lecture_16_2011_v1

Post on 04-Jun-2018

216 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 1/85

Chapter 7- A Surface Veneer:Sediments, Soils, & Sedimentary Rocks

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 2/85

Biochemical limestone can consist of:

1 2 3 4

25% 25%25%25%

1. coral moundsand/or calciteshell fragments.

2. quartz sandgrains on abeach.

3. deposits of clay.4. deposits of

plankton shellscomposed of

silica.

7-135

5

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 3/85

What is the difference between chertand quartz?

1 2 3 4

25% 25%25%25%

1. Chert is always biologicalin origin, whereas quartzis inorganic.

2. They have differentchemical compositions

3. Quartz is a mineral butchert is not.

4. Quartz can be formedfrom the action of fluidsmoving through rocks, butchert cannot.

7-136

5

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 4/85

h t t p : / / s t a f f . a i s t . g o .

j p / n o m u r a - k / c o m m o n / S

T R U

C I M A G E S / Q u a r t z . g i f

7-137

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 5/85

Figure 1 A. Chalcedony. Photomicrograph (cross-polarized light; field of view heigth - ca . 4.8 mmacross) of banded chalcedony, from south-centralSaguache County, Colorado. As can be seen, thischalcedony consists of innumerable microscopicgrains, virtually all of which are quartz. As noted inthe discussion, this makeup, which is typical, is thebasis of calling chalcedony a rock -- i.e ., it is amicrogranular, monomineralic rock. (© photo by

Daniel E. Kile)

i

h t t p : / / s t a f f . a i s t . g o .

j p / n o m u r a - k / c o m m o n / S

T R U

C I M A G E S / Q u a r t z . g i f

http://mineralsciences.si.edu/staff/postdocs/gaillou.htm

http://www.cst.cmich.edu/USERS/DIETR1RV/introduction-group.jpg

www.quartzpage.de

If chert is not a mineral, then

what is it?C

7-138

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 6/85

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 7/85

Which arrow indicates the direction of flow?

1 2 3 4

25% 25%25%25%

1. A

2. B3. C4. D

A

B

C

D

7-140

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 8/85

• Ripples are formed by water flowingover loose sediment

– Asymmetric ripples – Unidirectionalflow.

7-120

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 9/85

Graded beds are bedding layers that “fine upward.”

7-128 Sedimentary structures, continued

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 10/85

Graded beds are bedding layers that “fine upward.”

• Sediment added as a pulse of turbid water.• Water loses velocity and sediments settle.• Coarsest material settles first, mediumnext, then fine.

7-129

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 11/85

• Repeated pulses ofhigh-energysediment transport

create multiplegraded-bedsequences calledturbidites .

7-130

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 12/85

Bed-surface markings occur after deposition whilesediment is still soft.

• Mudcracks indicate alternatingwet and dry conditions (onland)

7-131

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 13/85

http://www.depauw.edu/acad/geosciences/tcope/SedStruct/HiRes/Mudcracks2.jpg

7-132

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 14/85

Bed-surface markings occur after deposition whilesediment is still soft.

• Scour marks are troughs eroded in soft mud by currentflow.

http://www.depauw.edu/acad/geosciences/tcope/SedStruct/HiRes/SoleMarks.jpg

7-133

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 15/85

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 16/85

7-135

https://reader010.{domain}/reader010/html5/0622/5b2bfa36ea989/5b2bfa43b4ecc.jpghttp://fossilreproductions.com/images/DinosaurFootprints.jpg

http://static.guim.co.uk/sys-images/Guardian/Pix/pictures/2009/2/27/1235723159663/A-fossil-footprint-left-b-001.jpg

1.5 Ma

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 17/85

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 18/85

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 19/85

R.Weller/Cochise College

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 20/85

R.Weller/Cochise College

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 21/85

http://upload.wikimedia.org/wikipedia/ja/e/ee/Migmatite012.jpg

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 22/85

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 23/85

8 1

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 24/85

Chapter 8Metamorphism: A Process of Change

8-1

d8 2

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 25/85

Introduction• Metamorphic – Changed

from an original “parent.” – Meta = Change. – Morph = Form or shape.

• Parent rocks are called“protoliths.”

• Metamorphism canoccur to any protolith.

8-2

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 26/85

8 4

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 27/85

• Metamorphism occurs in the solid state.• Does not include weathering, diagenesis, melting.

• Metamorphic rocks often look totally unlikeprotoliths.

8-4

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 28/85

8 5

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 29/85

Metamorphic rocks have distinctive properties.

• Texture – Intergrown andinterlocking grains.

• Some mineralsoccur only inmetamorphic rocks.

Fossiliferous limestone

Marble

8-5

8 6

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 30/85

Metamorphic rocks have distinctive properties.• Foliation – Forces cause minerals to align.

Red mudstone

Garnet gneiss

8-6

8 7

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 31/85

Metamorphic processesMetamorphic change is slow and in the solid state.

