finite-element electrical machine simulation...ijsol ds Ω = ∫ ⋅ r r Ωsol isol 18 dr.-ing....

Post on 28-Feb-2021

0 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Technische Universität Darmstadt, Fachbereich Elektrotechnik und InformationstechnikSchloßgartenstr. 8, 64289 Darmstadt, Germany - URL: www.TEMF.de

Dr.-

Ing.

Her

bert

De

Ger

sem

In

stitu

t für

The

orie

Ele

ktro

mag

netis

cher

Fel

der

Lecture Series

Finite-Element Electrical Machine Simulation

in the framework of the DFG Research Group 575„High Frequency Parasitic Effectsin Inverter-Fed Electrical Drives”

http://www.ew.e-technik.tu-darmstadt.de/FOR575

Dr.-Ing. Herbert De Gersemsummer semester 2006

Institut für Theorie Elektromagnetischer Felder

2

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r

V07:Coupling to External Circuits

3

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rIntroduction

x

y

zend-windingsend-rings

mℜ

field-circuit coupling

FE/FIT modelgeometrical detailsferromagnetic saturation (non-linear!!)(motional) eddy currents

circuitexternal sources/loads, (e.g. power electronic equipment)parts outside the FE model(e.g. end windings/rings)representing (linear) parts for which an equivalentcircuit suffices (e.g. homopolar shaft flux)

4

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rOverview

discrete magnetoquasistatic formulation (recapitulation)

solid conductors

stranded conductor model

circuit description

example

5

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rMagnetoquasistatics (1)

• neglect displacement currents with respect to conducting currents– Ampère-Maxwell

• magnetic vector potential– conservation of magnetic flux

• electric scalar potential (voltage)– Faraday-Lenz

DH Jt

∂∇× = +

rr r

0= +∇×rr

B A0B∇⋅ =r

B AEt t

∂ ∂∇× = − = −∇×

∂ ∂

rrr

Ar

ϕ

∂= − −∇

rr AE

Welec

Wmagn

τPloss

6

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r

AmpèreH J∇× =r r

( )B E∇× =r r

ν σ

( )sJ

AAt

∂∇× ∇× + = − ∇

∂ r

rr

123ν σ σ ϕ

1B H Hµν

= =r r r

J E=r r

σconductivity

permeability

reluctivity

Magnetoquasistatics (2)

source current density

7

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rPhysical Meaning

flux d= ⋅∫∫rr

SB Sφ

Stokes

d= ∇× ⋅∫∫r r

SA Sφ

definition magneticvector potential

rA

rB

drSdrs

φ

induced voltage

d∂

= ⋅∫r r

SA sφ

indd dd

= − ⋅∫r r

Su A s

t

S∂S

8

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rA-ϕ Formulation

H J∇× =r r

BEt

∂∇× = −

rr

. 0B∇ =r

0B A= +∇×rr

AEt

∂= − −∇ϕ

rr

H B= νr r

sJ E J= σ +r r r

( ) sAA Jt

∂∇× ν∇× +σ +σ∇ϕ =

rr r

0J∇⋅ =r

( ) 0At

⎛ ⎞∂−∇⋅ σ −∇⋅ σ∇ϕ =⎜ ⎟∂⎝ ⎠

r

magnetic vector potential, electric scalar potential

A∇×r A

t∂

− −∇∂

r

,A ϕr

ϕ uniqueandand not unique

( ),A ϕr

,A ctt

∂ψ⎛ ⎞+∇ψ ϕ− +⎜ ⎟∂⎝ ⎠

ris a solution

is a solution as well

∇ϕ

9

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rA* Formulation

H J∇× =r r

BEt

∂∇× = −

rr

. 0B∇ =r *0B A= +∇×

rr

*AEt

∂= −

rr

H B= νr r

sJ E J= σ +r r r

0J∇⋅ =r

modified magnetic vector potential

( )*

*s

AA Jt

∂∇× ν∇× +σ =

rr r

*0A

t⎛ ⎞∂

−∇⋅ σ =⎜ ⎟⎜ ⎟∂⎝ ⎠

r

*A∇×r *A

runique not unique

*Ar

*A +∇ψr

is a solution

is a solution as well

10

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rDiscretisation (1)

