lecture notelecture note 4 -...

Post on 12-Jun-2020

12 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Lecture Note 4Lecture Note 4

Virtual Work & Energy Method

Second Semester, Academic Year 2012,Department of Mechanical Engineering

Chulalongkorn University

2

Objectives

Use the energy method to analyze structures Describe the characteristics and properties as well as Describe the characteristics and properties as well as

determine strain energy and complementary energy and potential energyD ib th i i l f i t l k d th i i l Describe the principle of virtual work and use the principle to determine equilibrium, stability and analyze simple elasticity problems with emphasis on bending problems

A simple statically indeterminate problems with emphasis on bending

2

3

Topics

Virtual Work Strain energy complementary and potential energy Strain energy, complementary and potential energy Deflections Statically indeterminate problems

3

4

Work By a Force

cosFW F dr

F dr cosF dr

workFW

force that done the workdisplacement

F

Fdr

4

5

Work By a Couple

( ) ( ) ( )2 2Mr rW F F Fr

W M magnitude of couple that do the workM

5

MW M small angle of rotation

6

Virtual Work Virtual Movements

Imaginary or virtual movements is assumed and does not actually exist. Virtual displacement Virtual rotation Virtual rotation Virtual deformation

Virtual movements are infinitesimally small and does not violate physical constraints.

Principle of virtual work is an alternative form ofPrinciple of virtual work is an alternative form of Newton’s laws that can analyze the system in equilibrium under work and energy concepts.

6

7

Virtual Work Principle of Virtual Work

Consider an object in equilibriumTh i t l k d b ll f t th bj t ith The virtual work done by all forces to move the object with a virtual displacement

1

cosr

F k v kk

W F

In equilibrium, 0FW

7

8

Virtual Work Principle of Virtual Work for Rigid Bodies

t e iW W W

total virtual work doneexternal work done

tWW

external work doneinternal virtual work

e

i

WW

e iW W

8

9

Exercise Virtual Work for Rigid Bodies #1

Determine the support reactions

a

, ,

00

v B v C

t

LWR W

, ,

, ,

0

0

C v C v B

C v C v C

R WaR WL

C

LaR WL

9

10

Exercise Virtual Work for Rigid Bodies #2

0( ) ( ) 0

( ) ( ) 0

t

A v v v C v v

WR W a R LR R W R L W

10

( ) ( ) 00 and 0

A C v C v

A C C

R R W R L WaR R W R L Wa

11

Virtual Work Virtual Work for Deformable Bodies

t e iW W W

11

12

Virtual Work Internal Virtual Work from Axial Load

NN A AA

, ( )i N vA

ANw dA xA

,

, v

i N v

i N N x

w N dx

w

,

L

i N vL

w N dx

v vv

NE EA

A vi N

N Nw dx

12

,i NL

w dxEA

13

Virtual Work Internal Virtual Work from Torsion

,A v

i TL

T Tw dxGJ

13

14

Virtual Work Internal Virtual Work from Bending

,A v

i ML

M Mw dxEI

14

15

Virtual Work Internal Virtual Work from Shear Force

S A

, ( )i S vA

S A

w dA x

, ( ) ( )vA

i SS dA xA

w

,

, v

i S

i S

vL

S x

w S dx

w

,A v

i SS Sw dxGA

L

v vv G

SGA

15

L GA

16

Virtual Work Virtual Work from External Loads

w W P

, ,

( )

e v y v x

Ve vw

w W P

M T

w x xw d ,( )L

e v yw x xw d

( ( ) )e v y v x V v v yW W P M T w x dx

, , ,( ( ) )

( )

e v y v x V v v yL

A v A v A v A vi A v

N N S S M M T TW dx dx dx dx MEA GA EI GJ

16

L L L LEA GA EI GJ

17

Exercise Virtual Work for Deformable Bodies #1

Determine the bending moment at B

a b

,v B a babb

17

18

Exercise Virtual Work for Deformable Bodies #2

Determine the bending moment at B

(1 )a L

(1 )

0

B b b

W

,

00

t

v B B B

WW M

L

B

B

LWa Mb

WabM

18

BM L

19

Exercise Virtual Work for Truss #1

Determine the force in AB

19

20

Exercise Virtual Work for Truss #2

, 3

4v B

,44

30

v BC

tW

,30 0

40 kN

t

C BA v B

BA

FF

20

21

Exercise Virtual Work for Cantilever Beam #1

Determine the end deflection

21

22

Exercise Virtual Work for Cantilever Beam #2

2( )2

1( )

A

v

wM L x

M L x

,

3

( )1 (1)

( )

v

i M B

A v

W vM M wW dx L x dx

,

4, 0

( )2

( )8

i ML L

L

i M

W dx L x dxEI EIwW L xEI

, 0

4

,

8

From (1), 18

i M

B i M

EIwLv WEI

22

23

Strain Energy DefinitionEnergy

Strain energy U: energy stored in member Complementary energy C: no physical meaning but obeys the Complementary energy C: no physical meaning but obeys the

law of energy conservation

y

U Pdy P

C ydP

23

0U Pdy 0C ydP

24

Strain Energy RelationshipsEnergy

dU dC

,

Assuming function n

dU dCP ydy dP

P by

1/

0 0

1 ( )y P n

P y n

PU Pdy dPn b

0 0

D t i d f

y nC ydP n by dy

U C

Determine and for linear elastic material

U C

24

25

Complementary Energy PrincipleEnergy

For an elastic body in equilibrium under the action ofFor an elastic body in equilibrium under the action of applied forces, the true internal forces (or stresses) and reactions are those for which the total complementary energy has a stationary valueenergy has a stationary value.

