me 37500 final exam thursday, may 5, 2016 hw id: three · 2017. 11. 6. · me 37500 final exam...

Post on 25-Jan-2021

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

  • ME37500FINALEXAMThursday,May5,2016

    8:00–10:00amEE129

    Section(circleone):Chiu(11:30am)Deng(1:30pm)Zhang(3:30m)

    HWID:____________

    Name:___________________________

    Instructions(1) Thisisaclosedbookexamination,butyouareallowedthreesingle-sidedhand-written

    8.5×11cribsheets.

    (2) YoucanonlyusetheapprovedMEcalculatorfortheexam.(3) WriteyournameandHWIDonthetopofeachpage.

    (4) Youmustclearlyidentifyyouranswerstoreceivecredit.InPartA,youmustshowallofyourworktoreceiveanycredit.Leavingmultiplesolutionsandderivationswithoutidentifyingtheonethatistobeconsideredwillnotreceiveanycredit.

    (5) Youmustwriteneatlyandshouldusealogicalformattosolvetheproblems.Youareencouragedtoreally“think”abouttheproblemsbeforeyoustarttosolvethem.

    (6) AtableofLaplacetransformpairsandpropertiesofLaplacetransformsisonthelastpageoftheexam.

    PARTA PARTBProblem Score Problem Score

    1.(20) 1.(10) 2.(30) 2.(10)

    3.(30) 3.(15)

    4.(20) 4.(10) 5.(15)

    6.(10)

    7.(10) 8.(10)

    9.(10)

    Total(A) /100 Total(B) /100

    TOTAL(A+B) /200

  • PART A Name: HWID:

    Page 2 of 18

    Problem1(20points)Considertheclosed-loopsysteminthefiguretotherightwithalooptransferfunctionL(s)oftheform

    L(s)=K ⋅G(s) ,whereKisaconstantgain.TheBodediagramforG(s)(NOTincludingK)isgivenbelow

    (A) (10points)UsingtheaboveinformationfindtheminimalvalueofgainKtoensurethe

    magnitudeofthesteady-stateerror(e=r–y)foraunitstepdisturbance,d=1andzeroinput,r=0,islessthan0.001.

    e = r − y = −y ⇒ E(s) = −Y(s) = − 11+ L(s)

    ⋅R(s)

    eSS = lims→0

    sE(s) = lims→0− s 1

    1+ L(s)⋅R(s) = − lim

    s→0s 1

    1+ L(s)⋅ 1s= − lim

    s→0

    11+ L(s)

    = − lims→0

    11+ K ⋅ G(s)

    = − 11+ K ⋅ G(0)

    eSS = −1

    1+ K ⋅ G(0)< 0.001 = 1

    1000

    From Bode plot: G(0) = 20dB = 10 ⇒ − 11+ K ⋅ G(0)

    = 11+ 10K

    < 0.001 = 11000

    ⇒ 1+ 10K > 1000 ⇒ 10> 999 ⇒ K > 99.9

  • PART A Name: HWID:

    Page 3 of 18

    Problem1(continued)

    (B) (10points)Ignoredisturbance,i.e.letd=0andletK=1.Whatisthemagnitudeofthesteady-stateerrorforinputr=sin(9t),i.e.asinusoidalinputwithfrequency9[rad/sec]andmagnitude1?(Hint:youcanapproximate1+L( jω) ≈ L( jω) .)

    e = r − y ⇒ E(s) = 11+ L(s)

    ⋅R(s)

    For r = sin(9t) ⇒ eSS(t) =1

    1+ L( jω)ω=9⋅ sin(9t +φ)

    eSS(t) =1

    1+ L( jω)ω=9= 1

    1+ L( jω)ω=9

    ≈ 1L( jω)

    ω=9

    = 1L( j 9)

    From Bode plot: L( j 9) = 32dB = 39.8 or 40

    ⇒ eSS(t) =1

    39.8≈ 0.025

  • PART A Name: HWID:

    Page 4 of 18

    Problem2(30Points)

    Giventheunityfeedbacksystemshowntotheright,theplanttransferfunctionG(s)isgivenby

    G(s)= 50

    s (s /5)+1( ) andthecontrollerC(s)=1.

    (A) (10points)Thegaincross-overfrequencyis15.4[rad/sec].Calculatethephasemarginoftheclosed-loopsystem?