spatial discretisation

( )sJ

AAt

∂∇× ∇× + = − ∇

∂ r

rr

123ν σ σ ϕ

jik= if=

sd d dj jj

jj

i i idu

u Jd

vt

v vv vΩ Ω Ω

⎛ ⎞⎜ ⎟∇ × ⋅∇ × Ω + ⋅ Ω = ⋅ Ω⎜ ⎟⎝ ⎠

∑ ∫ ∫ ∫r r rrr rν σ

jim=

[ ]⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ =⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎣ ⎦j i

jji ij

duk u m f

dt

11

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rDiscretisation (2)

sd d djj ip jq

jq

pijp

qiz vz v v

duu c c J

dtΩ Ω Ω

⎛ ⎞⎜ ⎟⋅ Ω + ⋅ Ω = ⋅ Ω⎜ ⎟⎝ ⎠

∑ ∑∑ ∫ ∫ ∫r rrrr rν σ

FE, ,p qνM FE

, ,i jκM s,))

ij)

ja

FE FEs

ddt

+ =aCM Ca M j) )))% ν σ

12

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rDiscretisation (3)

stL rtL

( )st rtdL Ldtφ

+ +

mV

m=V

stRrtR

( )st rt agR R R+ + φ

φ

air gap

air gap

13

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r

FE FEs

ddt

+ =aCM Ca M j) )))% ν σ

Discretisation (4)

=b Ca)) )a)

along primary edges through primary faces

jb))

ja)

14

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

r

FE FEs

ddt

+ =

h

aCM Ca M j)

) )))%14243ν σ

h)

j))

through dual faces= along primary edges

along dual edges= through primary faces

Discretisation (5)

jj))

jh)

15

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rDiscrete A-ϕ Formulation

=Ch j)))

%

ddt

= −bCe

)))

0=Sb)) 0= +b Ca

)) )

ddt

= − − φae G)

)

ν=h M b)) )

sσ= +j M e j) )) ))

sddtν σ σ+ + φ =aCM Ca M M G j) )))%

0=Sj))% 0d

dtσ σ− − φ =aSM SM G)

% %

magnetic vector potential, electric scalar potential

Ca)

φG,φa)and

and not unique

unique

( ),φa)

, d ctdtψ⎛ ⎞+ ψ φ− +⎜ ⎟

⎝ ⎠a G)

is a solution

is a solution as well

ddt

− − φa G)

16

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rOverview

discrete magnetoquasistatic formulation (recapitulation)

solid conductors

stranded conductor model

circuit description

example

17

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rSolid Conductor Coupling

sol

sol0

dE d udtφ

⋅ − = −∫l r

l

sol

sol0 S

dE d u B dSdt

⋅ − = − ⋅∫ ∫l rr r

l

sol sol

sol0 0 S

dA dd d u A dSdt dt

− ∇ϕ⋅ − ⋅ − = − ∇× ⋅∫ ∫ ∫l l r

r rl l

sol sol

sol0 0 S

dA dd d u A ddt dt

− ∇ϕ⋅ − ⋅ − = − ⋅∫ ∫ ∫l l r

rl l l

sol

sol0

u d= − ∇ϕ⋅∫l

l

soluvoltage drop solu

choice for ?∇ϕ

current soli

sol

soli J dSΩ

= ⋅∫rr

solΩ

soli

18

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rCoupling at Reference Plane

solusoli

∇ϕ

( )sol sol sol

solAi J ds dS dSt

Ω Ω Ω

∂= ⋅ = − ∇ ⋅ − ⋅

∂∫ ∫ ∫r

r rr r σ ϕ σtotal current

∇ϕand do not necessary have to be continuous !Ar

AEt

∂= −∇ −

rr

ϕ

only

and

have to fulfill certain conditions

B A= ∇×rr

∇ϕchoose piecewise constantsuch that represents a jump at solid-conductor cross-sectionand such that

solΩϕ

1.

2.

3.

solΩ

sol

sol0

u d= − ∇ϕ⋅∫l

l

4.