• Several metamorphic processes may operate atthe same time.

Kyanite

1. Recry s tal l izat ion –

Minerals change sizeand shape.

2. Phase ch ang e – Newminerals form with: – Same chemical

formula. – Different crystal

structure.

8-7

8 8

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 32/85

3. Neoc ry st al l izat ion

– Pressure and temperature changes cause originalminerals to become unstable.

– Original minerals decompose in the protolith.

– Ions react to form new minerals.

8-8

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 33/85

M hi i d b f8 10

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 34/85

Metamorphism is caused by one or more of:• Heat (Temperature – T).• Pressure (P).• Differential stress.• Hydrothermal fluids.

Rocks may be overpr in ted by multiple events.

8-10

8 11

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 35/85

Heat (Temperature)• Metamorphism occurs as the result of

heating between 200 oC and 850 oC. – The upper T limit is melting. – varies based upon rock mineral composition and

water content.• Heat energy breaks and reforms atomic

bonds.

• Sources of heat: – The geothermal gradient. – Magmatic intrusions.

– Compression.

8-11

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 36/85

• Mineral stability is highly dependent upon T and P

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 37/85

• Mineral stability is highly dependent upon T and P.

Andalusite

KyaniteSillimanite

Al2SiO 5

8-13

8-14

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 38/85

• Often a result of tectonic forces.• Two kinds of differential stress: Normal and

shear.

Differential Stress: pressure that isnot uniform in all directions

1. Norm al s t ress – operates perpendicular to asurface. – Tension

– Compression

8 14

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 39/85

Diff ti l St

8-16

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 40/85

Differential Stress• Preferred platy mineral alignment is called foliation.

– Foliation imparts a layered or bandedappearance.

– Rocks commonly break parallel to foliationplanes.

• Foliation developsperpendicular tocompression.

How?

8 16

8-17

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 41/85

http://earth.boisestate.edu/home/cjnorth/images/extension_fractures_cleavage2.jpg

…but how do grains align?

8 17

Pl t i l llig t d diff ti l t

8-18

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 42/85

Platy mineral allignment under differential stress8 18

Plat mineral allignment nder differential stress

8-19

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 43/85

Platy mineral allignment under differential stress8 19

Platy mineral allignment under differential stress

8-20

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 44/85

Platy mineral allignment under differential stress8 20

Platy mineral allignment under differential stress

8-21

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 45/85

Platy mineral allignment under differential stress

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 46/85

Hydrothermal fluids and8-23

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 47/85

Hydrothermal fluids andmetamorphism

• Pore fluid: water, CO 2, dissolvedminerals

• Pore fluids affect metamorphism by: – Transporting dissolved material

– Acting as chemical reservoirs

– Speeding up chemical reactions

– Adding or subracting elementsPore space

Mineral crystals

8-24

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 48/85

• If there is enough fluid flowingthrough a rock to substantiallychange the overall chemicalcomposition of a rock, the processis referred to as metasommatism .

R.Weller/Cochise College

Metamorphism vs.Metasomatism

Metamorphic Rock Types8-25

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 49/85

Metamorphic Rock Types• Two major subdivisions: foliated and non-foliated• Foliated rocks have a through-going planar fabric.

– Subjected to differential stress. – Has a significant component of platy minerals. – Classified by composition, grain size, and foliation type.

8-26

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 50/85

• Two major subdivisions: foliated and non-foliated• Non-foliated rocks have no planar fabric evident.

– Crystallized without differential stress. – Comprised of equant minerals only. – Classified by mineral composition.

N f li t d t hi k

8-27

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 51/85

Non-foliated metamorphic rocks

1. Quartzite – Almost pure quartz in composition. – Protolith: quartz sandstone. – Sand grains in the protolith recrystallize and fuse.

Metamorphic Alteration

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 52/85

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 53/85

Summary of metamorphic rocks8-30

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 54/85

Summary of metamorphic rocksFoliated Non-foliated

QuartziteMarble

AmphiboliteHornfels

Sedimentary protolith

Igneous protolith

Grade is a measure of metamorphic intensity

8-31

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 55/85

Grade is a measure of metamorphic intensity

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 56/85

Foliated metamorphic rocks8-33

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 57/85

Foliated metamorphic rocks2. Phyllite – Fine-grained mica-rich rock with satiny lustre.

– Protolith: slate (shale) – Grade: low – medium – Clay minerals neocrystallize into tiny micas.

slatephyllite

Foliated metamorphic rocks8-34

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 58/85

3. Schist – Fine - coarse rock with larger micas.

– Protolith: phyllite (shale) or other mica-rich rock – Grade: Medium to high – Foliation: schistosity, from alignment of large mica

crystals grown at higher T.

– Schist often has other minerals due to neocrystallization(quartz, feldspars, kyanite, garnet, staurolite, sillimanite)

– Large non-mica minerals are called porphyroblasts .

