introduction fe

Post on 21-Jan-2016

8 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

good

TRANSCRIPT

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Introduction to Finite Element Method

Georges CAILLETAUD & Saber EL AREM

Centre des Materiaux, MINES ParisTech, UMR CNRS 7633

WEMESURF course, Paris 21-25 juin

1/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Contents

1 Introduction

2 Examples

3 Bibliography on finite element

4 Discrete versus continuous

5 ElementInterpolationElement list

6 Global problemFormulationMatrix formulationAlgorithm

2/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Contents

1 Introduction

2 Examples

3 Bibliography on finite element

4 Discrete versus continuous

5 ElementInterpolationElement list

6 Global problemFormulationMatrix formulationAlgorithm

Introduction 3/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Numerical methods for PDE solving

Many physical phenomena in engineering andscience can be described in terms of partialdifferential equations (PDE) .In general, solving these equations by classicalanalytical methods for arbitrary shapes is almostimpossible.The finite element method (FEM) is a numericalapproach by which these PDE can be solvedapproximately.The FEM is a function/basis-based approach tosolve PDE.FE are widely used in diverse fields to solve staticand dynamic problems − Solid or fluid mechanics,electromagnetics, biomechanics, etc.

Introduction 4/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Google search results for FEM

Introduction 5/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Google search results for FE+course

Introduction 6/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

FE problem solving steps

Two key words: Discretization & Interpolation1 Definition of the physical problem: development of

the model.2 Formulation of the governing equations.

Systems of PDE, ODE, algebraic equations,define initial conditions and/or boundary conditions to get awell-posed problem.

3 Discretization of the equations.4 Solution of the discrete system of equations.5 Interpretation of the obtained results.6 Errors analysis.

Introduction 7/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Contents

1 Introduction

2 Examples

3 Bibliography on finite element

4 Discrete versus continuous

5 ElementInterpolationElement list

6 Global problemFormulationMatrix formulationAlgorithm

Examples 8/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

AUTOMOBILE

Abaqus et l’automobile

* Engine durability * Transmission performance * Seal integrity * Component design *Powertrain bending * Noise & vibration * Gasket analysis * Thermal cycling * Sheet metalforming * Forging analysis * Mechanisms analysis * Assembly (bolt loading)(d’apres http://www.abaqus.com)

Examples 9/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

AERONAUTICS

Crash-test, Boeing 737 par la NASA* Static, dynamic, and coupled acoustic-structural analysis of aircraft frames *Simulations of large deployable space structures such as solar sails, space radars andreflector antennas * Simulating the performance of various aircraft components, such asbulkhead under pressurization, wing panel buckling, and crack propagation in the fuselage *Blade containment evaluations and bird strike simulations * Thermomechanical simulationof aircraft engines and rocket motors under different operating conditions * Verification ofturbine blade designs *Simulation of various aircraft mechanisms such as landing gears, wingflaps, and cargo doors

Examples 10/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Power generation equipment

Examples 11/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Contents

1 Introduction

2 Examples

3 Bibliography on finite element

4 Discrete versus continuous

5 ElementInterpolationElement list

6 Global problemFormulationMatrix formulationAlgorithm

Bibliography on finite element 12/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Bibliography on finite element

Bathe, K. (1982).

Finite element procedures in engineering analysis.Prentice Hall, Inc.

Batoz, J. and Dhatt, G. (1991).

Modelisation des structures par elements finis, I—III.Hermes.

Belytschko, T., Liu, W., and Moran, B. (2000).

Nonlinear Finite Elements for Continua and Structures.

Besson, J., Cailletaud, G., Chaboche, J.-L., and Forest, S. (2001).

Mecanique non–lineaire des materiaux.Hermes.

Buchanan, G. (1995).

Finite element analysis.Schaum’s outlines.

Ciarlet, P. and Lions, J. (1995).

Handbook of Numerical Analysis : Finite Element Methods (P.1), Numerical Methods forSolids (P.2).North Holland.

Crisfield, M. (1991).