19

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rCoupling at Reference Plane

app sol solu=e Q) %at primary edges

solusoli

appe)sol sol sol

Ti = Q j))

%at dual facets

solQ% = 2D incidence matrix

sol

sol solsol sol

0T

ju ij G

+ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

− ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

CM C M M Q a

Q M

)% %

% %

ν σ σ

σ

ω

ω

sol sol soldudt

⎛ ⎞= −⎜ ⎟⎝ ⎠

aj M Q)))

s sol solu=j M Q))

%σ (not divergence-free)

(divergence-free)

sol sol solTG =Q M Q% % %σ

= conductance of the reference layer

20

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rCoupling at conductor volume

solusoli

appEr

1.ϕ

it is possible to define the electric scalar potential such that thesource current is divergence-free

( ) 0−∇ ⋅ ∇ =σ ϕsolvewith boundary conditions

2.

3. dense coupling !

4.

( )sol sol sol

solAi J ds dS dSt

Ω Ω Ω

∂= ⋅ = − ∇ ⋅ − ⋅

∂∫ ∫ ∫r

r rr r σ ϕ σ

total current

se

JJ

AJt

∂= − ∇ −

∂rr

rr

123123

σ ϕ σ

21

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rCoupling at conductor volume

electrokinetic solution:

planeT = −SM S SM e)% % %σ σφ

s app sol solu= =j M e M Q)) )

σ σ

sol sol soldudt

⎛ ⎞= −⎜ ⎟⎝ ⎠

aj M Q)))

σ

solusoli

appe)app plane sol sol

T u= + =e e S Q) ) % φ

sol

sol solsol sol

0T

ju ij G

+ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

− ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

CM C M M Q a

Q M

)% ν σ σ

σ

ω

ωrelatively dense

23

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rNumerical Example

SSOR-COCG coupling matrices number of iterations

solution time (s)

single-phase transformer

(2D)(3D)

198127

1512

three-phase transformer

(2D)(3D)

756465

145176

sol str,Q Q% %

sol str,Q Q

sol str,Q Qsol str,Q Q% %

24

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rConductor Models

solusoli

zl 2D FEM

solE

solJsol

solid

con

duct

orm

odel

stru

stri

zl 2D FEM

strE

strJ str

1wS strSstrN

stra

nded

con

duct

orm

odel

25

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rStranded Conductor Model (1)

assumptions• homogeneous current distribution• no eddy currents

notice (model)• there will be an induced voltage !!• current not constant when cross-section not constant

winding function [1/m2]• computed geometrically• by field solution (lecture V10)

str,qtr

str, str, ( )q q qJ t i t=r r

str

s str,1

( )n

q qq

J t i t=

= ∑r r

26

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rStranded Conductor Model (2)

( )0, 0, ( , )=r

zJ J x yin 2D:

tstr,

sl/2U z

Nt eS

= +r r

U+Ω

U-Ω

tstr,

sl/2U z

Nt eS

= −r r

U+in Ω

U-in Ωsl/2S

str, 0Ut =r

U+ U-in \ \Ω Ω Ω

27

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rStranded Conductor Model (3)

induced voltage ~ flux linkage• which flux is linked?

for a single path

for a coil• integrating along the coil• average at the coil cross-section

d∂

= ⋅∫r r

SA sφ

str, str, dq qA t VΩ

= ⋅∫r r

ψ

28

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rStranded Conductor Model (4)

str, str, dq qA t VΩ

= ⋅∫r r

ψin 2D:

U+Ω

U-Ω

sl/2S

str, t tsl/2 sl/2

1 1d dU U

U z zN A N AS S

+ −Ω Ω

= Ω− Ω∫ ∫ψ

29

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rStranded Conductor Model (5)

s dii vJΩ

= ⋅ Ω∫j r) r)

str

s str,1

( )n

q qq

J t i t=

= ∑r r

str

str , ,

str,1

d ( )q

i q

n

i q qiq

t i tv= Ω

= ⋅ Ω∑ ∫

P

j)) r

14424

r

43

str str=j P i))

30

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rStranded Conductor Model (6)

str,str, str,

qq q q

du R i

dt= +

ψ

str, str, dq

q qA t VΩ

= ⋅∫r r

ψ

str, ,

str, str, str, dq

j q

jq q q j q

j

du R i v t

dtΩ

= + ⋅ Ω∑ ∫

P

a) rr

1442443

str str str strT d

dt= +

au R i P)

31

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rStranded Conductor Model (7)

field model+ stranded conductors+ voltage sources

str

str strstr str

0Tj

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

CM C P ai uP R

)% ν

ω

1j

−ω

symmetrisation: multiply the circuit equations by

no eddy-current term !

