positivity for cluster algebras from surfacesmusiker/clustersurface.pdf · led them to define...

Post on 25-Jul-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Positivity for cluster algebras from surfaces

Gregg Musiker (MIT)

(Joint work with Ralf Schiffler (University of Connecticut)and Lauren Williams (University of California, Berkeley))

Brown University Discrete Mathematics Seminar

February 9, 2010

http//math.mit.edu/∼musiker/ClusterSurface.pdf

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 1 / 29

Outline

1 Introduction: the Laurent phenomenon, and the positivity conjectureof Fomin-Zelevinsky.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 2 / 29

Outline

1 Introduction: the Laurent phenomenon, and the positivity conjectureof Fomin-Zelevinsky.

2 Cluster algebras arising from triangulated surfaces (followingFomin-Shapiro-Thurston’s terminology).

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 2 / 29

Outline

1 Introduction: the Laurent phenomenon, and the positivity conjectureof Fomin-Zelevinsky.

2 Cluster algebras arising from triangulated surfaces (followingFomin-Shapiro-Thurston’s terminology).

3 Graph theoretic construction for surfaces with or without punctures(joint work with Schiffler and Williams).

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 2 / 29

Outline

1 Introduction: the Laurent phenomenon, and the positivity conjectureof Fomin-Zelevinsky.

2 Cluster algebras arising from triangulated surfaces (followingFomin-Shapiro-Thurston’s terminology).

3 Graph theoretic construction for surfaces with or without punctures(joint work with Schiffler and Williams).

4 Examples of this construction.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 2 / 29

Introduction to Cluster Algebras

In the late 1990’s: Fomin and Zelevinsky were studying total positivity andcanonical bases of algebraic groups. They noticed recurring combinatorialand algebraic structures.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 3 / 29

Introduction to Cluster Algebras

In the late 1990’s: Fomin and Zelevinsky were studying total positivity andcanonical bases of algebraic groups. They noticed recurring combinatorialand algebraic structures.

Led them to define cluster algebras, which have now been linked to quiverrepresentations, Poisson geometry, Teichmuller theory, tropical geometry,Lie groups, and other topics.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 3 / 29

Introduction to Cluster Algebras

In the late 1990’s: Fomin and Zelevinsky were studying total positivity andcanonical bases of algebraic groups. They noticed recurring combinatorialand algebraic structures.

Led them to define cluster algebras, which have now been linked to quiverrepresentations, Poisson geometry, Teichmuller theory, tropical geometry,Lie groups, and other topics.

Cluster algebras are a certain class of commutative rings which have adistinguished set of generators that are grouped into overlapping subsets,called clusters, each having the same cardinality.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 3 / 29

What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebraA (of geometric type) is a subalgebra of k(x1, . . . , xn, xn+1, . . . , xn+m)constructed cluster by cluster by certain exchange relations.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 4 / 29

What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebraA (of geometric type) is a subalgebra of k(x1, . . . , xn, xn+1, . . . , xn+m)constructed cluster by cluster by certain exchange relations.

Generators:

Specify an initial finite set of them, a Cluster, {x1, x2, . . . , xn+m}.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 4 / 29

What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebraA (of geometric type) is a subalgebra of k(x1, . . . , xn, xn+1, . . . , xn+m)constructed cluster by cluster by certain exchange relations.

Generators:

Specify an initial finite set of them, a Cluster, {x1, x2, . . . , xn+m}.

Construct the rest via Binomial Exchange Relations:

xαx ′α =

∏x

d+i

γi+

∏x

d−

iγi

.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 4 / 29

What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebraA (of geometric type) is a subalgebra of k(x1, . . . , xn, xn+1, . . . , xn+m)constructed cluster by cluster by certain exchange relations.

Generators:

Specify an initial finite set of them, a Cluster, {x1, x2, . . . , xn+m}.

Construct the rest via Binomial Exchange Relations:

xαx ′α =

∏x

d+i

γi+

∏x

d−

iγi

.

The set of all such generators are known as Cluster Variables, and theinitial pattern B of exchange relations determines the Seed.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 4 / 29

What is a Cluster Algebra?

Definition (Sergey Fomin and Andrei Zelevinsky 2001) A cluster algebraA (of geometric type) is a subalgebra of k(x1, . . . , xn, xn+1, . . . , xn+m)constructed cluster by cluster by certain exchange relations.

Generators:

Specify an initial finite set of them, a Cluster, {x1, x2, . . . , xn+m}.

Construct the rest via Binomial Exchange Relations:

xαx ′α =

∏x

d+i

γi+

∏x

d−

iγi

.

The set of all such generators are known as Cluster Variables, and theinitial pattern B of exchange relations determines the Seed.

Relations:

Induced by the Binomial Exchange Relations.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 4 / 29

Example: Coordinate Ring of Grassmannian(2, n + 3)

Let Gr2,n+3 = {V |V ⊂ Cn+3, dimV = 2} planes in (n + 3)-space

Elements of Gr2,n+3 represented by 2-by-(n + 3) matrices of full rank.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 5 / 29

Example: Coordinate Ring of Grassmannian(2, n + 3)

Let Gr2,n+3 = {V |V ⊂ Cn+3, dimV = 2} planes in (n + 3)-space

Elements of Gr2,n+3 represented by 2-by-(n + 3) matrices of full rank.

Plucker coordinates pij(M) = det of 2-by-2 submatrices in columns i and j .

The coordinate ring C[Gr2,n+3] is generated by all the pij ’s for1 ≤ i < j ≤ n + 3 subject to the Plucker relations given by the 4-tuples

pikpjℓ = pijpkℓ + piℓpjk for i < j < k < ℓ.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 5 / 29

Example: Coordinate Ring of Grassmannian(2, n + 3)

Let Gr2,n+3 = {V |V ⊂ Cn+3, dimV = 2} planes in (n + 3)-space

Elements of Gr2,n+3 represented by 2-by-(n + 3) matrices of full rank.