Nonlinear Finite Element Analysis of Solids and Structures.

Bibliography on finite element 12/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Wiley.

Dhatt, G. and Touzot, G. (1981).

Une presentation de la methode des elements finis.Maloine.

Hughes, T. (1987).

The finite element method: Linear static and dynamic finite element analysis.Prentice–Hall Inc.

Kardestuncer, H., editor (1987).

Finite Element Handbook.Mc Graw Hill.

Mc Neal, R. (1993).

Finite Element: their design and performance.Marcel Dekker.

Simo, J. and Hughes, T. (1997).

Computational Inelasticity.Springer Verlag.

Zienkiewicz, O. and Taylor, R. (2000).

The finite element method, Vol. I-III (Vol.1: The Basis, Vol.2: Solid Mechanics, Vol. 3:Fluid dynamics).Butterworth–Heinemann.

Discrete versus continuous 13/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Contents

1 Introduction

2 Examples

3 Bibliography on finite element

4 Discrete versus continuous

5 ElementInterpolationElement list

6 Global problemFormulationMatrix formulationAlgorithm

Discrete versus continuous 13/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Continuous→ Discrete→Continuous

How much rain ?

Discrete versus continuous 14/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Continuous→ Discrete→Continuous

Geometry discretization

Discrete versus continuous 15/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Continuous→ Discrete→Continuous

Unknown field discretization

Discrete versus continuous 16/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Continuous→ Discrete→Continuous

Use elements

Discrete versus continuous 17/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Finite Element Discretization

Replace continuum formulation by a discrete representation for unknownsand geometry

Unknown field:ue(M) =

∑i

Nei (M)qe

i

Geometry:

x(M) =∑

i

N∗ei (M)x(Pi )

Interpolation functions Nei and shape functions N∗ei such as:

∀M,∑

i

Nei (M) = 1 and Ne

i (Pj) = δij

Isoparametric elements iff Nei ≡ N∗ei

Discrete versus continuous 18/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Contents

1 Introduction

2 Examples

3 Bibliography on finite element

4 Discrete versus continuous

5 ElementInterpolationElement list

6 Global problemFormulationMatrix formulationAlgorithm

Element 19/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Contents

1 Introduction

2 Examples

3 Bibliography on finite element

4 Discrete versus continuous

5 ElementInterpolationElement list

6 Global problemFormulationMatrix formulationAlgorithm

Element 20/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

2D-mapping

Subparametric Superparametric Isoparametricelement element element

Geometry

Unknown field

Geometry

Unknown field

Geometry

Unknown field

more field nodes more geometrical nodes same number ofthan geometrical nodes than field nodes geom and field nodes

Rigid body displacement not represented for superparametric element that has nonlinear edges !

The location of the node at the middle of the edge is critical for quadratic edges

Element 21/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Shape function matrix, [N] – Deformation matrix, [B]

Field u, T , C

Gradient ε∼, grad(T ),. . .

Constitutive equations σ∼ = Λ∼∼: ε∼, q = −kgrad(T )

Conservation div(σ∼) + f = 0, . . .

First step: express the continuous field and its gradient wrt thediscretized vector

Element 22/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Deformation matrix [B] (1)

Knowing:

ue(M) =∑

i

Nei (M)qe

i

Deformation can be obtained from the nodal displacements, forinstance in 2D, small strain:

εxx =∂ux

∂x=

∂N1(M)

∂xqe

1x +∂N2(M)

∂xqe

2x + . . .

εyy =∂uy

∂y=

∂N1(M)

∂yqe

1y +∂N2(M)

∂yqe

2y + . . .

2εxy =∂ux

∂y+

∂uy

∂x=

∂N1(M)

∂yqe

1x +∂N2(M)

∂xqe

1y + . . .