Compatibility

1

0n

t e i r rVr

W W W ydP P

1

01

( ) ( ) 0

rnP

i e r rVr

C C ydP P

25

26

Example Deflection #1Energy

Determine the deflection, 2cross sectional area A = 1800 mm2,

E = 200 GPa.

k FL FC

212 2

0i i i

i i i

FL FCP AE P

26

27

Example Deflection #2Energy

Real loadImaginary load

27

28

Example Deflection #3Energy

6

, 2 5 21

6

1 1268 10 N mm 3.52 mm(1800 mm )(2 10 N/mm )

1 880 10 N

ki

B v i ii

k

FFLAE P

F

6

, 2 5 21

1 880 10 N mm 2.44 mm(1800 mm )(2 10 N/mm )

ki

D h i ii

FFLAE P

28

29

Example SI Problem #1Energy

Redundant

01

ik F

i ii

C dF P

member

1

10

ik

ii

i

dFCR R

1

1 10 (4.83 2.707 ) 0

0 56

ki

i ii

FFL RL PLAE R AE

R P 0.56R P

29

30

Unit Load Description Energy

,0 ,1k

i i iF F L

0

With applied dummy load i

fk nF

i i r r

P

C dF P

1

Ci i iAE

Real load

01 1

10

i i r ri r

ki

i Cif f

FCP P

Imaginary load

M M

1

1

if fk

iC i

i f

FP

0 1

0 1

M

T

M Mdz

EIT T

dzAssume unit load instead of fP

T dzGJ

30

31

Example Unit Load #1Energy

Determine displacement at D

0 1 0 1x

M M T Tds ds

EI GJ x EI GJ

31

32

Example Unit Load #1Energy

2 4l wl x wldx

04

211 1( )

24 2

x

y

dxEI EI

wlEI GJ

4

24 21 1( )

6 2z

EI GJ

wlEI GJ

32

33

Flexibility Method Description Energy

Remove a redundant member to formulate a SD problem Solve for displacements of the SD problem Determine redundant load that negate the same

displacementsp

33

34

Exercise Flexibility Method #1Energy

0, 1,j j jn n F F LF F L

, ,

, 1,

1 1

2

j j jn na j j j

BDj j

F F LAEAE

F L

1,

2

1

jn

jBD

j

F La

AE

34

0BD BD BDX a

35

Exercise Flexibility Method #2Energy

2 71 4 82PL L

2.71 4.82,

From 0

BD BD

BD BD BD

PL LaAE AE

X a 0.56 AnsBDX P

35

36

Potential Energy Total Potential EnergyEnergy

Total potential energy TPE is the sum of its strain (internal) energy U and the potential energy V of the applied external loadsgy p gy pp

Zero potential energy at the unloaded state

1 1

( )r

n n

r rr r

V V P

0

TPE

TPE

( )

y

n

U V P

U PU V

dy Py

1

TPE ( )rr

rU PU V

36

37

Potential Energy StabilityEnergy

( ) 0U V

37

38

Exercise TPE #1Energy

Assume sinB

zv vL

0 at 0 and and / 0 at / 2B

Lv z z Lv v dv dx z L

2 2

2

2 4 2 4

2M d vU dz EIEI dz

EIEI

38

2 4 2 42

4 3sin2 4

B Bv v EIEI zU dzLL L

39

Exercise TPE #2Energy

2 4

3

44B

Bv EITPE U V WvL

4

3

3 3

( ) 04

2

BB

B

v EIU V vv L

WL WL

39

4

2 as compared to exact solution 48B

WL WLvEIEI

40

Principle of Superposition DescriptionEnergy

If th b d i li l l ti thIf the body is linearly elastic, the effect of a number of forces is the sum of the effects of the forces applied separately.

40

41

Reciprocal Theorem DescriptionEnergy

1Total deflection at point 1 in the direction of from all loadsP

influence or flexibility coefficientija

a P a P a P

1 11 1 12 2 1

2 21 1 22 2 2

......

n n

n n

a P a P a Pa P a P a P

1 1 2 2 ...n n n nn na P a P a P

1 11 12 1 1

2 21 22 2 2

n

n

a a a Pa a a P

41

1 2n n n nn na a a P

ij jia a

42

Exercise Reciprocal Theorem #1Energy

The 800 mm-long beam is propped at 500 mm, giving

, g g0 mm at 0 mm

0.3 mm at 100 mmv xv x

1.4 mm at 200 mm2.5 mm at 300 mm1 9 mm at 400 mm

v xv xv x

1.9 mm at 400 mm0 mm at 500 mm2.3 mm at 600 mm

v xv xv x 4.8 mm at v x

700 mm10.6 mm at 800 mmv x

42BDetermine when the applied loads change.

43

Exercise Reciprocal Theorem #2Energy

due to 40 N at 1.4 mm due to 40 N at 1.4 mm

D

C

v Cv D

due to 30 due to 30 N at 1.4 (3 / 4)

1.05 mmN at C

C

v Dv D

due to 10 N at 2.4 (1/due to 10 N at

4)0 6 mm

Cv Ev E

,

due to 10 N at 0.6 mm1.05 0.6 1.65 C tot

C

al

v Ev

1

mm1.65tan

43

1tan300B

top related