hans herrmann

Post on 31-Dec-2015

38 Views

Category:

Documents

3 Downloads

Preview:

Click to see full reader

DESCRIPTION

Apollonian variations. Hans Herrmann. Computational Physics IfB, ETH Zürich Switzerland. DISCO Dynamics of Complex Systems Valparaiso November 24-26, 2011. Feliz Cumpleaños !. The art of packing densely. - PowerPoint PPT Presentation

TRANSCRIPT

Hans HerrmannHans Herrmann

Apollonian variationsApollonian variations

Computational PhysicsIfB, ETH Zürich

Switzerland

DISCO DISCO Dynamics of Complex SystemsDynamics of Complex Systems

Valparaiso Valparaiso November 24-26, 2011November 24-26, 2011

Feliz Cumpleaños !

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

The art of packing densely

Dense packings of granular systems are of fundamental importance in the manufacture of hard ceramics and ultra strong concrete.

The key ingredient lies in the size distribution of grains. In the extreme case of perfect filling

of spherical beads (density one), one has Apollonian tilings with a powerlaw

distribution of sizes.

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

High performance cement (HPC)(Christian Vernet, Bouygues)(Christian Vernet, Bouygues)

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

San Andreas fault

tectonic plate 2

tectonic plate 1

gouge

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

Roller bearing ?

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

Apollonian packings

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 7

Apollonian packing

Space between disks is fractal(Mandelbrot: „self-inverse“ fractal)

of dimension

Boyd (73):

bounds: 1.300197 < < 1.314534

numerical: = 1.3058

fd

fdfd

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

Example for space filling bearing

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

construction by inversionconstruction by inversion

DD‘

C

C‘ C‘‘

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

DD‘

C

C‘ C‘‘

construction by inversionconstruction by inversion

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

DD‘

C

C‘ C‘‘

construction by inversionconstruction by inversion

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

DD‘

C

C‘ C‘‘

construction by inversionconstruction by inversion

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

construction by inversionconstruction by inversion

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

Construction of space filling bearing

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 15

Möbius transformations

mapping that maps circles into circles (in d=2)

z = point in complex plane

mapping is conformal, ie preserves angles

: with 1a b

adz

z - bz

cA a d

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 16

Solution of coordination 4

without loss of generality consider only largest disks in a strip geometry

12

34

x 3

41

2

x

center of inversion to fill largest wedgex

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

2a

17

Solution of coordination 4

invariance under reflexion

2a

disks touching periodicity

1st family 2nd family

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 18

Inversion

inversions:

x = radial distance from Inversion center

2

:A

A xx

r

2

:B

B xx

r

2 2A Ar R 2 2B Br R

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 19

Total transformation

reflexion around a:

consider B: 0th disk:

mth disk:

: 2B x xT a

0b

0m T TBb BTBbm times

2

( )2

BrB x

xT

a

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 20

Solving the odd case

m odd

last disk:

symmetric under T, ie at a

0...m B Bb T TBbm

2

2

2

2

22

..

2

B

B

B

B

a

aa

r

a

r

r

r

2

2

BZ

r

a

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 21

Solving the even case

m even

last disk:

is fixed point, ie at

0...m Tb TB TBbm

2

2

2

2

22

2..

2

BB

B

B

B

rr

rr

aa

a

ar

2

2

BZ

r

a

Br

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 22

Continuous fraction equations

m odd m even

12

22

2

.

.

.

2

m

m

m

m

m

ZZ

ZZ

Z

1

2

mtimes

22

22

2

.

.

.

2

mm

m

m

m

m

ZZ

ZZ

Z

Z

2

mtimes

1z

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 23

ResultResult

For four-fold loops one has two families: (n,m)

2cos3n n

z

2radius of inversion

half-periodnz

1st family 2nd family

half-period

radius of upper circle

radius of lower circle

AR

BR

a 2 1n mza z 2n mza z

1

2 1nA

n

m

z

zR

z

1

2

n

nA

m

z

z zR

1

2 1nB

m

m

z

zR

z

1

2

m

nB

m

z

z zR

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 24

Examples for zm

0 1 2 3 5

4 2 1

m

mz 6 2 54

34 2 2

24

3 2: 4 4 8 0x x xz x 2 4 3 2

6 : 4 12 8 16 0x x x xz x

2a r a

1 4mz

1r

11

2a

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 25

First family

touching of largest spheres:2 2 2( ) (1 )A B A BR R a R R 2 2 2 1A Ba r r 2 1n mza z

221A

n mA

nz

z zrR

22

1Bn m

Bmz

z zrR

case n=2, m=1 :1 6 2 5 2

, , 7 2 5 7 2 57 2 5

A Ba r r

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

Classification of space filling bearing

n=1 m=1 n=2 m=1

n=3 m=1 n=∞ m=1

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 27

First family

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 28

Second family

Exists additional symmetry:

On strip:A

0 2a

A is fixed point of bothinversions

( , 2 )BxA R 2, ,2A B A Br R

2 22 (2 )B Br Rx 2 22 (2 )A Ar Rx

2 4 2 4: A A B Br r r rn m 2 2( 1) ( 1)n n m mz z z za a

22

1 1 1 1, :

4 2 2 2A B A nBn m R R r r x za

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 29

Second familySecond family

2 1

forn m

az

nz

m

2 1 for

2 nzma n

2 2, for A Bn m

n m n m

nz z

z zm

z zr r

, 1 1

4 4 for A B mr r n

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 30

Second family

n = m = 0

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 31

Second family

n = 1, m = 0

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 32

Second family

n = 4, m = 1

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 33

Second family

n = m = 3

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 34

Loop 6

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011 35

Loop 8

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

Scaling laws

fdcut off = radius of smallest disk

covered area - Porosity 1

total area

- Surface sum of perimeters per unit area

p

s

Fractal dimensionFractal dimension

Disk-size distributionDisk-size distribution

2

# of disks of area per unit area

# of disks of radius per unit area

s

s

n s

N n ds

sn

fdp 2~ fds 1~

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

Scaling laws

suppose

2 1fd

1.305768 1.85fd

r = Radius of disksns ~ 2~ rrn

21~

drrnN

22~2

drrrns

232 ~1

drrnrp

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

Fractal dimensions

0 1 3

0 1,421,4321 (1)

1,40567 (10) 1,30

1 1,411,4123 (2)

1,38

3 1,36

1,301,305768

(1)

fd

2

1,33967 (5)

0 1 3

0 1,72 1,71

1 1,71 1,71

3 1,71

1,67

m

m

n

n

First family

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

Mahmoodi packing

• Reza Mahmoodi Baram

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

Rolling space-filling bearings

0.5c 0.0c

http://www.comphys.ethz.ch/hans/appo.html

See movie on:

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

Three-dimensional loop

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

Rotation of spheres without frustration

To avoid friction the tangent velocity at any contact point must be the same:

0ˆˆˆ

122211

21221121

21

rRRrRrR

vv

1

11,1,11

1

12121122

ˆ11

ˆ

j

iiiii

ijjjj rRR

rRR

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

Rotation of spheres without frustration

For a loop of n spheres, the consistency condition is:

which implies

if we choose

we have

Therefore, under the following condition we have rotating spheres without any sliding friction:

is evenn

1, 1 , 11

ˆ1 0n n i

i i i ii r

, 1 11i

i i i ic R R and

n

iiiii

inn rRR1

1,1,1

1111 ˆ11

1,11, ˆ iiiiii rRRR

n

i

n

iii

niiii

in Rcr1 1

1,1

1,1,1 01ˆ1

1

11,11

1 11j

iii

jjjj RcRR

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

Apollonian packingApollonian packing

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

Apollonian networkApollonian network

• scale-free

• small world

• Euclidean

• space-filling

• matching

with J.S. Andrade, R. Andrade and L. Da Silvawith J.S. Andrade, R. Andrade and L. Da Silva Phys. Rev. Lett., Phys. Rev. Lett., 94 94, 018702 (2005), 018702 (2005)

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

ApplicationsApplications

• Systems of electrical supply lines

• Friendship networks

• Computer networks

• Force networks in polydisperse packings

• Highly fractured porous media

• Networks of roads

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

Degree distributionDegree distribution

n-1

n- 2

2

1

2

3 3

3 3 2

3

scale

3 2

-free: (

3

)

( )

( )

,

n

k

P k k

W k km k n

n-1

n

n+1

3 2

3 3 2

1 ln 3

1.585l

2

n 2

number of sites at generation ( , ) number of vertices of degree

cummulative distribution ( ) ( , ) /

n

nk k

N nm k n k

W k m k n N

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

Small-world propertiesSmall-world properties

clustering coefficient

2number of connections between neighbors

( 1)C

k k

shortest path

chemical distance between two sitesl

0.828C lnl N

Z. Zhang et al PRE 77, 017102 (2008)Z. Zhang et al PRE 77, 017102 (2008)

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

Ising modelIsing model

coupling constant

correlation length diverges at

free energy, entropy, specific heat are smooth

magnetization

n

n c

T

J n

J T

m e T

opinionopinion

with Roberto Andradewith Roberto Andrade

DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011DISCO: Dynamics of Complex Systems, Valparaiso, November 24-26, 2011

Feliz Cumpleaños,

Eric !......

top related