Element 23/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Deformation matrix [B] (2)

Matrix form, 4-node quadrilateral

ue = [N]T qe =

(N1 0 N2 0 N3 0 N4 00 N1 0 N2 0 N3 0 N4

)qe

1x

qe1y

...qe

4y

εe = [B]T qe

=

N1,x 0 N2,x 0 N3,x 0 N4,x 00 N1,y 0 N2,y 0 N3,y 0 N4,y

N1,y N1,x N2,y N2,x N3,y N3,x N4,y N4,x

qe1x

qe1y

...qe

4y

Shear term taken as γ = 2ε12

Element 24/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Reference element

x

y

ξ

η

Actual geometryPhysical space (x , y)

η

ξ

1

−1

−1 1

Reference elementParent space (ξ, η)

∫Ω

f (x , y)dxdy =

∫ +1

−1

∫ +1

−1

f∗(ξ, η)Jdξdη

J is the determinant of the partial derivatives ∂x/∂ξ. . . matrixElement 25/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Remarks on geometrical mapping

The values on an edge depends only on the nodal values on the sameedge (linear interpolation equal to zero on each side for 2-node lines,parabolic interpolation equal to zero for 3 points for 3-node lines)

Continuity...

The mid node is used to allow non linear geometries

Limits in the admissible mapping for avoiding singularities

Element 26/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Mapping of a 3-node line

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

x

ξ

x2=0

x2=1/2

x2=1

Physical segment: x1=-1 x3=1 −1 6 x2 6 1Parent segment: ξ1=-1 ξ3=1 ξ2=0

x = ξ +“1− ξ2

”x2

Element 27/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Jacobian and inverse jacobian matrix

(dxdy

)=

∂x

∂ξ

∂x

∂η∂y

∂ξ

∂y

∂η

(dξdη

)= [J]

(dξdη

)

(dξdη

)=

∂ξ

∂x

∂ξ

∂y∂η

∂x

∂η

∂y

(dxdy

)= [J]−1

(dxdy

)

Since (x , y) are known from Ni (ξ, η) and xi ,

[J]−1 is computed from the known quantities in [J], using also:

J = Det ([J]) =∂x

∂ξ

∂y

∂η− ∂y

∂ξ

∂x

∂η

Element 28/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Expression of the inverse jacobian matrix

[J]−1 =1

J

∂y

∂η−∂y

∂ξ

−∂x

∂η

∂x

∂ξ

For a rectangle [±a,±b] in the ”real world”, the mapping function isthe same for any point inside the rectangle. The jacobian is adiagonal matrix, with ∂x/∂ξ = a, ∂y/∂η = b, and the determinantvalue is abFor any other shape, the ”mapping” changes according to thelocation in the elementFor computing [B], one has to consider ∂Ni/∂x and ∂Ni/∂y :

∂Ni

∂x=

∂Ni

∂ξ

∂ξ

∂x+

∂Ni

∂η

∂η

∂x

∂Ni

∂y=

∂Ni

∂ξ

∂ξ

∂y+

∂Ni

∂η

∂η

∂y

then(

∂Ni/∂x∂Ni/∂y

)= [J]−1

(∂Ni/∂ξ∂Ni/∂η

)

Element 29/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Contents

1 Introduction

2 Examples

3 Bibliography on finite element

4 Discrete versus continuous

5 ElementInterpolationElement list

6 Global problemFormulationMatrix formulationAlgorithm

Element 30/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

2D solid elements

Type shape interpol # of polynomof disp nodes terms

C2D3 tri lin 3 1, ξ, ηC2D4 quad lin 4 1, ξ, η, ξηC2D6 tri quad 6 1, ξ, η, ξ2, ξη, η2

C2D8 quad quad 8 1, ξ, η, ξ2, ξη, η2, ξ2η, ξη2

C2D9 quad quad 9 1, ξ, η, ξ2, ξη, η2, ξ2η, ξη2, ξ2η2

Element 31/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

3D solid elements

Type shape interpol # of polynomof disp nodes terms

C3D4 tetra lin 4 1, ξ, η, ζC3D6 tri prism lin 6 1, ξ, η, ζ, ξη, ηζC3D8 hexa lin 8 1, ξ, η, ζ, ξη, ηζ, ζξ, ξηζC3D10 tetra quad 10 1, ξ, η, ζ, ξ2, ξη, η2, ηζ, ζ2, ζξC3D15 tri prism quad 15 1, ξ, η, ζ, ξη, ηζ, ξ2ζ, ξηζ, η2ζ, ζ2,

