int. symp. molecular spectroscopy ohio state univ., 2005 the ground state four dimensional morphed...

Post on 29-Jan-2016

215 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Int. Symp. Molecular SpectroscopyOhio State Univ., 2005

The Ground State Four Dimensional Morphed Potentials of HBr and HI Dimers

Collaborator: J. W. Bevan, TAMU

Funding: National Science Foundation

Robert R. LuccheseDepartment of Chemistry

Texas A&M University

Int. Symp. Molecular SpectroscopyOhio State Univ., 2005

Morphing of Intermolecular Potentials

• Compute a full potential energy surface (PES) using a quantum chemistry model

• Morph potential to obtain best possible agreement with experiment

Vmorphed R,θ1,θ2 ,φ( ) =S1 θ1,θ2 ,φ( )Vab initio Rmorph θ1,θ2 ,φ( ),θ1,θ2 ,φ( )

Rmorph θ1,θ2 ,φ( ) =S2 θ1,θ2 ,φ( ) R−RF( ) + 1+S3 θ1,θ2 ,φ( )⎡⎣ ⎤⎦RF

Int. Symp. Molecular SpectroscopyOhio State Univ., 2005

Morphing Functions

Sα θ1,θ2 ,φ( ) = Cα,iFλα,iθ1,θ2 ,φ( )

i∑

λ = lx ,n, ′θ1, ′θ2 , ′φ( )

Fλ θ1,θ2 ,φ( ) = Nλ I l1 ,l2 ,m θ1,θ2 ,φ( ) I l1 ,l2 ,m ′θ1, ′θ2 , ′φ( )m=−min l1 ,l2( )

min l1 ,l2( )

∑l2=0

lx

∑l1=0

lx

∑⎡

⎣⎢⎢

⎦⎥⎥

n

Il1 ,l2 ,l θ1,θ2 ,φ( ) = l1,m, l2 ,−ml,0 Yl1 ,m θ1,φ( )Yl2 ,−m θ2 ,0( )m∑

The Fλ are defined so that they approach Dirac delta functions located at′θ1,′θ2,′φ( ) aslx increases with n = 1.

Int. Symp. Molecular SpectroscopyOhio State Univ., 2005

Interpolation of PES

• The Vab initio must be interpolated onto a fine grid

• Interpolation is done using reproducing kernel Hilbert space (RKHS) fitting functions of Ho and Rabitz

• Interpolate the transformed function for correct behavior at large and small R

q R,Ri( ) =114

1R>

7 1−79R<

R>

⎝⎜⎞

⎠⎟

V R,Ω( )=logVab initio R,Ω( )−Vlower

−Vlower

⎝⎜⎞

⎠⎟

Int. Symp. Molecular SpectroscopyOhio State Univ., 2005

Regularized Non-Linear Least Squares

• Function to be minimized

• The C0α,i

correspond to no morphing• The regularization parameter reduces the linear

dependence among the parameters Cα,i

• One obtains the best fit of the experiment that is also as close as possible to the original ab initio potential

F Cα,i ,( ) =Okexpt−Ok

calc Cα,i( )σk

⎣⎢⎢

⎦⎥⎥

2

k=1

M

∑ +2 Cα,i −Cα,i0

( )2

α,i∑

Int. Symp. Molecular SpectroscopyOhio State Univ., 2005

Regularized Non-Linear Least Squares

• The quality of the fit is characterized by the root-mean-square deviation from the experiment

χ ( ) =1

M

Okexpt −Ok

calc Cα ,i( )

σ k

⎣⎢⎢

⎦⎥⎥

2

k=1

M

∑⎧

⎨⎪

⎩⎪

⎬⎪

⎭⎪

1 2

• (∞) gives the quality of the ab initio potential

• (0) gives the quality of an unconstrained fit

Int. Symp. Molecular SpectroscopyOhio State Univ., 2005

Types of Experimental Data Used in Morphing

• Rotation constants (B0), value of R0

• Distortion constants (DJ), curvature in R direction

• , curvature in θ direction

• Dθ , coupling between R and θ directions

• Intermolecular bending and stretching vibrational transition frequencies

• D and H isotopes• Second virial coefficients, well depth

P2 cosθ( )

Int. Symp. Molecular SpectroscopyOhio State Univ., 2005

(HX)2 Interaction Potential

• Two identical isomers• Tunneling splitting is very sensitive to the shape of

the barrier• Potential is a function of four intermolecular

coordinates

Int. Symp. Molecular SpectroscopyOhio State Univ., 2005

Data Used in (HBr)2 Fit, (v5, K)

Observable Isotopomer Fit Exp. σk

B(0,0) 10-2 cm-1 H79Br:H81Br 2.458 2.459a 0.003

B(1,0) 10-2 cm-1 H79Br:H81Br 2.423 2.425a 0.003

B(0,0) 10-2 cm-1 H79Br:D81Br 2.449 2.444b 0.003

B(0,1) 10-2 cm-1 H79Br:H81Br 2.458 2.459c 0.003

B(0,2) 10-2 cm-1 H79Br:H81Br 2.457 2.458c 0.003

B(1,1) 10-2 cm-1 H79Br:H81Br 2.424 2.424c 0.003

D(0,0) 10-8 cm-1 H79Br:H81Br 4.07 4.09a 0.01

D(1,0)10-8 cm-1 H79Br:H81Br 3.60 3.60a 0.01

D(0,0) 10-8 cm-1 H79Br:D81Br 3.99 3.97b 0.01

Int. Symp. Molecular SpectroscopyOhio State Univ., 2005

More Data Used in (HBr)2 Fit, (v5, K)

