ese370: circuit-level modeling, design, and optimization ...ese370/fall2017/handouts/lec12.pdf ·...

Post on 09-Feb-2020

5 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems

Lec 12: October 4, 2017 Scaling

Penn ESE 370 Fall 2017 - Khanna

Today

!  VLSI Scaling Trends/Disciplines !  Effects !  Alternatives (cheating)

Penn ESE 370 Fall 2017 - Khanna 2

Scaling

!  Premise: features scale “uniformly” "  everything gets better in a predictable manner

!  Parameters: #  λ (lambda) -- Mead and Conway (Day14) #  F -- Half pitch – ITRS (F=2λ) #  S – scale factor – Rabaey

#  F’=S×F

Penn ESE 370 Fall 2017 - Khanna 3

ITRS Roadmap

!  International Technology Roadmap for Semiconductors "  Try to predict where industry going

!  ITRS 2.0 started in 2015 with new focus "  System Integration, Heterogeneous Integration,

Heterogeneous Components, Outside System Connectiviy, More Moore, Beyond CMOS and Factory Integartion.  

!  http://www.itrs2.net/

Penn ESE 370 Fall 2017 - Khanna 4

Microprocessor Trans Count 1971-2015

5 Kenneth R. Laker, University of Pennsylvania, updated 20Jan15

Curve shows transistor count doubling every

two years Pentium

4004 8006

8080 Mot 6800

8086

Mot 68000 80286

80386

80486

MOS 6502 Zilog Z80

80186

AMD K5 Pentium II

Pentium III AMD K7

Pentium 4 AMD K8

AMD K10 AMD 6-Core Opteron 2400 4-Core i7

2-Core Itanium 2 6-Core i7 6-Core i7 16-Core SPARC T3

10-Core Xenon IBM 4-Core z196 IBM 8-Core POWER7

4-Core Itanium Tukwilla

  2015: Oracle SPARC M7, 20 nm CMOS, 32-Core, 10B 3-D FinFET transistors.

2015 Penn ESE 370 Fall 2017 - Khanna

Trend – “Minimum Feature Size vs. Year

6

Process Node/”Minimum” Feature

Year 1960 1980 2000 2020 2040

100 µm

10 µm

1 µm

0.1 µm

10 nm

1 nm

0.1 nm

Integrated Circuit History

0.18 µm in 1999 ITRS Roadmap

Transition Region

Quantum Devices

Atomic Dimensions

“Minimum” Feature Measure = line/gate conductor width or half-pitch (adjacent 1st metal layer lines or adjacent transistor gates)

Penn ESE 370 Fall 2017 - Khanna

NOT SO Distant Future

Intel Cost Scaling

7

http://www.anandtech.com/show/8367/intels-14nm-technology-in-detail

Penn ESE 370 Fall 2017 - Khanna

Moore’s Law Impact on Intel uComputers

8 2010 YEAR

Serial data links operating at 10 Gbits/sec.

Increased reuse of logic IP, i.e. designs and cores.

2BT µP (Intel Itanium Tukwila) 4-Core chip (65 nm) introduced Q1 2010.

3BT mP (Intel Itanium Poulson) 8-Core chip (32 nm) to be introduced 2012.

Introduces 22 nm Tri-gate Transistor Tech.

Complexity - # transistors Double every Two Years 0.022um

2011

0.032um 2009

Min Feature

Size

Penn ESE 370 Fall 2017 - Khanna

More Moore $ Scaling

!  Geometrical Scaling  "  continued shrinking of horizontal and vertical physical

feature sizes

!  Equivalent Scaling  "  3-dimensional device structure improvements and new

materials that affect the electrical performance of the chip even if no geometrical scaling

!  Design Equivalent Scaling "  design technologies that enable high performance, low

power, high reliability, low cost, and high design productivity even if neither geometrical nor equivalent scaling can be used

9 Penn ESE 370 Fall 2017 - Khanna

22nm 3D FinFET Transistor

10

Tri-Gate transistors with multiple fins connected together

increases total drive strength for higher performance

http://download.intel.com/newsroom/kits/22nm/pdfs/22nm-Details_Presentation.pdf

High-k gate

dielectric

Penn ESE 370 Fall 2017 - Khanna

More-than-Moore

11

“More-than-Moore”, International Road Map (IRC) White Paper, 2011.

International Technology Road Map for Semiconductors

Scal

ing

Penn ESE 370 Fall 2017 - Khanna

Semiconductor System Integration – More Than Moore's Law

12

1010

109

108

107

106

105

104

103

102

10

Transistors/cm2

1010

109

108

107

106

105

104

103

102

10

Com

ponents/cm2

1970 1980 1990 2000 2010 2020

Multichip Module

System- in-package

(SIP) System-

on-package (SOP)

R. Tummala, “Moore's Law Meets Its Match”, IEEE Spectrum, June, 2006

SOP law for system integration. As components shrink and boards all but disappear, component density will double every year or so.