ξζ2, ηζ2, ξ2ζ2, ξηζ2, η2ζ2

C3D20 hexa quad 20 1, ξ, η, ζ, ξ2, ξη, η2, ηζ, ζ2, ζξ,ξ2η, ξη2, η2ζ, ηζ2, ξζ2, ξ2ζ, ξηζ,ξ2ηζ, ξη2ζ, ξηζ2

C3D27 hexa quad 27 ξiηjζk , (i , j , k) ∈ 0, 1, 2

Element 32/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Isoparametric representation

Example: 2D plane stress elements with n nodes

Element geometry

1 =n∑

i=1

Ni x =n∑

i=1

Nixi y =n∑

i=1

Niyi

Displacement interpolation

ux =n∑

i=1

Niuxi uy =n∑

i=1

Niuy i

Matrix form1xyux

uy

=

1 1 1 ... 1x1 x2 x3 ... xn

y1 y2 y3 ... yn

ux1 ux2 ux3 ... uxn

uy1 uy2 uy3 ... uyn

N1

N2

N3

.

.Nn

Element 33/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

The linear triangle

IFEM

–Fel

ippa

Terms in 1, ξ, ηElement 34/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

The bilinear quad

IFEM

–Fel

ippa

Terms in 1, ξ, η, ξη

Element 35/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

The quadratic triangle

IFEM

–Fel

ippa

Terms in 1, ξ, η, ξ2, ξη, η2

Element 36/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

The biquadratic quad

IFEM

–Fel

ippa

Terms in 1, ξ, η, ξ2, ξη, η2, ξ2η, ξη2, ξ2η2

Element 37/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

The 8-node quad

IFEM

–Fel

ippa

Corner nodes: Ni =1

4(1 + ξξi )(1 + ηηi )(ξξi + ηηi − 1)

Mid nodes, ξi = 0: Ni =1

2(1− ξ2)(1 + ηηi )

Mid nodes, ηi = 0: nI =1

2(1− η2)(1 + ξξi )

Terms in 1, ξ, η, ξ2, ξη, η2, ξ2η, ξη2

Element 38/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Approximated field

Polynomial basis

1ξ η

ξ2 ξη η2

ξ3 ξ2η ξη2 η3

Examples :

C2D4 (1 + ξiξ)(1 + ηiη)C2D8, corner 0.25(−1 + ξiξ + ηiη)(1 + ξiξ)(1 + ηiη)C2D8 middle 0.25(1.− ξ2)(1. + ηiη)

Element 39/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

The 2-node infinite element

Displacement is assumed to be q1 at node 1 and q2 = 0 at node 2

x ξ

x1 x2 →∞ 1 2

Interpolation

N1 =1− ξ

2N2 =

1 + ξ

2

Geometry

N∗1 such as x = x1 + α1 + ξ

1− ξN∗2 = 0

ξ =?

Resulting displacement interpolation

u(x) =??

Element 40/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

The 2-node infinite element

Displacement is assumed to be q1 at node 1 and q2 = 0 at node 2

x ξ

x1 x2 →∞ 1 2

Interpolation

N1 =1− ξ

2N2 =

1 + ξ

2Geometry

N∗1 such as x = x1 + α1 + ξ

1− ξN∗2 = 0

ξ =x − x1 − α

x − x1 + α

Resulting displacement interpolation

u(x) =?

Element 41/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

The 2-node infinite element

Displacement is assumed to be q1 at node 1 and q2 = 0 at node 2

x ξ

x1 x2 →∞ 1 2

Interpolation

N1 =1− ξ

2N2 =

1 + ξ

2Geometry

N∗1 such as x = x1 + α1 + ξ

1− ξN∗2 = 0

ξ =x − x1 − α

x − x1 + α

Resulting displacement interpolation

u(x) = N1(x) q1 = N1(ξ(x)) q1 =αq1

x − x1 + αElement 42/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Connecting element

1 2 3

7 6 5

4

lin. quad.