Plucker coordinates pij(M) = det of 2-by-2 submatrices in columns i and j .

The coordinate ring C[Gr2,n+3] is generated by all the pij ’s for1 ≤ i < j ≤ n + 3 subject to the Plucker relations given by the 4-tuples

pikpjℓ = pijpkℓ + piℓpjk for i < j < k < ℓ.

Claim. C[Gr2,n+3] has the structure of a cluster algebra. Clusters aremaximal algebraically independent sets of pij ’s.

Each have size (2n + 3) where (n + 3) of the variables are frozen and n ofthem are exchangeable.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 5 / 29

Example: Coordinate Ring of Grassmannian(2, n + 3)

Cluster algebra structure of Gr2,n+3 as a triangulated (n + 3)-gon.

Frozen Variables / Coefficients ←→ sides of the (n + 3)-gon

Cluster Variables ←→ {pij : |i − j | 6= 1 mod (n + 3)} ←→ diagonals

Seeds ←→ triangulations of the (n + 3)-gon

Clusters ←→ Set of pij ’s corresponding to a triangulation

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 6 / 29

Example: Coordinate Ring of Grassmannian(2, n + 3)

Cluster algebra structure of Gr2,n+3 as a triangulated (n + 3)-gon.

Frozen Variables / Coefficients ←→ sides of the (n + 3)-gon

Cluster Variables ←→ {pij : |i − j | 6= 1 mod (n + 3)} ←→ diagonals

Seeds ←→ triangulations of the (n + 3)-gon

Clusters ←→ Set of pij ’s corresponding to a triangulation

Can exchange between various clusters by flipping between triangulations.

This is called mutation, and we will present a detailed example later.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 6 / 29

Another Example: Total Positivity

Given a 3-by-3 matrix M =

a b c

d e f

g h i

∈ SL3, how do you check whether

it is totally positive, meaning that all minors are positive?

(i.e. a > 0, b > 0, c > 0, . . . , ae − bd > 0, . . . , det M > 0.)

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 7 / 29

Another Example: Total Positivity

Given a 3-by-3 matrix M =

a b c

d e f

g h i

∈ SL3, how do you check whether

it is totally positive, meaning that all minors are positive?

(i.e. a > 0, b > 0, c > 0, . . . , ae − bd > 0, . . . , det M > 0.)

Answer: It is sufficient to check that c > 0, g > 0, bf − ce > 0,dh − eg > 0 and four other conditions

(for a total of 8 verifications rather than all 19 minors).

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 7 / 29

Another Example: Total Positivity

Given a 3-by-3 matrix M =

a b c

d e f

g h i

∈ SL3, how do you check whether

it is totally positive, meaning that all minors are positive?

(i.e. a > 0, b > 0, c > 0, . . . , ae − bd > 0, . . . , det M > 0.)

Answer: It is sufficient to check that c > 0, g > 0, bf − ce > 0,dh − eg > 0 and four other conditions

(for a total of 8 verifications rather than all 19 minors).

There are exactly 50 such overlapping sets of four conditions. These 50algebraic elements generate a cluster algebra structure (i.e. binomialexchange relations among the elements).

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 7 / 29

Seeds and Mutation

Definition. A Seed is a pair (X,B), where X = {x1, x2, . . . , xn+m} is aninitial Cluster, and B is an Exchange Matrix, i.e. a (n + m)-by-nskew-symmetrizable integral matrix. (dibij = −djbji for di ∈ Z>0)

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 8 / 29

Seeds and Mutation

Definition. A Seed is a pair (X,B), where X = {x1, x2, . . . , xn+m} is aninitial Cluster, and B is an Exchange Matrix, i.e. a (n + m)-by-nskew-symmetrizable integral matrix. (dibij = −djbji for di ∈ Z>0)

Columns of B encode the exchanges

xkx ′k =

bik>0

x|bik |i +

bik<0

x|bik |i

for k ∈ {1, 2, . . . n}. Note: If only one sign occurs (e.g. bik > 0), we get amonomial of 1.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 8 / 29

Seeds and Mutation

Definition. A Seed is a pair (X,B), where X = {x1, x2, . . . , xn+m} is aninitial Cluster, and B is an Exchange Matrix, i.e. a (n + m)-by-nskew-symmetrizable integral matrix. (dibij = −djbji for di ∈ Z>0)

Columns of B encode the exchanges

xkx ′k =

bik>0

x|bik |i +

bik<0

x|bik |i

for k ∈ {1, 2, . . . n}. Note: If only one sign occurs (e.g. bik > 0), we get amonomial of 1. For all k ∈ {1, 2, . . . , n}, there exists another seedconsisting of cluster {x1, . . . , xk , . . . , xn+m} ∪ {x

′k} and matrix µk(B).

µk(B)ij =

−bij if k = i or k = j

bij if bikbkj ≤ 0

bij + bikbkj if bik , bkj > 0

bij − bikbkj if bik , bkj < 0

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 8 / 29

Finite Mutation Type and Finite Type

A priori, get a tree of exchanges.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 9 / 29

Finite Mutation Type and Finite Type

A priori, get a tree of exchanges.

In practice, often get identifications among seeds.

In extreme cases, get only a finite number of exchange patterns as treecloses up on itself. Such cluster algebras called finite mutation type.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 9 / 29

Finite Mutation Type and Finite Type

A priori, get a tree of exchanges.

In practice, often get identifications among seeds.

In extreme cases, get only a finite number of exchange patterns as treecloses up on itself. Such cluster algebras called finite mutation type.

Sometimes only a finite number of clusters. Called finite type.

Finite type =⇒ Finite mutation type.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 9 / 29

Finite Mutation Type and Finite Type

A priori, get a tree of exchanges.