    Gain cross-over frquency ω gc = 15.4 [rad/sec]

    At ω gc, !G( jω gc) = 0− 90° −!( jω gc / 5+ 1) = 0− 90° − tan−115.4 5

    1

    ⎝⎜

    ⎠⎟

    = 0− 90° − 72° = −162°

    Phase Margin PM = 180° +!G( jω gc) = 180° − 162° = 18° = 0.314 [rad]

  • PART A Name: HWID:

    Page 5 of 18

    Problem2(Continue)

    (B) (10points)Designaleadcompensatoroftheform

    CL(s)=sω1

    +1sω2

    +1whereα =ω2

    ω1>1

    thatwillcreateaphaselead(φm)of55°atthegaincross-overfrequencyof15.4[rad/sec].Youwillneedtofindω1,ω2,andα.

    For a lead compensator, amount of maximum phase lead φm is

    φm = sin−1α − 1α + 1⎛⎝⎜

    ⎞⎠⎟ ⇒ α =

    1+ sinφm1− sinφm

    For φm = 55° ⇒ α =1+ sin55°1− sin55°

    = 1+ 0.8191− 0.819

    = 1.8190.181

    = 10.06 ≈ 10

    ωm =ω gc = 15.4=ω1 α ⇒ ω1 =ωmα= 15.4

    10= 4.87

    ω2 =α ⋅ω1 = 10 ⋅ω1 = 48.7

    ⇒α = 10,ω1 = 4.87 [rad/sec], and ω2 = 48.7 [rad/sec]

  • PART A Name: HWID:

    Page 6 of 18

    Problem2(Continue)

    (C) (10points)Withthecontrollerdesignedinpart(B),thenewclosed-loopsystem’sgaincross-overfrequencyisat40[rad/sec]withaphasemarginof50°.Iftheactualplanttransferfunctionincludedatime-delayofTD[sec],i.e.

    G(s)=G(s) ⋅e−TDs = 50

    s (s /5)+1( )⋅e−TDs

    DeterminethelargesttimedelayTDtheclosed-loopsystemwouldremainstable.(Hint:considertheadditionalphaselagintroducedbythetimedelayandbesuretouseconsistentunitsforthephaseangles.)

    Gain cross-over frequency ω gc = 40 [rad/sec]

    Phase margin PM = 50°

    To ensure stability, additional phase lab due to delay =TDω

    need to be less than the phase margin at ω gc, i.e.

    TDω gc < PM ⇒ 40 ⋅TD < 50° =50180

    ⋅ π = 0.873

    ⇒ TD <50π

    40 ⋅ 180= 0.022 ⇒ TD < 0.022 [sec]

  • PART A Name: HWID:

    Page 7 of 18

    Problem3(30Points)

    Givenastate-spacerepresentationofasingleinputsingleoutputsystem:

    !x = 0 1−6 −5

    ⎣⎢

    ⎦⎥x+ 01

    ⎣⎢

    ⎦⎥u

    y = 1 2⎡⎣ ⎤⎦x

    (A) (10points)Thedesiredclosed-loopsystemshouldhavea2%settlingtimelessthan1secondandapercentovershootlessthan4.32%.Onthecomplexplanebelow,clearlyidentify(intersectionwithreal-axisandtheappropriateangles)theregionforacceptableclosed-looppoles.

    2% settling time: 4ζωn

    < 1 ⇒ ζωn > 4

    ⇒ Real part of the roots < -4

    %OS = 100e−ζ π

    1−ζ 2 = 4.32%

    ⇒ζπ

    1−ζ 2= − ln 4.32

    100⎛⎝⎜

    ⎞⎠⎟

    ⇒ζ

    1−ζ 2= 1 ⇒ ζ 2 = 1

    2

    ⇒ ζ = 12= 0.707

    ⇒ sin−1ζ = 45°

    45° -4

  • PART A Name: HWID:

    Page 8 of 18

    Problem3(Continue)

    (B) (10points)Forthesystem,

    ifthedesiredclosed-looppolesistobe−5± j5 3 ,findthestatefeedbackgainvectorK,whereu=−K⋅x+r,andristhereferenceinput

    A = 0 1−6 −5

    ⎣⎢

    ⎦⎥ , B = 01

    ⎣⎢

    ⎦⎥ , K = K1 K2⎡⎣

    ⎤⎦

    A− BK = 0 1−6 −5

    ⎣⎢

    ⎦⎥−

    01

    ⎣⎢

    ⎦⎥ K1 K2⎡⎣

    ⎤⎦ =

    0 1−6− K1 −5− K2

    ⎣⎢

    ⎦⎥

    det[sI−(A− BK)]= s2 +(5+ K2)s +(6+ K1) = 0

    Desired CL Characteristic Eq: DCL(s) = (s + 5)2 +(5 3)2 = s2 + 10s + 100= 0

    DCL(s) = det[sI−(A− BK)]= s2 + 10s + 100= s2 +(5+ K2)s +(6+ K1)