Connection betweena linear and aquadratic quad

Quadratic interpolation with node number 8 in the middle of 1–7:

u(M) = N1q1 + N8q8 + N7q7

On edge 1–7, in the linear element, the displacement should verify:

q8 =?

Overloaded shape function in nodes 1 and 7 after suppressing node8:

u(M) =??

Element 43/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Connecting element

1 2 3

7 6 5

4

lin. quad.

Connection betweena linear and aquadratic quad

Quadratic interpolation with node number 8 in the middle of 1–7:

u(M) = N1q1 + N8q8 + N7q7

On edge 1–7, in the linear element, the displacement should verify:

q8 = (q1 + q7)/2

Overloaded shape function in nodes 1 and 7 after suppressing node8:

u(M) =??

Element 44/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Connecting element

1 2 3

7 6 5

4

lin. quad.

Connection betweena linear and aquadratic quad

Quadratic interpolation with node number 8 in the middle of 1–7:

u(M) = N1q1 + N8q8 + N7q7

On edge 1–7, in the linear element, the displacement should verify:

q8 = (q1 + q7)/2

Overloaded shape function in nodes 1 and 7 after suppressing node8:

u(M) =

(N1 +

N8

2

)q1 +

(N7 +

N8

2

)q7

Element 45/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Contents

1 Introduction

2 Examples

3 Bibliography on finite element

4 Discrete versus continuous

5 ElementInterpolationElement list

6 Global problemFormulationMatrix formulationAlgorithm

Global problem 46/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Contents

1 Introduction

2 Examples

3 Bibliography on finite element

4 Discrete versus continuous

5 ElementInterpolationElement list

6 Global problemFormulationMatrix formulationAlgorithm

Global problem 47/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Thermal conduction

Strong form:”GIVEN r : Ω → R, a volumetric flux,

φd : Γf → R, a surface flux,T d : Γu → R, a prescribed temperature,

FIND T : Ω → R, the temperature, such as:”

in Ω φi,i = ron Γu T = T d

on ΓF −φini = Φd

Constitutive equation (Fourier, flux (W /m2) proportional to thetemperature gradient)

φi = −κijT ,j conductivity matrix: [κ] (W /m.K )

Global problem 48/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Thermal conduction (2)

Weak form:S, trial solution space, such as T = T d on Γu

V, variation space, such as δT = 0 on Γu

”GIVEN r : Ω → R, a volumetric flux,Φd : Γf → R, a surface flux,T d : Γu → R, a prescribed temperature,

FIND T ∈ S such as ∀δT ∈ V

−∫

Ω

φiδT ,i dΩ =

∫Ω

δTrdΩ +

∫ΓF

δTΦddΓ

”For any temperature variation compatible with prescribed temperaturefield around a state which respects equilibrium, the internal power

variation is equal to the external power variation: δT ,i φi is in W /m3”T is present in φi = −κijT ,j

Global problem 49/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Elastostatic

Strong form:

volume Ω with prescribed volume forces fd : σij,j + fi = 0

surface ΓF with prescribed forces Fd : F di = σijnj

surface Γu with prescribed displacements ud : ui = udi

Constitutive equation: σij = Λijklεkl = Λijkluk,l

So that: Λijkluk,lj + fi = 0

Global problem 50/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Principle of virtual power

Weak form:

volume V with prescribed volume forces : fd

surface ΓF with prescribed forces : Fd

surface Γu with prescribed displacements : ud

Virtual displacement rate u kinematically admissible (u = ud on Γu)

The variation u is such as: u = 0 on Γu. Galerkin form writes, ∀u:∫Ω

σ∼ : ε∼dΩ =

∫Ω

fd u dΩ +

∫ΓF

Fd u dS

Global problem 51/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Discrete form of virtual power