32

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rOverview

discrete magnetoquasistatic formulation (recapitulation)

solid conductors

stranded conductor model

circuit description

example

33

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rCoupling Requirements

keeps the FE matrixpart unchangedsparsitypreconditioners (multigrid)possible benefits thanks to structured grids (FIT)

preserves symmetryKrylov subspace solvers for symmetric systems (CG, MINRES, QMR)storage

preserves positive definitenesssolvers (CG)preconditioners (IC)

unknowns nodal voltages(+a few currents)

loop currents(+a few voltages)

twig voltageslink currents

no (yes) no (yes) yes

yes yes yes

yes (no) yes (no) no [yes]

T x fK By gB C

⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎣ ⎦

(compacted) modified nodal analysis

(compacted) loop analysis

hybridanalysis

34

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rCircuit Description (1)

1. Trace a tree through the circuitpriorities for tree

branches1.

voltage sources2.

solid conductors (field-circuit coupling)3.

capacitors (largest capacitance first)4.

resistors (largest conductance first)5.

inductors (smallest inductance first)

6.stranded conductors (field-circuit coupling)

7.current sources

highest priority, preferably twig

voltage sources

solid conductors (coupled)

capacitors (largest capacitance first)

resistors (largest conductance first)

inductors (smallest inductance first)

stranded conductors (coupled)

current sources

smallest priority, preferably link

Priority list

1 Ωn1

n0#

n3

n4

4 Ω

3 Ω

10 V

-2 A

twiglink

starting from the circuit node n0#,the twigs are selected in the order1. voltage source 10 V2. resistor 1 Ω3. resistor 3 Ω

35

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rCircuit Description (2)

2. Determine fundamental cutsets and fundamental loops

fundamental cutsetfundamental loop

n1

n0#

n3

n4

a

b

c

de

The orientation of the fundamental cutset/loop is determined by the orientation of the corresponding twig/link

A fundamental cutset is formed by 1 twigand the unique set of links completing the set of branches which would upon removal result in two disconnected circuit parts.

A fundamental loop consists of 1link and the unique path through the tree closing the loop.

Property: priority(twig) ≥ priority(branch), ∀branch ∈ fundamental cutset

Property: priority(link) ≤ priority(branch), ∀branch ∈ fundamental loop

36

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rCircuit Description (3)

3. Construct the fundamental cutset and fundamental loop matrices

⎥⎥⎥

⎢⎢⎢

⎡−=

11111

111D

⎥⎦

⎤⎢⎣

⎡−−−−

=111

1111B

fundamental cutset matrixn1

n0#

n3

n4

a

b

c

de

fundamental loop matrix

remark: Tlntw,twln, DB −=

37

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rCircuit Description (4)

4. Partition the fundamental incidence matrices

n1

n0#

n3

n4

a

b

c

de

lnotwv,D

⎥⎥⎥

⎢⎢⎢

⎡−=

11111

111D

lnitwv,D

lnitwo,D

lnotwo,D

twv twigs at which the voltage is known (voltage sources)two twigs at which an unknown voltage is assigned (“free twigs”)twu eliminated twigs (“eliminated twigs”) (not in this example)lnu eliminated links (“eliminated links”) (not in this example)lno links at which an unknown current is assigned (“free links”)lni links at which the current is known (current sources)

38

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rCircuit Description (5)

5. Write impedance/admittance matrices and voltage/current vectors

⎥⎦

⎤⎢⎣

⎡=

3/11/1

twoY

[ ]4lno =Z

[ ]2lni =i

[ ]twv 10u =

3. voltage vectorfor the voltage sources

2. impedance matrix for the free links

1. admittance matrixfor the free twigsn1

n0#

n3

n4

a

b

c

de

4. current vectorfor the current sources

39

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rCircuit Description (6)