    ⇒5+ K2 = 106+ K1 = 100

    ⇒K2 = 5K1 = 94

    ⇒ K = 94 5⎡⎣⎤⎦

    !x = 0 1−6 −5

    ⎣⎢

    ⎦⎥x+ 01

    ⎣⎢

    ⎦⎥u

    y = 1 2⎡⎣ ⎤⎦x

  • PART A Name: HWID:

    Page 9 of 18

    Problem3(Continue)

    (C) (10points)Findthesteady-stategainoftheclosed-looptransferfunctionfromreferenceinputrtotheoutputyforthestate-feedbackcontrolyoufindinpart(B).(Hint:calculatesteady-stategainoftheclosed-looptransferfunction,youmaybeabletofinditinthestandardcontrollablecanonicalform)

    Mathod 1:Closed-loop system:

    !x = 0 1−6− K1 −5− K2

    ⎣⎢

    ⎦⎥x+ 0

    1⎡

    ⎣⎢

    ⎦⎥r

    = 0 1−100 −10

    ⎣⎢

    ⎦⎥x+ 01

    ⎣⎢

    ⎦⎥r

    y = 1 2⎡⎣⎤⎦x

    ⇒ GCL(s) =2s + 1

    s2 + 10s + 100⇒ Steady-state gain = GCL(0) =

    1100

    = 0.01

    Mathod 2:Closed-loop system:

    GCL(s) = C sI− A+ BK⎡⎣ ⎤⎦−1

    B = 1 2⎡⎣⎤⎦Adj[sI− A+ BK]det[sI− A+ BK]

    01

    ⎣⎢

    ⎦⎥

    = 1 2⎡⎣⎤⎦

    x 1x s

    ⎣⎢

    ⎦⎥

    det[sI− A+ BK]01

    ⎣⎢

    ⎦⎥ =

    2s + 1s2 + 10s + 100

    ⇒ GCL(s) =2s + 1

    s2 + 10s + 100⇒ Steady-state gain = GCL(0) =

    1100

    = 0.01

  • PART A Name: HWID:

    Page 10 of 18

    Problem4(20points)

    Considerthefollowingfirstordersystemanditsstatespacerepresentation:

    G(s)= Y(s)

    U(s) =4s+2 ⇔

    !x =−2 ⋅ x+4 ⋅uy = x

    (A) (10points)Designastate-feedback+integralcontrol,i.e.

    u(t)=−k ⋅ x+kI ⋅ (r(τ )− y(τ ))dτ0t∫ ,

    sothattheresultingclosed-looppolesareat−5± j5 3 .FindkandkI.

    !x = −2x + 4u

    y = x

    Let u = −Kx + KI xI and xI = (r − y)dτ∫⇒ !xI = r − y = r − x

    Augmented syste:

    !x!xI

    ⎣⎢

    ⎦⎥ = −2 0

    −1 0⎡

    ⎣⎢

    ⎦⎥

    xxI

    ⎣⎢

    ⎦⎥+ 4

    0⎡

    ⎣⎢

    ⎦⎥ −K KI⎡⎣

    ⎤⎦

    xxI

    ⎣⎢

    ⎦⎥+ 0

    1⎡

    ⎣⎢

    ⎦⎥r

    = −2 0−1 0

    ⎣⎢

    ⎦⎥+

    −4K 4KI0 0

    ⎣⎢

    ⎦⎥

    ⎣⎢

    ⎦⎥

    xxI

    ⎣⎢

    ⎦⎥+ 0

    1⎡

    ⎣⎢

    ⎦⎥r

    = −2− 4K 4KI−1 0

    ⎣⎢

    ⎦⎥

    xxI

    ⎣⎢

    ⎦⎥+ 0

    1⎡

    ⎣⎢

    ⎦⎥r

    Closed-loop Characteristic Eq:

    det(sI− AE) =s + 2+ 4K −4KI

    1 s= s2 +(2+ 4K)s + 4KI

    Desired CL Char. Eq. DCL(s) = (s + 5)2 +(5 3)2 = s2 + 10s + 100= s2 +(2+ 4K)s + 4KI

    ⇒ 2+ 4K = 104KI = 100

    ⇒ K = 2KI = 25

  • PART A Name: HWID:

    Page 11 of 18

    Problem4(continued)

    (B) (10points)Assumethatinpart(B)theclosed-looptransferfunctionbetweenthereferenceinputrandtheoutputyassociatedwiththestate-space+integralfeedbackcontrolis

    GCL(s)=

    Y(s)R(s) =

    64s2+8s+64 .