In practice, often get identifications among seeds.

In extreme cases, get only a finite number of exchange patterns as treecloses up on itself. Such cluster algebras called finite mutation type.

Sometimes only a finite number of clusters. Called finite type.

Finite type =⇒ Finite mutation type.

Theorem. (FZ 2002) Finite type cluster algebras can be described via theCartan-Killing classification of Lie algebras.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 9 / 29

Example 2: Rank 2 Cluster Algebras

Let B =

[0 b

−c 0

], b, c ∈ Z>0. ({x1, x2},B) is a seed for a cluster algebra

of rank 2.

µ1(B) = µ2(B) = −B and x1x′1 = xc

2 + 1, x2x′2 = 1 + xb

1 .

Thus the cluster variables in this case are

{xn : n ∈ Z} satisfying xnxn−2 =

{xbn−1 + 1 if n is odd

xcn−1 + 1 if n is even

.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 10 / 29

Example 2: Rank 2 Cluster Algebras

Let B =

[0 b

−c 0

], b, c ∈ Z>0. ({x1, x2},B) is a seed for a cluster algebra

of rank 2.

µ1(B) = µ2(B) = −B and x1x′1 = xc

2 + 1, x2x′2 = 1 + xb

1 .

Thus the cluster variables in this case are

{xn : n ∈ Z} satisfying xnxn−2 =

{xbn−1 + 1 if n is odd

xcn−1 + 1 if n is even

.

Example (b = c = 1):

x3 =x2 + 1

x1.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 10 / 29

Example 2: Rank 2 Cluster Algebras

Let B =

[0 b

−c 0

], b, c ∈ Z>0. ({x1, x2},B) is a seed for a cluster algebra

of rank 2.

µ1(B) = µ2(B) = −B and x1x′1 = xc

2 + 1, x2x′2 = 1 + xb

1 .

Thus the cluster variables in this case are

{xn : n ∈ Z} satisfying xnxn−2 =

{xbn−1 + 1 if n is odd

xcn−1 + 1 if n is even

.

Example (b = c = 1):

x3 =x2 + 1

x1. x4 =

x3 + 1

x2=

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 10 / 29

Example 2: Rank 2 Cluster Algebras

Let B =

[0 b

−c 0

], b, c ∈ Z>0. ({x1, x2},B) is a seed for a cluster algebra

of rank 2.

µ1(B) = µ2(B) = −B and x1x′1 = xc

2 + 1, x2x′2 = 1 + xb

1 .

Thus the cluster variables in this case are

{xn : n ∈ Z} satisfying xnxn−2 =

{xbn−1 + 1 if n is odd

xcn−1 + 1 if n is even

.

Example (b = c = 1):

x3 =x2 + 1

x1. x4 =

x3 + 1

x2=

x2+1x1

+ 1

x2=

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 10 / 29

Example 2: Rank 2 Cluster Algebras

Let B =

[0 b

−c 0

], b, c ∈ Z>0. ({x1, x2},B) is a seed for a cluster algebra

of rank 2.

µ1(B) = µ2(B) = −B and x1x′1 = xc

2 + 1, x2x′2 = 1 + xb

1 .

Thus the cluster variables in this case are

{xn : n ∈ Z} satisfying xnxn−2 =

{xbn−1 + 1 if n is odd

xcn−1 + 1 if n is even

.

Example (b = c = 1):

x3 =x2 + 1

x1. x4 =

x3 + 1

x2=

x2+1x1

+ 1

x2=

x1 + x2 + 1

x1x2.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 10 / 29

Example 2: Rank 2 Cluster Algebras

Let B =

[0 b

−c 0

], b, c ∈ Z>0. ({x1, x2},B) is a seed for a cluster algebra

of rank 2.

µ1(B) = µ2(B) = −B and x1x′1 = xc

2 + 1, x2x′2 = 1 + xb

1 .

Thus the cluster variables in this case are

{xn : n ∈ Z} satisfying xnxn−2 =

{xbn−1 + 1 if n is odd

xcn−1 + 1 if n is even

.

Example (b = c = 1):

x3 =x2 + 1

x1. x4 =

x3 + 1

x2=

x2+1x1

+ 1

x2=

x1 + x2 + 1

x1x2.

x5 =x4 + 1

x3=

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 10 / 29

Example 2: Rank 2 Cluster Algebras

Let B =

[0 b

−c 0

], b, c ∈ Z>0. ({x1, x2},B) is a seed for a cluster algebra

of rank 2.

µ1(B) = µ2(B) = −B and x1x′1 = xc

2 + 1, x2x′2 = 1 + xb

1 .

Thus the cluster variables in this case are

{xn : n ∈ Z} satisfying xnxn−2 =

{xbn−1 + 1 if n is odd

xcn−1 + 1 if n is even

.

Example (b = c = 1):

x3 =x2 + 1

x1. x4 =

x3 + 1

x2=

x2+1x1

+ 1

x2=

x1 + x2 + 1

x1x2.

x5 =x4 + 1

x3=

x1+x2+1x1x2

+ 1

(x2 + 1)/x1=

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 10 / 29

Example 2: Rank 2 Cluster Algebras

Let B =

[0 b

−c 0

], b, c ∈ Z>0. ({x1, x2},B) is a seed for a cluster algebra

of rank 2.

µ1(B) = µ2(B) = −B and x1x′1 = xc

2 + 1, x2x′2 = 1 + xb

1 .

Thus the cluster variables in this case are

{xn : n ∈ Z} satisfying xnxn−2 =

{xbn−1 + 1 if n is odd

xcn−1 + 1 if n is even

.