1. write the Kirchhoff current law for each fundamental cutsetassociated with a free twig

2. write the Kirchhoff voltage law for each fundamental loop associated with a free link

intuitive approach:6. Write system of equations

n1

n0#

n3

n4

a

b

c

de

b1 0 1 00 0.333 1 21 1 4 10

c

d

uui

⎡ ⎤ ⎡ ⎤ ⎡ ⎤−⎢ ⎥ ⎢ ⎥ ⎢ ⎥

= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

two two,lno two,lni lnitwo

lno,two lno lno,twv twv lno

Y D D iuB Z B vi

−⎡ ⎤ ⎡ ⎤⎡ ⎤=⎢ ⎥ ⎢ ⎥⎢ ⎥− − ⎣ ⎦⎣ ⎦ ⎣ ⎦

remark: symmetric because Tlnotwo,twolno, DB −=

40

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rCircuit Description (7)

7. Solve system of equations & propagate the circuit solution

n1

n0#

n3

n4

a

b

c

de 0.5 A

0.5 A

2 A-2.5 A

-2.5 A

2 V10 V

0.5 V

-7.5 V

2.5 V

0 V

10 V 9.5 V

7.5 V

b 0.57.5

0.5c

d

uui

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥

= −⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

solution

twig currents:

lnilnitwo,lnolnotwo,two iDiDi

link voltages

lno lno,two two lno,twv twv u B u B u= − −−−=

lnilnitwv,lnolnotwv,twv iDiDi −−= lni lni,two two lni,twv twv u B u B u= − −

41

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rParticularities

n4 n53 V

5 Ω

1. Distinct circuit parts

2. Dangling nodesselfloop

n0#

n2n3

n1

7 Ω

dang

ling

node

a branch to a dangling node always a twigassociated fundamental cutsetonly contains the twig

-1 A

4 Ω 3. Self-loopsa self-loop

is always a linkthe associated fundamental looponly contains the link2 V

42

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rConsistency Check (1)

1. Fundamental loop consisting of voltage sources

v1 v0Problem: a voltage source is

necessarily selected as link

Treatment: check the Kirchhoffvoltage law in the associated fundamental loop

` e.g. v0-v1+v2 = 0 ??if valid

omit the voltage source linkif not valid

the circuit has no solution

v2

43

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rConsistency Check (2)

2. Fundamental cutset consisting of current sources

i1i0

Problem: a current source is necessarily selected as twig

Treatment: check the Kirchhoffcurrent law in the associated fundamental cutsete.g. i0 + i1 - i2 = 0 ??

if validreplace the current source twig by a short-circuit connection

if not validthe circuit has no solution

i2

44

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rPartial Transformation (1)

1. Stranded conductor being selected as twig

i1istr

Problem: a stranded conductor (current-driven branch) is necessarily selected as twig

Property: priority(twig) ≥ priority(branch), ∀branch ∈ associated fundamental cutset

Treatment: apply the Kirchhoff current law in the associated fundamental cutset to express the stranded-conductor current in terms of link currentse.g. istr = i1 + i2

i2

~ small and independent Schur complements

45

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rPartial Transformation (2)

2. Solid conductor being selected as link

u1 usol

u2

Problem: a solid conductor (voltage-driven branch) is necessarily selected as link

Property: priority(link) ≤ priority(branch), ∀branch ∈ associated fundamental loop

Treatment: apply the Kirchhoff voltage law in the associated fundamental loop to express the solid-conductor voltage in terms of twig voltagee.g. usol = u1 + u2

~ small and independent Schur complements

46

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rTopological Changes (1)

1. Switching elements closes (switch, diode, thyristor,…)

Problem: the priority of a branch increases during (transient) simulation

Treatment: consider associated fundamental loop and possibly change link/twig-mode with the branch with the lowest priority

1 11/R G=

2 21/R G=

( )U t

1 11/R G=

2 21/R G=

( )U t

1 1

2 2

0 00 0

G uG u

⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

1 1

2 2

1 01

G uR i U

⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦ ⎣ ⎦

47

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rTopological Changes (2)