Application of Galerkin approach for continuum mechanics:

virtual displacement rate u ≡ wh ; σ∼ ≡ uh,x

ue, nodal displacements allow us to compute u and ε∼:

u = [N]ue ; ε∼ = [B]ue

Galerkin form writes, ∀ue:∑elt

(∫Ω

σ(ue).[B].ue dΩ

)=∑elt

(∫

Ω

fd .[N].ue dΩ

+

∫ΓF

Fd .[N].ue dS)

Global problem 52/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Internal and external forces

In each element e:Internal forces:

F eint =

∫Ω

σ(ue).[B] dΩ =

∫Ω

[B]T σ(ue) dΩ

External forces:

F eext =

∫Ω

fd .[N]dΩ +

∫ΓF

Fd .[N]dS

The solution of the problem: F eint(ue) = F e

ext with Newtoniterative algorithm will use the jacobian matrix :

[K e ] =∂F e

int∂ue

=

∫Ω

[B]T .∂σ∂ε

.∂ε∂ue

=

∫Ω

[B]T .∂σ∂ε

.[B] dΩ

Global problem 53/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Linear and non linear behavior

Applying the principle of virtual power ≡ Stationnary point ofPotential Energy

For elastic behavior

[K e ] =

∫Ω

[B]T .[Λ∼∼] .[B] dΩ

is symmetric, positive definite (true since σ∼ and ε∼ are conjugated)

For non linear behavior, one has to examine [Lc ] =

[∂σ∂ε

]. Note

that [Lc ] can be approached (quasi-Newton).

F eext may depend on ue (large displacements).

Global problem 54/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Elastostatic, strong and weak form, asummary

Displacementsu

Body forces f

Strains Stressesε σ

BCu

BCs

Kinematics

Constitutiveequations

Equilibrium

STRONG

BCu: u = ud on Γu

Kinematics: ε = [B] u in Ω

Constitutive equation:σ = Λε

Equilibrium: [B] σ + f = 0

BCs: σn = F on ΓF

WEAK

BCu: uh = ud on Γu

Kinematics: ε = [B] uh in Ω

Constitutive equation:σ = Λε

Equilibrium: δΠ = 0

BCs: δΠ = 0

Global problem 55/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Contents

1 Introduction

2 Examples

3 Bibliography on finite element

4 Discrete versus continuous

5 ElementInterpolationElement list

6 Global problemFormulationMatrix formulationAlgorithm

Global problem 56/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Matrix–vectors formulation of the weak formof the problem

[K ] q = F

Thermal conduction:

[K ] =

∫Ω

[B]T [κ] [B] dΩ F =

∫Ω

[N] rdΩ +

∫∂Ω

[N] ΦddΓ

Elasticity:

[K ] =

∫Ω

[B]T [Λ] [B] dΩ F =

∫Ω

[N] fddΩ +

∫∂Ω

[N]FddΓ

In each element e:Internal forces:

F eint =

∫Ω

σ(ue).[B] dΩ =

∫Ω

[B]T σ(ue) dΩ

External forces:

F eext =

∫Ω

fd .[N]dΩ +

∫ΓF

Fd .[N]dSGlobal problem 57/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

The stiffness matrix

Example of a 4-node quad and of a 20-node hexahedron ()

[B]T [D] [B] [K ]

=

3 (6) 3 (6) 8 (60) 8 (60)

8 3 3 8(60) (6) (6) (60)

The element stiffness matrix is a square matrix, symmetric, with no zeroinside.

Its size is equal to the number of dof of the element.