Foliated metamorphic rocks

Foliated metamorphic rocks8-35

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 59/85

Foliated metamorphic rocks4. Gneiss – distinct banded foliation (compositional banding).

– Light bands of felsic minerals (quartz and feldspars). – Dark bands of mafic minerals (biotite or amphibole).

Summary of metamorphic rocks8-36

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 60/85

Summary of metamorphic rocksFoliated Non-foliated

QuartziteMarble

AmphiboliteHornfels

Sedimentary protolith

Igneous protolith

Slate

Phyllite

Schist

Gneiss

I n c r e

a s i n

gm

e t am

or ph i c

gr a

d e

I n c r e

a s i n

g gr ai n

s i z

e

Grains notvisible

Visiblegrains

How does compositional banding develop?

8-37

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 61/85

1. Original layering in the protolith.

2. Extensive high T shearing.

How does compositional banding develop?

How does compositional banding develop?

8-38

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 62/85

3. Compositional banding – Solid-state chemical

differentiation.

1

2 3

p g p

Migmatite8-39

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 63/85

Migmatite• Migmatite is a partially melted gneiss.• It has features of igneous and metamorphic rocks.• Mineralogy controls behavior.

– Light-colored (felsic) minerals melt at lower T. – Dark-colored (mafic) minerals melt a higher T.

• Felsics melt first; mafics remain metamorphic.

quartzclay

8-40

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 64/85

Fig. 8.19

muscovitebiotite

garnetKsp

claychlorite

Sillimanite

Staurolite

Grade is a measure of metamorphic intensity

8-41

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 65/85

Grade is a measure of metamorphic intensity

• Specific minerals typify particular grades

8-42

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 66/85

• Specific minerals typify particular grades.

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 67/85

• Metamorphic facies – Mineral assemblage from

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 68/85

a specific protolith at specific P-T conditions.

8-44

Index

8-45

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 69/85

Indexminerals have a limited

P-T range andrecordmetamorphicgrade.

Fig. 8.21

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 70/85

Metamorphic types and environments8-47a

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 71/85

1. Burial metamorphism

2. Regional metamorphism

8-47b

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 72/85

• Creates foliated rocks.

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 73/85

3. Subduction metamorphism

8-48

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 74/85

• Subduction creates theunique blueschist facies.

• Trenches and accretionaryprisms have low T, high P

• P-T condtions produceglaucophane , a blueamphibole mineral.

http://jm-derochette.be/images/Spectrometer/Glaucophane_base%20V_I.jpg

Glaucophane exhibits pleochroismunder polarized light

http://www.dvminerals.com/img2006/G-150.jpg

p. 249

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 75/85

4. Contact metamorphism8-50

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 76/85

slate

andalusiteLow-gradehornfels

Int.-gradehornfels

andalusite &

sillimanite

5. Hydrothermal metamorphism

8-51

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 77/85

• Alteration by hot, chemically aggressive water.• A dominant process near mid-ocean ridge magma.

5. Hydrothermal metamorphism8-52a

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 78/85

• The hot water rises and isejected via black smokers.

oceanexplorer.noaa.gov

8-52b 5. Hydrothermal metamorphism

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 79/85

http://z.about.com/d/geology/1/0/h/L/greenschist.jpg

1 43 Ga black smokers from a massive sulfide deposit in China

8-53

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 80/85

http://highlyallochthonous.blogspot.com/2007/01/precambrian-black-smokers.html

1.43 Ga black smokers from a massive sulfide deposit in China

6. Dynamic metamorphism

8-54a

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 81/85

• Breakage of rock byshearing at a fault zone.

• Shallow crust (Upper 10-15 km): Brittledeformation forms faultbreccia

http://www.portervillecollege.edu/richardgoode/DeathValleyPicts/Fault%20Breccia.JPG

Fault breccia

6. Dynamic metamorphism

8-54b

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 82/85

• Deeper crust (Below 10-15

km.): ductile deformation formsmylonite

http://earth.boisestate.edu/home/cjnorth/images/mylonite.JPG

mylonite

7. Shock metamorphismWhen Earth is str ck b a comet or asteroid

8-55

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 83/85

http://earth.boisestate.edu/home/cjnorth/images/mylonite.JPGhttp://www.portervillecollege.edu/richardgoode/DeathValleyPicts/Fault%20Breccia.JPG

• When Earth is struck by a comet or asteroid,impacts generate a compressional shock wave.

– Extremely high pressure. – Heat that vaporizes or melts large masses of rock.

• These conditions generate high-pressure mineralscoesite and stishovite.

http://www.chiemgau-impact.com/images/intro/2%20shattercone%20Steinheim.jpg

7. Shock metamorphism8-56

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 84/85

http://gsc.nrcan.gc.ca/mindep/photolib/ni_cu_pge/sudbury/images/fig08.jpg

Shatter cones in quartzite near Sudbury

p

8/13/2019 lecture_16_2011_v1

http://slidepdf.com/reader/full/lecture162011v1 85/85

top related