Example (b = c = 1):

x3 =x2 + 1

x1. x4 =

x3 + 1

x2=

x2+1x1

+ 1

x2=

x1 + x2 + 1

x1x2.

x5 =x4 + 1

x3=

x1+x2+1x1x2

+ 1

(x2 + 1)/x1=

x1(x1 + x2 + 1 + x1x2)

x1x2(x2 + 1)=

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 10 / 29

Example 2: Rank 2 Cluster Algebras

Let B =

[0 b

−c 0

], b, c ∈ Z>0. ({x1, x2},B) is a seed for a cluster algebra

of rank 2.

µ1(B) = µ2(B) = −B and x1x′1 = xc

2 + 1, x2x′2 = 1 + xb

1 .

Thus the cluster variables in this case are

{xn : n ∈ Z} satisfying xnxn−2 =

{xbn−1 + 1 if n is odd

xcn−1 + 1 if n is even

.

Example (b = c = 1): (Finite Type, of Type A2)

x3 =x2 + 1

x1. x4 =

x3 + 1

x2=

x2+1x1

+ 1

x2=

x1 + x2 + 1

x1x2.

x5 =x4 + 1

x3=

x1+x2+1x1x2

+ 1

(x2 + 1)/x1=

x1(x1 + x2 + 1 + x1x2)

x1x2(x2 + 1)=

x1 + 1

x2.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 10 / 29

Example 2: Rank 2 Cluster Algebras

Let B =

[0 b

−c 0

], b, c ∈ Z>0. ({x1, x2},B) is a seed for a cluster algebra

of rank 2.

µ1(B) = µ2(B) = −B and x1x′1 = xc

2 + 1, x2x′2 = 1 + xb

1 .

Thus the cluster variables in this case are

{xn : n ∈ Z} satisfying xnxn−2 =

{xbn−1 + 1 if n is odd

xcn−1 + 1 if n is even

.

Example (b = c = 1): (Finite Type, of Type A2)

x3 =x2 + 1

x1. x4 =

x3 + 1

x2=

x2+1x1

+ 1

x2=

x1 + x2 + 1

x1x2.

x5 =x4 + 1

x3=

x1+x2+1x1x2

+ 1

(x2 + 1)/x1=

x1(x1 + x2 + 1 + x1x2)

x1x2(x2 + 1)=

x1 + 1

x2. x6 = x1.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 10 / 29

Cluster Expansions and the Laurent Phenomenon

Example 3. Let A be the cluster algebra defined by the initial cluster{x1, x2, x3, y1, y2, y3} and the initial exchange pattern

x1x′1 = y1 + x2, x2x

′2 = x1x3y2 + 1, x3x

′3 = y3 + x2.

0 1 0−1 0 −10 1 01 0 00 1 00 0 1

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 11 / 29

Cluster Expansions and the Laurent Phenomenon

Example 3. Let A be the cluster algebra defined by the initial cluster{x1, x2, x3, y1, y2, y3} and the initial exchange pattern

x1x′1 = y1 + x2, x2x

′2 = x1x3y2 + 1, x3x

′3 = y3 + x2.

0 1 0−1 0 −10 1 01 0 00 1 00 0 1

A is of finite type, type A3 and corresponds to a triangulated hexagon.

{x1, x2, x3,

y1 + x2

x1,x1x3y2 + 1

x2,y3 + x2

x3,x1x3y1y2 + y1 + x2

x1x2,

x1x3y2y3 + y3 + x2

x2x3,x1x3y1y2y3 + y1y3 + x2y3 + x2y1 + x2

2

x1x2x3

}.

The yi ’s are known as principal coefficients.Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 11 / 29

The Positivity Conjecture of Fomin and Zelevinsky

Theorem. (The Laurent Phenomenon FZ 2001) For any cluster algebradefined by initial seed ({x1, x2, . . . , xn+m},B), all cluster variables of A(B)are Laurent polynomials in {x1, x2, . . . , xn+m}

(with no coefficient xn+1, . . . , xn+m in the denominator).

Because of the Laurent Phenomenon, any cluster variable xα can beexpressed as Pα(x1,...,xn+m)

xα11 ···xαn

nwhere Pα ∈ Z[x1, . . . , xn+m] and the αi ’s ∈ Z.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 12 / 29

The Positivity Conjecture of Fomin and Zelevinsky

Theorem. (The Laurent Phenomenon FZ 2001) For any cluster algebradefined by initial seed ({x1, x2, . . . , xn+m},B), all cluster variables of A(B)are Laurent polynomials in {x1, x2, . . . , xn+m}

(with no coefficient xn+1, . . . , xn+m in the denominator).

Because of the Laurent Phenomenon, any cluster variable xα can beexpressed as Pα(x1,...,xn+m)

xα11 ···xαn

nwhere Pα ∈ Z[x1, . . . , xn+m] and the αi ’s ∈ Z.

Conjecture. (FZ 2001) For any cluster variable xα and any initial seed(i.e. initial cluster {x1, . . . , xn+m} and initial exchange pattern B), thepolynomial Pα(x1, . . . , xn) has nonnegative integer coefficients.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 12 / 29

Some Prior Work on Positivity Conjecture

Work of [Carroll-Price 2002] gave expansion formulas for case of Ptolemyalgebras, cluster algebras of type An with boundary coefficients (Gr2,n+3).

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 13 / 29

Some Prior Work on Positivity Conjecture

Work of [Carroll-Price 2002] gave expansion formulas for case of Ptolemyalgebras, cluster algebras of type An with boundary coefficients (Gr2,n+3).

[FZ 2002] proved positivity for finite type with bipartite seed.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 13 / 29

Some Prior Work on Positivity Conjecture

Work of [Carroll-Price 2002] gave expansion formulas for case of Ptolemyalgebras, cluster algebras of type An with boundary coefficients (Gr2,n+3).

[FZ 2002] proved positivity for finite type with bipartite seed.