    IftheyouaretoimplementacontrollerC(s)intheblockdiagramtotherighttoachievethesameclosed-looptransferfunctionGCL(s),findthecontrollertransferfunctionC(s).

    64s2 + 8s + 64

    =C(s) 4

    s + 21+ C(s) 4

    s + 2

    =4C(s)

    (s + 2)+ 4C(s)

    Solve for C(s)

    ⇒ 4(s2 + 8s + 64)C(s) = 64(s + 2)+ 256C(s)

    ⇒ 4s(s + 8)C(s)+ 256C(s) = 64(s + 2)+ 256C(s)

    ⇒ 4s(s + 8)C(s) = 64(s + 2)

    ⇒ C(s) =64(s + 2)4s(s + 8)

    =16(s + 2)s(s + 8)

  • PART B Name: HWID:

    Page 12 of 18

    Problem1(10points)–ZeroandstepresponseGiventhefollowingtwoclosed-looptransferfunctions

    G1(s)=

    (s+1)(s2+ s+1) and

    G2(s)=(0.1s+1)(s2+ s+1) ,

    whichonewillhavealargerovershootforastepinput?Brieflyexplainwhy?

    G1(s) has larger overshoot

    Both transfer functions have the same poles at - 12±- 3

    2G1(s) have zero at -1 and G2(s) has zero at -10zero at -1 is closer to the poles, hence G1(s) will have larger overshoot.

    Problem2(10points)–SensitivityGivenatransferfunction

    T(s)= A

    τ s2+ s+kA,

    determinethesensitivityofthetransferfunctionT(s)tochangesintheparameterA,i.e.SAT(s)

    SAT (s ) = AT (s )⋅ ∂T (s )∂A

    = AT (s )

    ⋅ (τ s2 + s + AK) − AK

    (τ s 2 + s + AK)2= A

    A(τ s 2 + s + AK)

    ⋅ τ s2 + s

    (τ s 2 + s + AK)2

    = τ s2 + s

    (τ s 2 + s + AK)=

    s (τ s + 1)(τ s 2 + s + AK)

  • PART B Name: HWID:

    Page 13 of 18

    Problem3(15points)–RouthstabilitytestConsiderthefollowingclosed-loopcharacteristicequation

    1+K 1

    s(s2+ s+1) =0

    (A) (10points)UsetheRouthtesttodeterminetherangeofKforwhichtheclosed-loopsystemisstable.

    Closed-loop Characteristic Eq.

    DCL(s) = 1+ K1

    s(s2 + s + 1)= 0 ⇒ s(s2 + s + 1)+ K = 0

    ⇒ s(s2 + s + 1)+ K = s3 + s2 + s + K = 0

    Routh test:

    s3 : 1 1s2 : 1 Ks : 1− K1: K

    ⇒ Stability ⇒ 1− K > 0K > 0

    ⇒ 0< K < 1

    (B) (5points)Findthejω-axiscrossingpoleswhenKisatthestabilitylimit.

    At statbility limit, substitute s = jω into CLCE

    ⇒ ( jω)3 +( jω)2 +( jω)+ K = 0

    ⇒ − jω 3 −ω 2 +( jω)+ K = 0

    ⇒Real part: K−ω 2 = 0

    Imaginary part: ω −ω 3 = 0⇒ K =ω

    2

    ω(1−ω 2) = 0

    ⇒ K = 1ω = 1

    ⇒ jω-axis cross poles are ± j

  • PART B Name: HWID:

    Page 14 of 18

    Problem4(10points)–RootlocusandPIDcontrolA positioning system with the following transfer function

    1( )( 1)

    G ss s

    =+

    is to be put under PID control. There can be 4 different PID controllers, namely, P control, PI control, PD control, and PID control. The following set of four Root Loci are the open-loop transfer function of G(s) with the 4 (P, PI, PD, PID) types of controllers.