Global problem 58/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Nodal forces (1)

F eext =

∫ΓF

[N]T F ddS

Fn

1

5

7F t

8

4

23

6

ξ

η

η

ξ

1

−1

−1 1

Fxds = Ftdx − Fndy

Fyds = Fndx + Ftdywith

(dxdy

)= [J]

(dξdη

)

Global problem 59/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Nodal forces (2)

Integration on edge 5–7: dx =∂x

∂ξdξ dy =

∂y

∂ξdξ

Components 9, 10, for the nodes 5; 11, 12 for nodes 6; 13, 14 for nodes 7

F eext(2i − 1) = e

∫ 1

−1

Ni

(Ft

∂x

∂ξ− Fn

∂y

∂ξ

)dξ

F eext(2i) = e

∫ 1

−1

Ni

(Fn

∂x

∂ξ+ Ft

∂y

∂ξ

)dξ

Example, for a pressure Fn = p, and no shear (Ft = 0) on the 5–7 edgeof a 8-node rectangle

−a 6 x 6 a y = b represented by − 1 6 ξ 6 1 η = 1

∂x

∂ξ= a

∂y

∂ξ= 0

N5 = ξ(1 + ξ)/2 N6 = 1− ξ2 N7 = −ξ(1− ξ)/2

Global problem 60/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Nodal forces (3)

7 6 5 7 6 5

(1)

(4)

(1)

F10 = F5y = e

∫ 1

−1

1

2ξ(1 + ξ)padξ =

ap

3

F12 = F6y = e

∫ 1

−1

(1− ξ2)padξ =4ap

3

The nodal forces at the middle node are 4 times the nodal forces atcorner nodes for an uniform pressure (distribution 1–2–1–2–1... after

adding the contribution of each element)

Global problem 61/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Nodal forces (4)

Axisymmetric 8-node quad

7 6 57 6 5

(2)

(1)

z

Face of a 20-node hexahedron(4)

(4)

(4)

(4)

(−1)

(−1)

(−1)

(−1)

Global problem 62/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Nodal forces (5)

Face of a 27-node hexahedron

who knows ?

Face of a 15-node hexahedron

(3)

(3)

(3)

Global problem 63/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Assembling the global matrix

2 3

4 5

7

1

6

AB

1 1

1

2 2

3 3

3

4

4

C

2

Local versus global numbering

Global problem 64/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Assembling the global matrix

0BBBBBBBB@

F1 = FA1

F2 = FA2 +FB

1F3 = +FB

2F4 = FA

3 +FB4 +FC

1F5 = +FB

3 +FC2

F6 = +FC4

F7 = +FC3

1CCCCCCCCA

0BBBBBBBB@

q1 = qA1

q2 = qA2 = qB

1q3 = = qB

2q4 = qA

3 = qB4 = qC

1q5 = = qB

3 = qC2

q6 = = qC4

q7 = = qC3

1CCCCCCCCA

2 3

4 5

7

1

6

AB

1 1

1

2 2

3 3

3

4

4

C

2

Global problem 65/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Assembling the global matrix

11

12 3

4 5

7

1

6

AB

1 1

1

2 2

3 3

3

4

4

C

2

Global problem 66/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Assembling the global matrix

21

11 12

22

12 3

4 5

7

1

6

AB

1 1

1

2 2

3 3

3

4

4

C

2

Global problem 67/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Assembling the global matrix

21

11 12 13

22 23

3231

33

12 3

4 5

7

1

6

AB

1 1

1

2 2

3 3

3

4

4

C

2

Global problem 68/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Assembling the global matrix

21

11 12 13

1122 23

3231

33

12 3

4 5

7

1

6

AB

1 1

1

2 2

3 3

3

4

4

C

2

Global problem 69/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Assembling the global matrix

21

11 12 13

1122 23

3231

33

12 3

4 5

7

1

6

AB

1 1

1

2 2

3 3

3

4

4

C

2

Global problem 70/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Assembling the global matrix

21

11 12 13

1122

1223

2221

3231

33

12 3

4 5

7

1

6

AB

1 1

1

2 2

3 3

3

4

4

C

2

Global problem 71/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Assembling the global matrix

33

21

11 12 13

1122

1223

13

232221

3231

31 32

33

12 3

4 5

7

1

6

AB

1 1

1

2 2

3 3

3

4

4

C

2

Global problem 72/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Assembling the global matrix

44

33

1133

43

34

21

11 12 13

1122

1214

2313

23242221

4132

31

31 32

42

12 3

4 5

7

1

6

AB

1 1

1

2 2

3 3

3

4

4

C

2

Global problem 73/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Assembling the global matrix