[M-Propp 2003, Sherman-Zelevinsky 2003] proved positivity for rank twoaffine cluster algebras.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 13 / 29

Some Prior Work on Positivity Conjecture

Work of [Carroll-Price 2002] gave expansion formulas for case of Ptolemyalgebras, cluster algebras of type An with boundary coefficients (Gr2,n+3).

[FZ 2002] proved positivity for finite type with bipartite seed.

[M-Propp 2003, Sherman-Zelevinsky 2003] proved positivity for rank twoaffine cluster algebras. Other rank two cases by [Dupont 2009].

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 13 / 29

Some Prior Work on Positivity Conjecture

Work of [Carroll-Price 2002] gave expansion formulas for case of Ptolemyalgebras, cluster algebras of type An with boundary coefficients (Gr2,n+3).

[FZ 2002] proved positivity for finite type with bipartite seed.

[M-Propp 2003, Sherman-Zelevinsky 2003] proved positivity for rank twoaffine cluster algebras. Other rank two cases by [Dupont 2009].

Work towards positivity for acyclic seeds [Caldero-Reineke 2006].

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 13 / 29

Some Prior Work on Positivity Conjecture

Work of [Carroll-Price 2002] gave expansion formulas for case of Ptolemyalgebras, cluster algebras of type An with boundary coefficients (Gr2,n+3).

[FZ 2002] proved positivity for finite type with bipartite seed.

[M-Propp 2003, Sherman-Zelevinsky 2003] proved positivity for rank twoaffine cluster algebras. Other rank two cases by [Dupont 2009].

Work towards positivity for acyclic seeds [Caldero-Reineke 2006].

Positivity for cluster algebras including a bipartite seed (which isnecessarily acyclic) by [Nakajima 2009].

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 13 / 29

Some Prior Work on Positivity Conjecture

Work of [Carroll-Price 2002] gave expansion formulas for case of Ptolemyalgebras, cluster algebras of type An with boundary coefficients (Gr2,n+3).

[FZ 2002] proved positivity for finite type with bipartite seed.

[M-Propp 2003, Sherman-Zelevinsky 2003] proved positivity for rank twoaffine cluster algebras. Other rank two cases by [Dupont 2009].

Work towards positivity for acyclic seeds [Caldero-Reineke 2006].

Positivity for cluster algebras including a bipartite seed (which isnecessarily acyclic) by [Nakajima 2009].

Cluster algebras arising from unpunctured surfaces [Schiffler-Thomas 2007,Schiffler 2008], generalizing Trails model of Carroll-Price.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 13 / 29

Some Prior Work on Positivity Conjecture

Work of [Carroll-Price 2002] gave expansion formulas for case of Ptolemyalgebras, cluster algebras of type An with boundary coefficients (Gr2,n+3).

[FZ 2002] proved positivity for finite type with bipartite seed.

[M-Propp 2003, Sherman-Zelevinsky 2003] proved positivity for rank twoaffine cluster algebras. Other rank two cases by [Dupont 2009].

Work towards positivity for acyclic seeds [Caldero-Reineke 2006].

Positivity for cluster algebras including a bipartite seed (which isnecessarily acyclic) by [Nakajima 2009].

Cluster algebras arising from unpunctured surfaces [Schiffler-Thomas 2007,Schiffler 2008], generalizing Trails model of Carroll-Price.

Graph theoretic interpretation for unpunctured surfaces [M-Schiffler 2008].

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 13 / 29

Some Prior Work on Positivity Conjecture

Work of [Carroll-Price 2002] gave expansion formulas for case of Ptolemyalgebras, cluster algebras of type An with boundary coefficients (Gr2,n+3).

[FZ 2002] proved positivity for finite type with bipartite seed.

[M-Propp 2003, Sherman-Zelevinsky 2003] proved positivity for rank twoaffine cluster algebras. Other rank two cases by [Dupont 2009].

Work towards positivity for acyclic seeds [Caldero-Reineke 2006].

Positivity for cluster algebras including a bipartite seed (which isnecessarily acyclic) by [Nakajima 2009].

Cluster algebras arising from unpunctured surfaces [Schiffler-Thomas 2007,Schiffler 2008], generalizing Trails model of Carroll-Price.

Graph theoretic interpretation for unpunctured surfaces [M-Schiffler 2008].

Positivity for arbitrary surfaces [M-Schiffler-Williams 2009].

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 13 / 29

Main Theorem

Theorem. (Positivity for cluster algebras from surfaces MSW 2009)Let A be any cluster algebra arising from a surface (with or withoutpunctures), where the coefficient system is of geometric type, and let Σ beany initial seed.

Then the Laurent expansion of every cluster variable with respect to theseed Σ has non-negative coefficients.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 14 / 29

Main Theorem

Theorem. (Positivity for cluster algebras from surfaces MSW 2009)Let A be any cluster algebra arising from a surface (with or withoutpunctures), where the coefficient system is of geometric type, and let Σ beany initial seed.

Then the Laurent expansion of every cluster variable with respect to theseed Σ has non-negative coefficients.

We prove this theorem by exhibiting a graph theoretic interpretation forthe Laurent expansions corresponding to cluster variables.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 14 / 29

Main Theorem

Theorem. (Positivity for cluster algebras from surfaces MSW 2009)Let A be any cluster algebra arising from a surface (with or withoutpunctures), where the coefficient system is of geometric type, and let Σ beany initial seed.

Then the Laurent expansion of every cluster variable with respect to theseed Σ has non-negative coefficients.

We prove this theorem by exhibiting a graph theoretic interpretation forthe Laurent expansions corresponding to cluster variables.

Due to work of Felikson-Shapiro-Tumarkin, we get

Corollary. Positivity for any seed, for all but 11 skew-symmetric clusteralgebras of finite mutation type. (Rank two skew-symmetric cases byCaldero-Reineke)

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 14 / 29

Cluster Algebras of Triangulated Surfaces

We follow (Fomin-Shapiro-Thurston), based on earlier work ofFock-Goncharov and Gekhtman-Shapiro-Vainshtein.

