premium

VPt ,H = EPt[Vt ,H

]− EQ

t[Vt ,H

]Central tendency premium

CPt ,H = EPt[Yt ,H

]− EQ

t[Yt ,H

]Transient premium

TPt ,H = VPt ,H − CPt ,H

Motivation and Contribution The Model Results

Parameter estimates

µ 0.0046 (0.0005)

κσ 0.8989 (0.0057) κy 0.0178 (0.0038)

ησ 0.1041 (0.0225) ηy 0.0073 (0.0033)

λσ 0.2013 (0.0786) λy 1.0929 (0.4835)

Motivation and Contribution The Model Results

Parameter estimates

µ 0.0046 (0.0005)

κσ 0.8989 (0.0057) κy 0.0178 (0.0038)

ησ 0.1041 (0.0225) ηy 0.0073 (0.0033)

λσ 0.2013 (0.0786) λy 1.0929 (0.4835)

µ - unconditional mean

Motivation and Contribution The Model Results

Parameter estimates

µ 0.0046 (0.0005)

κσ 0.8989 (0.0057) κy 0.0178 (0.0038)

ησ 0.1041 (0.0225) ηy 0.0073 (0.0033)

λσ 0.2013 (0.0786) λy 1.0929 (0.4835)

κ - speed of mean reversion

Motivation and Contribution The Model Results

Parameter estimates

µ 0.0046 (0.0005)

κσ 0.8989 (0.0057) κy 0.0178 (0.0038)

ησ 0.1041 (0.0225) ηy 0.0073 (0.0033)

λσ 0.2013 (0.0786) λy 1.0929 (0.4835)

η - instantaneous SD

Motivation and Contribution The Model Results

Parameter estimates

µ 0.0046 (0.0005)

κσ 0.8989 (0.0057) κy 0.0178 (0.0038)

ησ 0.1041 (0.0225) ηy 0.0073 (0.0033)

λσ 0.2013 (0.0786) λy 1.0929 (0.4835)

λ - price of a shock

Motivation and Contribution The Model Results

Volatility Premia

5 10 15 20−4

−3

−2

−1

0

1

Forecast horizon, days

Mean p

rem

ium

, var

units

VP

CP

TP

Motivation and Contribution The Model Results

Conclusion

Joint estimation of volatility modelLong-term mean is changingCorresponding risk has a priceCorresponding premium is large

Thank you!

Adrian, Tobias, and Joshua Rosenberg, 2008, Stock Returnsand Volatility: Pricing the Short-Run and Long-RunComponents of Market Risk, Journal of Finance 63,2997–3030.

Andersen, Torben G, and Jesper Lund, 1997, StochasticVolatility and Mean Drift in the Short Rate Diffusion: Sourcesof Steepness, Level and Curvature in the Yield Curve, .

Balduzzi, Pierluigi, Sanjiv Ranjan Das, and Silverio Foresi,1998, The Central Tendency: A Second Factor in BondYields, Review of Economics and Statistics 80, 62–72.

Bollerslev, Tim, Michael Gibson, and Hao Zhou, 2011, Dynamicestimation of volatility risk premia and investor risk aversionfrom option-implied and realized volatilities, Journal ofEconometrics 160, 235–245.

Bollerslev, Tim, and Hao Zhou, 2002, Estimating stochasticvolatility diffusion using conditional moments of integratedvolatility, Journal of Econometrics 109, 33 – 65.

Chernov, Mikhail, and Eric Ghysels, 2000, A study towards aunified approach to the joint estimation of objective and riskneutral measures for the purpose of options valuation,Journal of Financial Economics 56, 407–458.

Engle, Robert F, and Gary G J Lee, 1996, Estimating DiffusionModels of Stochastic Volatility, in Peter E Rossi, ed.:Modeling Stock Market Volatility: Bridging The Gap toContinuous Time . pp. 333–355 (Academic Press).

Eraker, Bjorn, 2009, The Volatility Premium, .Garcia, Rene, Marc-Andre Lewis, Sergio Pastorello, and Eric

Renault, 2011, Estimation of objective and risk-neutraldistributions based on moments of integrated volatility,Journal of Econometrics 160, 22–32.

Reschreiter, Andreas, 2010, Inflation and the Mean-RevertingLevel of the Short Rate, The Manchester School 78, 76–91.

, 2011, The effects of the monetary policy regime shift toinflation targeting on the real interest rate in the UnitedKingdom, Economic Modelling 28, 754–759.

Todorov, Viktor, 2010, Variance Risk-Premium Dynamics: TheRole of Jumps, Review of Financial Studies 23, 345–383.

top related