44

33

1133

22

12

21

43

34

21

11 12 13

1122

1214

2313

23242221

4132

31

31 32

42

12 3

4 5

7

1

6

AB

1 1

1

2 2

3 3

3

4

4

C

2

Global problem 74/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Assembling the global matrix

44

33

1133

22

12

21

43

34 23

13

31

21

11 12 13

1122

1214

2313

23242221

4132

31

31 32

42

32 33

12 3

4 5

7

1

6

AB

1 1

1

2 2

3 3

3

4

4

C

2

Global problem 75/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Assembling the global matrix

44

33

1133

22

12

21

43

34 23

13

31

21

11 12 13

1122

1214

2313

23242221

4132

31

31 32

42 14

43444241

3432 33

24

12 3

4 5

7

1

6

AB

1 1

1

2 2

3 3

3

4

4

C

2

Global problem 76/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Contents

1 Introduction

2 Examples

3 Bibliography on finite element

4 Discrete versus continuous

5 ElementInterpolationElement list

6 Global problemFormulationMatrix formulationAlgorithm

Global problem 77/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Global algorithm

For each loading increment, do while ‖Riter‖ > EPSI :iter = 0; iter < ITERMAX ; iter + +

1 Update displacements: ∆uiter+1 = ∆uiter + δuiter

2 Compute ∆ε = [B].∆uiter+1 then ∆ε∼ for each Gauss point

3 Integrate the constitutive equation: ∆ε∼→ ∆σ∼, ∆αI ,∆σ∼∆ε∼

4 Compute int and ext forces: Fint(ut + ∆uiter+1) , Fe5 Compute the residual force: Riter+1 = Fint − Fe6 New displacement increment: δuiter+1 = −[K ]−1.Riter+1

Global problem 78/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Convergence

Value of the residual forces < Rε, e.g.

||R||n =

(∑i

Rni

)1/n

; ||R||∞ = maxi|Ri |

Relative values:

||Ri − Re ||||Re ||

< ε

Displacements ∣∣∣∣Uk+1 − Uk

∣∣∣∣n

< Uε

Energy [Uk+1 − Uk

]T. Rk < Wε

Global problem 79/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Bathe, K. (1982).Finite element procedures in engineering analysis.Prentice Hall, Inc.

Batoz, J. and Dhatt, G. (1991).Modelisation des structures par elements finis, I—III.Hermes.

Belytschko, T., Liu, W., and Moran, B. (2000).Nonlinear Finite Elements for Continua and Structures.

Besson, J., Cailletaud, G., Chaboche, J.-L., and Forest, S. (2001).Mecanique non–lineaire des materiaux.Hermes.

Buchanan, G. (1995).Finite element analysis.Schaum’s outlines.

Ciarlet, P. and Lions, J. (1995).

Global problem 79/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Handbook of Numerical Analysis : Finite Element Methods (P.1),Numerical Methods for Solids (P.2).North Holland.

Crisfield, M. (1991).Nonlinear Finite Element Analysis of Solids and Structures.Wiley.

Dhatt, G. and Touzot, G. (1981).Une presentation de la methode des elements finis.Maloine.

Hughes, T. (1987).The finite element method: Linear static and dynamic finite elementanalysis.Prentice–Hall Inc.

Kardestuncer, H., editor (1987).Finite Element Handbook.Mc Graw Hill.

Global problem 79/79

Introduction Examples Bibliography on finite element Discrete versus continuous Element Global problem

Mc Neal, R. (1993).Finite Element: their design and performance.Marcel Dekker.

Simo, J. and Hughes, T. (1997).Computational Inelasticity.Springer Verlag.

Zienkiewicz, O. and Taylor, R. (2000).The finite element method, Vol. I-III (Vol.1: The Basis, Vol.2: SolidMechanics, Vol. 3: Fluid dynamics).Butterworth–Heinemann.

Global problem 79/79

top related