We have a surface S with a set of marked points M. (If P ∈ M is in theinterior of S , i.e. S \ δS , then P is known an a puncture).

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 15 / 29

Cluster Algebras of Triangulated Surfaces

We follow (Fomin-Shapiro-Thurston), based on earlier work ofFock-Goncharov and Gekhtman-Shapiro-Vainshtein.

We have a surface S with a set of marked points M. (If P ∈ M is in theinterior of S , i.e. S \ δS , then P is known an a puncture).

An arc γ satisfies (we care about arcs up to isotopy)1 The endpoints of γ are in M.2 γ does not cross itself.3 except for the endpoints, γ is disjoint from M and the boundary of S .4 γ does not cut out an unpunctured monogon or unpunctured bigon.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 15 / 29

Cluster Algebras of Triangulated Surfaces

We follow (Fomin-Shapiro-Thurston), based on earlier work ofFock-Goncharov and Gekhtman-Shapiro-Vainshtein.

We have a surface S with a set of marked points M. (If P ∈ M is in theinterior of S , i.e. S \ δS , then P is known an a puncture).

An arc γ satisfies (we care about arcs up to isotopy)1 The endpoints of γ are in M.2 γ does not cross itself.3 except for the endpoints, γ is disjoint from M and the boundary of S .4 γ does not cut out an unpunctured monogon or unpunctured bigon.

Seed ↔ Triangulation T = {τ1, τ2, . . . , τn}

Cluster Variable ↔ Arc γ (xi ↔ τi ∈ T )

Cluster Mutation ↔ Ptolemy Exchanges (Flipping Diagonals).

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 15 / 29

Example of Hexagon

Consider the triangulated hexagon (S ,M) with triangulation TH .

8

γτ τ

τ

τ

τ4

12

5

6

7

τ9

τ

τ

’τ τ

τ

τ

τ4

12

5

6

7

τ9

τ

τ8

τ1

x1x′1 = y1(x7x9) + x2(x8)

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 16 / 29

Example of Hexagon

Consider the triangulated hexagon (S ,M) with triangulation TH .

’τ τ

τ

τ

τ4

12

5

6

7

τ9

τ

τ8

τ1

τ

τ

τ4

5

6

7

τ9

τ

τ8

τ1’

τ2

τ2’

x1x′1 = y1(x7x9) + x2(x8)

x2x′′2 = y1y2x3(x9) + x ′

1(x4)

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 16 / 29

Example of Hexagon

Consider the triangulated hexagon (S ,M) with triangulation TH .

τ

τ

τ4

5

6

7

τ9

τ

τ8

τ1’

τ2

τ2’

τ

τ

τ4

5

6

7

τ9

τ

τ8

τ ’2’τ ’

1

γ = τ3’’

x1x′1 = y1(x7x9) + x2(x8)

x2x′′2 = y1y2x3(x9) + x ′

1(x4)

x3x′′′3 = y3x

′′2 (x6) + x ′

1(x5)

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 16 / 29

Example of Hexagon (continued)

8

γτ τ

τ

τ

τ4

12

5

6

7

τ9

τ

τ

By using the Ptolemy relations on τ1, τ2, then τ3, we obtain

x ′′′3 = xγ =

1

x1x2x3

(x22 (x5x8) + y1x2(x5x7x9) + y3x2(x4x6x8)

+ y1y3(x4x6x7x9) + y1y2y3x1x3(x6x9)

).

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 17 / 29

Example of Hexagon (continued)

Consider the graph GTH ,γ =

7

1

41

8

2 3

2

9

3 5

6

2

GTH ,γ has five perfect matchings (x4, x5, . . . , x9 = 1):

(x9)x1x3(x6), (x9x7x4x6),

x2(x8)(x4x6), (x9x7)x2(x5),

x2(x8)x2(x5).

A perfect matching M ⊆ E is a set of distinguished edges so that everyvertex of V is covered exactly once. The weight of a matching M is theproduct of the weights of the constituent edges, i.e. x(M) =

∏e∈M x(e).

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 18 / 29

Example of Hexagon (continued)

Consider the graph GTH ,γ =

7

1

41

8

2 3

2

9

3 5

6

2

GTH ,γ has five perfect matchings (x4, x5, . . . , x9 = 1):

(x9)x1x3(x6), (x9x7x4x6),

x2(x8)(x4x6), (x9x7)x2(x5),

x2(x8)x2(x5).x1x3y1y2y3+y1y3+x2y3+x2y1+x2

2

x1x2x3

These five monomials exactly match those appearing in the numerator ofthe expansion of xγ . The denominator of x1x2x3 corresponds to the labelsof the three tiles.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 18 / 29

A Graph Theoretic Approach

For every triangulation T (in a surface with or without punctures) and anordinary arc γ through ordinary triangles, we construct a snake graph GT ,γ

such that

xγ =

∑perfect matching M of GT ,γ

x(M)y(M)

xe1(T ,γ)1 x

e2(T ,γ)2 · · · x

en(T ,γ)n

.

xγ is cluster variable (corresp. to γ w.r.t. seed given by T ) with principalcoefficients.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 19 / 29

A Graph Theoretic Approach

For every triangulation T (in a surface with or without punctures) and anordinary arc γ through ordinary triangles, we construct a snake graph GT ,γ

such that

xγ =

∑perfect matching M of GT ,γ

x(M)y(M)

xe1(T ,γ)1 x

e2(T ,γ)2 · · · x

en(T ,γ)n

.

xγ is cluster variable (corresp. to γ w.r.t. seed given by T ) with principalcoefficients.

ei (T , γ) is the crossing number of τi and γ (min. int. number),

x(M) is the weight of M,

y(M) is the height of M (to be defined later),

Similar formula will hold for non-ordinary arcs (or through self-foldedtriangles).