2. Switching element opens (switch, diode, thyristor,…)

Problem: the priority of a branch decreases during (transient) simulation

Treatment: consider associated fundamental cutset and possibly change link/twig-mode with the branch with the highest priority

1 11/R G=

2 21/R G=

( )U t

1 11/R G=

2 21/R G=

( )U t

1 1

2 2

0 00 0

G uG u

⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

1 1

2 2

1 01

G uR i U

⎡ ⎤ ⎡ ⎤ ⎡ ⎤=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦ ⎣ ⎦

49

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rField-Circuit Coupling

1. magnetoquasistatic PDE in terms of the magnetic vector potential2. Kirchhoff current law (applied for fundamental cutsets)3. Kirchhoff voltage law (applied for fundamental loops)+ branch relations for solid and stranded conductors+ branch relations for resistors, capacitors, inductors, ...

two lno

two two two two,lno two two,lni lni

lno lno,twu twulno lno,two lno lno

0T

T

ν σ σ

σ

⎡ ⎤+ α − − ⎡ ⎤⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥− χ + χα χ = −χ⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ χ⎣ ⎦− −χ −χ −χα ⎣ ⎦⎢ ⎥⎣ ⎦

CM C M M Q Q aQ M G C D u D i

i B uQ B R L

)%

symmetrisation factorfactor determined by the time integrator

56

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rOther Applications

appφ

appΘ

1,wΓ

2,wΓ

0,gΓ

0,wΓ

appφ

appΘ

1,gΓ

2,gΓ

1,wΓ

2,wΓ

dielectricum

electrode

line of symmetry

magneticshort-circuitconnection

~

external electric circuit

U CL

R

3. electrokinetic field+ magnetic circuit+ electric circuit

1. magnetic field + magnetic circuit

2. magnetic field + analytical model+ electric circuit

57

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rOverview

discrete magnetoquasistatic formulation (recapitulation)

solid conductors

stranded conductor model

circuit description

example

58

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rTransformer (1)

secondary coil(600 turns)

primary bars

symmetry plane (magnetic BC)

flux walls(electric BC)

iron yoke parts

59

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rTransformer (2)

C1C2 D1 D2

C1 C2 D1 D22D FE

Rload

770 A

60

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rTransformer (3)

no-load operation

D1 8.4 mV 89u = ∠ o

D2 8.1 mV 89u = ∠ oloadR = ∞

real time instant

C1C2 D1 D2

C1 6.4 mV 90u = ∠ o

C2 5.0 V 90u = ∠ o

imaginary time instant

C1C2 D1 D2

61

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rTransformer (4)

load operation

D1 1.0 mV 72u = ∠ o

D2 1.2 mV 74u = ∠ oload 0.1R = Ω

real time instant

C1C2 D1 D2

C1 0.20 V 85u = ∠ o

C2 0.23 V 60u = ∠ o

imaginary time instant

C1C2 D1 D2

62

Dr.-

Ing.

Her

bert

De

Ger

sem

Inst

itut f

ür T

heor

ie E

lekt

rom

agne

tisch

er F

elde

rTransformer (5)

10-5

100

105

0

1

2

3

4

5

6

load resistance (Ohm)

seco

ndar

y po

wer

con

sum

ptio

n (W

)

10-4

10-2

100

102

0

1

2

3

4

5

6

secondary current (A)

seco

ndar

y vo

ltage

(V)

Technische Universität Darmstadt, Fachbereich Elektrotechnik und InformationstechnikSchloßgartenstr. 8, 64289 Darmstadt, Germany - URL: www.TEMF.de

Dr.-

Ing.

Her

bert

De

Ger

sem

In

stitu

t für

The

orie

Ele

ktro

mag

netis

cher

Fel

der

Lecture Series

Finite-Element Electrical Machine Simulation

http://www.ew.e-technik.tu-darmstadt.de/FOR575NEXT LECTURE : THURSDAY, July 6th 2006

V08: Modelling and Simulation of Induction Machines

Dr.-Ing. Herbert De Gersemsummer semester 2006

Institut für Theorie Elektromagnetischer Felder

top related