    You are asked to match the 4 different Root Loci below with their corresponding controllers by circle the appropriate controller: Root Locus Controller

    (A) ⇔ P PI PD PID

    (B) ⇔ P PI PD PID

    (C) ⇔ P PI PD PID

    (D) ⇔ P PI PD PID

  • PART B Name: HWID:

    Page 15 of 18

    Problem5(10points)–DirectpoleplacementGiventhefollowingfeedbackcontrolsystem

    UsedirectpoleplacementdeterminethepolynomialsD(s)andN(s)sothattheclosed-loopcharacteristicequationisDCL(s)=s3+4s2+5s+8=0

    CLCE: s D(s)(s + 1)+ 2N(s) = s3 + 4s2 + 5s + 8

    ⇒D(s) = (s + a) 1st orderN(s) = (bs + c) 1st order

    ⇒ s(s + a)(s + 1)+ 2(bs + c) = s3 + 4s2 + 5s + 8

    ⇒ s3 +(1+ a)s2 +(a + 2b)s + 2c = s3 + 4s2 + 5s + 8

    ⇒1+ a = 4

    a + 2b = 52c = 8

    ⇒a = 3b = 1c = 4

    ⇒ C(s) = s + 4s(s + 3)

  • PART B Name: HWID:

    Page 16 of 18

    Problem6(15points)–State-spacerepresentationThefollowingthirdordersystemdifferentialequation:

    !!!y(t)+4 !!y(t)+5 !y(t)+6 y(t)=3!!u(t)+2!u(t)+u(t) canberepresentedasthefollowingblockdiagramandstate-spacerepresentation.Fillintheemptyblocksandmatrixelements.Thestatevariablesarenotedintheblockdiagram.

    and

    !x1

    !x2

    !x3

    ⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥

    =

    ⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥

    x1

    x2

    x3

    ⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥

    +

    ⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥

    u

    y = ⎡⎣⎢

    ⎦⎥

    x1

    x2

    x3

    ⎢⎢⎢⎢⎢

    ⎥⎥⎥⎥⎥

    Y(s)U(s)

    = 3s2 + 2s + 1

    s3 + 4s2 + 5s + 6

    Let: X(s) = 1s3 + 4s2 + 5s + 6

    U(s) ⇒ Y(s) = (3s2 + 2s + 1)X(s)

    4

    3

    2

    1

    5

    6

    0 0 0 0

    0 0 1

    11

    -4 -5 -6

    1 2 3

  • PART B Name: HWID:

    Page 17 of 18

    Problem7(10points)–ModulationanddemodulationAconstantvaluedsignalXDCundergoesamplitudemodulationusinga4kHzcarriersignalwithamplitude1.TheresultingAMsignaliseM(t)=XDC·sin(8000πt).Todemodulate,theAMsignalisfirstmultipliedbyitscarriersignal,resultingine’M(t)=XDC·sin2(8000πt).Whatarethefrequencycomponentsandtheassociatedmagnitudesofthesignale’M(t)?

    e'M(t) = XDC ⋅ sin2(8000πt) = XDC ⋅12− 1

    2cos(2⋅ 8000πt)⎡

    ⎣⎢⎤⎦⎥=

    XDC2−

    XDC2

    cos(2⋅ 8000πt)

    ⇒DC component: 0 [rad/sec] magnitude: XDC

    2

    16000π [rad/sec] or 8000 Hz: magnitude: XDC2

    Problem8(10points)–KarnaughmapThetruthtableofathreeinputoneoutputcombinationallogicisgivebythetruthtabletotherightwithA,B,andCastheinputsandYistheoutput.CompletetheKarnaughmapbelowtogenerateaminimalrepresenationofYasabinaryfunctionoftheinputsA,B,andC.

    Y =B + AC + AC

    00 01 11 10

    0

    1

    ABC

    A B C Y

    0 0 0 1

    0 0 1 1

    0 1 0 1

    0 1 1 0

    1 0 0 1

    1 0 1 1

    1 1 0 0

    1 1 1 10

    0 1 1

    1 1 1

    1

  • PART B Name: HWID:

    Page 18 of 18

    Problem9(10points)–GainmarginandphasemarginTheBodediagramofthelooptransferfunctionL(s)ofthefeedbacksystemtotherightisshownbelow.Identifythegainandphasecross-overfrequenciesandthecorrespondinggainmargin(GM)andphasemargin(PM).(YouneedtomarkontheBodediagramthetwocross-overfrequenciesandthecorrespondingmagnitudeandphaseinformationyouusedtocalculatetheGMandPM.)

    Gain cross-over frequency ω gc = 0.4 [rad/sec]: PM = 180° +(−80°) = 100°

    Phase cross-over frequency ωpc = 4 [rad/sec]: GM = 0−(−10dB) = 10dB= 3.16

    ~-80°

    ωgc = 0.4 rad/s

    ~-10 dB

    ωpc = 4 rad/s

top related