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 19 / 29

Examples of GT ,γ

Example 1. Using the above construction for

8

γτ τ

τ

τ

τ4

12

5

6

7

τ9

τ

τ

:

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 20 / 29

Examples of GT ,γ

Example 1. Using the above construction for

8

γτ τ

τ

τ

τ4

12

5

6

7

τ9

τ

τ

:

τ τ

τ

τ

τ4

12

5

6

7

τ9

τ

τ8

τ1’

8

19

2

7

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 20 / 29

Examples of GT ,γ

Example 1. Using the above construction for

8

γτ τ

τ

τ

τ4

12

5

6

7

τ9

τ

τ

:

2

τ τ

τ

τ

τ4

12

5

6

7

τ9

τ

τ

τ

8

8

19

2

7

,

9 41

8

2 3

7 2

1

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 20 / 29

Examples of GT ,γ

Example 1. Using the above construction for

8

γτ τ

τ

τ

τ4

12

5

6

7

τ9

τ

τ

:

τ

τ

τ

τ4

1

5

6

7

τ9

τ

τ8

τ ’

2

3

τ

8

19

2

7

,

9 41

8

2 3

7 2

1 , 21

419 2 3 6

532

7

8 . Thus

GTH ,γ =

7

1

41

8

2 3

2

9

3 5

6

2 . xγ |y1=y2=y3=1 =x1x3 + 1 + 2x2 + x2

2

x1x2x3

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 20 / 29

Height Functions (of Perfect Matchings of Snake Graphs)

We now wish to give formula for y(M)’s, i.e. the terms in theF -polynomials.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 21 / 29

Height Functions (of Perfect Matchings of Snake Graphs)

We now wish to give formula for y(M)’s, i.e. the terms in theF -polynomials.

We use height functions which are due to William Thurston, andConway-Lagarias.

Involves measuring contrast between a given perfect matching M and afixed minimal matching M−.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 21 / 29

Height Function Examples

Recall that GTH ,γ has three faces, labeled 1, 2 and 3. GTH ,γ has fiveperfect matchings (x4, x5, . . . , x9 = 1):

xγ =x1x3y1y2y3 + y1y3 + x2y3 + x2y1 + x2

2

x1x2x3

y1y2y3, y1y3,

y3, y1,

1 ←− This matching is M−.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 22 / 29

Height Function Examples

Recall that GTH ,γ has three faces, labeled 1, 2 and 3. GTH ,γ has fiveperfect matchings (x4, x5, . . . , x9 = 1):

xγ =x1x3y1y2y3 + y1y3 + x2y3 + x2y1 + x2

2

x1x2x3

y1y2y3, y1y3,

y3, y1,

1 ←− This matching is M−.

21 3,

31, and

3

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 22 / 29

Height Function Examples (continued)

For GTA,γ = 1

1 2 3

4

1 2

4 6

2

4

713

5

4 6

2 3

1

8

8

2

5

3

, M− is

2

1 2 3

4

1

.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 23 / 29

Height Function Examples (continued)

For GTA,γ = 1

1 2 3

4

1 2

4 6

2

4

713

5

4 6

2 3

1

8

8

2

5

3

, M− is

2

1 2 3

4

1

. One of the

17 matchings, M, is

2

4

1

1 2 3,

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 23 / 29

Height Function Examples (continued)

For GTA,γ = 1

1 2 3

4

1 2

4 6

2

4

713

5

4 6

2 3

1

8

8

2

5

3

, M− is

2

1 2 3

4

1

. One of the

17 matchings, M, is

2

4

1

1 2 3, so M ⊖M− =

2

3

4

1

1 2,

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 23 / 29

Height Function Examples (continued)

For GTA,γ = 1

1 2 3

4

1 2

4 6

2

4

713

5

4 6

2 3

1

8

8

2

5

3

, M− is

2

1 2 3

4

1

. One of the

17 matchings, M, is

2

4

1

1 2 3, so M ⊖M− =

2

3

4

1

1 2,

which has height y1y22 . So one of the 17 terms in the cluster expansion of

xγ is (using FST convention) x4(x6x8)x4(x5)x2(x8)x21x2

2x3x4(y1y

22 ).

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 23 / 29

Summary

Theorem. (M-Schiffler-Williams 2009) For every triangulation T of asurface (with or without punctures) and an ordinary arc γ, we construct asnake graph Gγ,T such that

xγ =

∑perfect matching M of Gγ,T

x(M)y(M)

xe1(T ,γ)1 x

e2(T ,γ)2 · · · x

en(T ,γ)n

.

Here ei (T , γ) is the crossing number of τi and γ, x(M) is the edge-weightof perfect matching M, and y(M) is the height of perfect matching M.(xγ is cluster variable with principal coefficients.)

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 24 / 29

Summary

Theorem. (M-Schiffler-Williams 2009) For every triangulation T of asurface (with or without punctures) and an ordinary arc γ, we construct asnake graph Gγ,T such that

xγ =

∑perfect matching M of Gγ,T

x(M)y(M)

xe1(T ,γ)1 x

e2(T ,γ)2 · · · x

en(T ,γ)n

.

Here ei (T , γ) is the crossing number of τi and γ, x(M) is the edge-weightof perfect matching M, and y(M) is the height of perfect matching M.(xγ is cluster variable with principal coefficients.)

Theorem. (M-Schiffler-Williams 2009) An analogous expansion formulaholds for arcs with notches (only arise in the case of a punctured surface).

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 24 / 29

Summary

Theorem. (M-Schiffler-Williams 2009) For every triangulation T of asurface (with or without punctures) and an ordinary arc γ, we construct asnake graph Gγ,T such that

xγ =

∑perfect matching M of Gγ,T

x(M)y(M)

xe1(T ,γ)1 x

e2(T ,γ)2 · · · x

en(T ,γ)n

.