Observable Isotopomer Fit Exp. σk

P2(cos ) (H79Br)(0,0) H79Br:H81Br 0.186 0.190 0.001

P2(cos ) (H81Br)(0,0) H79Br:H81Br 0.185 0.190 0.001

P2(cos ) (H79Br)(1,0) H79Br:H81Br 0.202 0.198 0.001

P2(cos ) (H81Br)(1,0) H79Br:H81Br 0.203 0.199 0.001

P2(cos ) (H79Br)(0,0) H79Br:D81Br -0.242 -0.237 0.001

P2(cos ) (D81Br)(0,0) H79Br:D81Br 0.664 0.668 0.001

5 cm-1 H79Br:H81Br 15.03 15.03 0.01

A(5=0) cm-1 H79Br:H81Br 9.27 9.32 0.01

Int. Symp. Molecular SpectroscopyOhio State Univ., 2005

Still More Data Used in (HBr)2 Fit, (v5, K)

Observable Isotopomer Fit Exp. σk

B(T=231.9 K) 10-4 m3 mol-1 H79Br:H79Br -3.144 -3.160 0.016

B(T=333.4 K) 10-4 m3 mol-1 H79Br:H79Br -1.438 -1.434 0.007

B(T=444.5 K) 10-4 m3 mol-1 H79Br:H79Br -0.769 -0.768 0.004

G 2.73

Int. Symp. Molecular SpectroscopyOhio State Univ., 2005

Morphed (HBr)2 PES, θ2 vs θ1

Low barrier between the two equivalent structures

Int. Symp. Molecular SpectroscopyOhio State Univ., 2005

Morphed (HBr)2 PES, R vs

Near the equilibrium structure

Int. Symp. Molecular SpectroscopyOhio State Univ., 2005

Morphed (HBr)2 PES, R vs

At the top of the barrier

Int. Symp. Molecular SpectroscopyOhio State Univ., 2005

(HBr)2 Wave Functions

E = 15.03 cm–1

v5 =0 v5 =1

Int. Symp. Molecular SpectroscopyOhio State Univ., 2005

Features of the Morphed (HBr)2 PES

-680

-660

-640

-620

-600

-580

-560

7560453015

θ1 ( )deg

ab initio 3 parameter 7 parameter

4.10

4.08

4.06

4.04

4.02

4.00

3.987560453015

θ1 ( )deg

ab initio 3 parameter 7 parameter

Int. Symp. Molecular SpectroscopyOhio State Univ., 2005

(HBr)2 Potential

• Ab initio potential computed using a large TZV(3d,3f) basis set with MP2 and BSSE

• The use of the log(V) interpolation with RKHS fitting functions is dramatically better that a direct fit of V.

• χ()/ χ(10)~15.4, with 7 fitting parameters and 20 experimental observations.

Int. Symp. Molecular SpectroscopyOhio State Univ., 2005

Data Used in (HI)2 Fit, χ = 2.91

Model Exp. Uncer.

B(v4=0,v5=0,K=0) 10-2 cm-1 1.271 1.262 0.001

B(v4=1,v5=0,K=0) 10-2 cm-1 1.255 1.255 0.001

B(v4=0,v5=1,K=0) 10-2 cm-1 1.232 1.237 0.001

B(v4=0,v5=0,K=1) 10-2 cm-1 1.272 1.279 0.001

D(v4=0,v5=0,K=0) 10-8 cm-1 1.42 1.34 0.13

D(v4=1,v5=0,K=0) 10-8 cm-1 1.29 1.25 0.02

D(v4=0,v5=1,K=0) 10-8 cm-1 1.07 0.95 0.18

D(v4=0,v5=1,K=1) 10-8 cm-1 1.45 1.40 0.06

(B-C) (v4=0,v5=1,K=1) 10-4 cm-1 0.369 0.413 0.034

P2(cos ) (v4=0,v5=0,K=0) 0.212 0.213 0.002

P2(cos ) (v4=0,v5=1,K=0) 0.203 0.206 0.002

E(v4=1,v5=0,K=0)-E (v4=0,v5=0,K=1) cm-1 13.92 13.92 0.01

E(v4=0,v5=1,K=0)-E (v4=0,v5=0,K=0) cm-1 17.08 17.08 0.01

Int. Symp. Molecular SpectroscopyOhio State Univ., 2005

Morphed (HI)2 PES, θ2 vs θ1

θ2

θ1

Int. Symp. Molecular SpectroscopyOhio State Univ., 2005

(HI)2 Wave Functions

v5 =0 v5 =1E = 17.08 cm–1

Int. Symp. Molecular SpectroscopyOhio State Univ., 2005

(HI)2 Potential

• Ab initio potential computed using a aug-cc-pvtz basis set with CCSD(T) and BSSE and an ECP for I.

• χ = 2.91, with 6 fitting parameters and 13 experimental observations.

• The state seems to be very weakly tunneling in the geared motion, with a significant probability at the symmetric geometry.

• Further refinements of the potential are in progress.

Int. Symp. Molecular SpectroscopyOhio State Univ., 2005

Conclusions

• Potential morphing can lead to accurate representations in the regions of the potential which have been experimentally interrogated.

• Morphed potentials have estimated errors that increase only slowly away from the experimental region.

• Morphed potentials have yielded accurate predictions of unmeasured spectroscopic constants.

• Goal is to develop general morphing parameters that can be used to adjust a given level of ab initio theory for accurate predictions of intermolecular interactions.

top related