Here ei (T , γ) is the crossing number of τi and γ, x(M) is the edge-weightof perfect matching M, and y(M) is the height of perfect matching M.(xγ is cluster variable with principal coefficients.)

Theorem. (M-Schiffler-Williams 2009) An analogous expansion formulaholds for arcs with notches (only arise in the case of a punctured surface).

Corollary. The F -polynomial equals∑

M y(M), is positive, and hasconstant term 1.

The g -vector satisfies xg = x(M−).

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 24 / 29

Example 2 (Ordinary Arc through Self-folded Triangle)

��������

��������

��������

11

12 7 13

p

910

83

4

6

14

γ1

(S, M)

rℓ

5

r

3 ℓ

ℓr

r

3

ℓ11

4

3

3

12

5

414

4

5

10

5 6

7

9

6

r

ℓ r

11

Figure: Ideal Triangulation T ◦ of (S , M) and corresponding Snake Graph GT◦,γ1 .

Note the three consecutive tiles of our snake graph with labels ℓ, r and ℓ,as γ1 traverses the loop ℓ twice and the enclosed radius r .

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 25 / 29

Example 2 (Ordinary Arc through Self-folded Triangle)

��������

��������

����

11

3

12 6 7 13

p

910

8

4

14

5

γ1

(S, M)

rℓ

r

3 ℓ

ℓr

r

3

ℓ11

4

3

3

12

5

4 14

4

5

10

5 6

7

9

6

r

ℓ r11

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 26 / 29

Example 2 (Ordinary Arc through Self-folded Triangle)

��������

��������

����

11

3

12 6 7 13

p

910

8

4

14

5

γ1

(S, M)

rℓ

r

3 ℓ

ℓr

r

3

ℓ11

4

3

3

12

5

4 14

4

5

10

5 6

7

9

6

r

ℓ r11

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 26 / 29

Example 2 (Ordinary Arc through Self-folded Triangle)

��������

��������

����

11

3

12 6 7 13

p

910

8

4

14

5

γ1

(S, M)

rℓ

r

3 ℓ

ℓr

r

3

ℓ11

4

3

3

12

5

4 14

4

5

10

5 6

7

9

6

r

ℓ r11

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 26 / 29

Example 2 (Ordinary Arc through Self-folded Triangle)

��������

��������

����

11

3

12 6 7 13

p

910

8

4

14

5

γ1

(S, M)

rℓ

r

3 ℓ

ℓr

r

3

ℓ11

4

3

3

12

5

4 14

4

5

10

5 6

7

9

6

r

ℓ r11

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 26 / 29

Example 2 (Ordinary Arc through Self-folded Triangle)

��������

��������

����

11

3

12 6 7 13

p

910

8

4

14

5

γ1

(S, M)

rℓ

r

3 ℓ

ℓr

r

3

ℓ11

4

3

3

12

5

4 14

4

5

10

5 6

7

9

6

r

ℓ r11

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 26 / 29

Example 2 (Ordinary Arc through Self-folded Triangle)

��������

��������

����

11

3

12 6 7 13

p

910

8

4

14

γ1

(S, M)

rℓ

5

r

3 ℓ

ℓr

r

3

ℓ11

4

3

3

12

5

4 14

4

5

10

5 6

7

9

6

r

ℓ r11

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 26 / 29

Example 2 (Ordinary Arc through Self-folded Triangle)

��������

��������

��������

11

3

12 6 7 13

p

910

8

4

14

5

γ1

(S, M)

rℓ

r

3 ℓ

ℓr

r

3

ℓ11

4

3

3

12

5

4 14

4

5

10

5 6

7

9

6

r

ℓ r11

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 26 / 29

Example 3 (Notched Arc in Punctured Surface)

��������

��������

��������

11

12 13

9

8p

10

6 7

4

3

14γ2

(S, M)

rℓ

5

6

8

1397

9

8 6

10

79

10

6

4

5

14

4

10

7

5

14 6

7 8

6

9

5

5

6

Figure: Ideal Triangulation T ◦ of (S , M) and corresponding Snake Graph GT◦,γ2 .

We obtain the Laurent expansion for xγ2 by summing over so calledγ-symmetric matchings of GT◦,γ2

, those that agree on the two bold ends.

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 27 / 29

Thank You For Listening

Positivity for Cluster Algebras from Surfaces (with Ralf Schiffler andLauren Williams), arXiv:math.CO/0906.0748

Cluster Expansion Formulas and Perfect Matchings (with Ralf Schiffler),http://www-math.mit.edu/∼musiker/PM.pdf(To appear in the Journal of Algebraic Combinatorics)

A Graph Theoretic Expansion Formula for Cluster Algebras of Classical

Type, http://www-math.mit.edu/∼musiker/Finite.pdf(To appear in the Annals of Combinatorics)

Fomin, Shapiro, and Thurston. Cluster Algebras and Triangulated Surfaces

I: Cluster Complexes, Acta Math. 201 (2008), no. 1, 83–146.

Fomin and Zelevinsky. Cluster Algebras IV: Coefficients, Compos. Math.143 (2007), no. 1, 112–164.

Slides Available at http//math.mit.edu/∼musiker/ClusterSurface.pdf

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 28 / 29

Encore Example of GT ,γ: Annulus

Example 4. We now construct graph GTA,γ .

1

τ3

τ4

τ

ττ τ8 5 7τ6

γ

τ2

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 29 / 29

Encore Example of GT ,γ: Annulus

Example 4. We now construct graph GTA,γ .

1

τ3

τ4

τ

ττ τ8 5 7τ6

γ

τ2

1

1 2 3

4

1 2

4 6

2

4

713

5

4 6

2 3

1

8

8

2

5

3

Musiker (MIT) Positivity for cluster algebras from surfaces February 9, 2010 29 / 29

top related