Penn ESE 370 Fall 2017 - Khanna

Improvement Trends for VLSI SoCs Enabled by Geometrical and Equivalent Scaling

!  TRENDS: !  Higher Integration level 

"  exponentially increased number of components/transistors per chip/package.

!  Performance Scaling "  combination of Geometrical

(shrinking of dimensions) and Equivalent (innovation) Scaling.

!  System implementation "  SoC + increased use of  SiP -

> SOP

!  CONSEQUENCES: !  Higher Speed

"  CPU clock rate at multiple GHz + parallel processing.

!  Increased Compactness & less weight  "  increasing

system integration.

!  Lower Power  "  Decreasing energy

requirement per function.

!  Lower Cost "  Decreasing cost per

function.

13 Penn ESE 370 Fall 2017 - Khanna

Societal Needs

Penn ESE 370 Fall 2017 - Khanna 14

More Moore $ Scaling

!  Examples: "  Design-for-variability "  Low power design (sleep modes, clock gating, multi-

Vdd, etc.) "  Multi-core SOC architectures

15 Penn ESE 370 Fall 2017 - Khanna

Preclass 1

!  Scaling from 32nm $ 22nm? "  Scaling minimum gate length "  And pitch distance

Penn ESE 370 Fall 2017 - Khanna 16

Half Pitch (= Pitch/2) Definition

(Typical MPU/ASIC)

(Typical DRAM)

 Poly  Pitch

 Metal  Pitch

Source: 2001 ITRS - Exec. Summary, ORTC Figure, Andrew Kahng Penn ESE 370 Fall 2017 - Khanna 17

MOS Transistor Scaling - (1974 to present)

S=0.7 per technology node

[0.5x per 2 nodes] Pitch Gate

Source: 2001 ITRS - Exec. Summary, ORTC Figure, Andrew Kahng Penn ESE 370 Fall 2017 - Khanna 18

250 -> 180 -> 130 -> 90 -> 65 -> 45 -> 32 -> 22 -> 16

0.5x

0.7x 0.7x

N N+1 N+2

Log

Hal

f-P

itch

Linear Time

1994 NTRS - .7x/3yrs

Actual - .7x/2yrs

19 Penn ESE 370 Fall 2017 - Khanna Source: 2001 ITRS - Exec. Summary, ORTC

Figure, Andrew Kahng

Node Cycle Time:

Scaling Calculator

Scaling

!  Channel Length (L) !  Channel Width (W) !  Oxide Thickness (Tox) !  Doping (Na) !  Voltage (V)

Penn ESE 370 Fall 2017 - Khanna 20

Full Scaling (Ideal Scaling)

!  Channel Length (L) S !  Channel Width (W) S !  Oxide Thickness (Tox) S !  Doping (Na) 1/S !  Voltage (V) S

Penn ESE 370 Fall 2017 - Khanna 21

Effects on Physical Properties and Specs?

!  Area !  Capacitance !  Resistance !  Threshold (Vth) !  Current (Id) !  Gate Delay (τgd) !  Wire Delay (τwire) !  Power

Penn ESE 370 Fall 2017 - Khanna 22

Area

!  λ % λS ! Area impact? !  Α = L × W!  Α % ΑS2

!  32nm % 22nm !  50% area !  2 × transistor capacity

for same area

L

W S=0.7

Penn ESE 370 Fall 2017 - Khanna 23

Capacitance

!  Capacitance per unit area scaling?

"  Cox= εSiO2/Tox

"  Tox% S×Tox

"  Cox % Cox/S

Penn ESE 370 Fall 2017 - Khanna 24

S=0.7

Capacitance

!  Gate Capacitance scaling?

#  Cgate= A×Cox

#  Α % Α×S2

#  Cox % Cox/S#  Cgate % S×Cgate

Penn ESE 370 Fall 2017 - Khanna 25

Resistance

! Resistance scaling? ! R=ρL/(W*t) ! W$ S×W! L, t remain similar (not scaled) ! R $ R/S

Penn ESE 370 Fall 2017 - Khanna 26

Threshold Voltage

! VTH% S×VTH

Penn ESE 370 Fall 2017 - Khanna 27

Current

!  Which Voltages matters here? (Vgs,Vds,Vth…) !  Transistor charging looks like

voltage-controlled current source !  Saturation Current scaling?

Id=(µCOX/2)(W/L)(Vgs-VTH)2

Vgs=V$ S×V

VTH$ S×VTH

W$ S×WL$ S×LCox $ Cox/S

Penn ESE 370 Fall 2017 - Khanna 28

Current

!  Which Voltages matters here? (Vgs,Vds,Vth…) !  Transistor charging looks like

voltage-controlled current source !  Saturation Current scaling?

Id=(µCOX/2)(W/L)(Vgs-VTH)2

Vgs=V$ S×V

VTH$ S×VTH

W$ S×WL$ S×LCox $ Cox/S

Id=(µCOX/2S)(SW/SL)(SVgs-SVTH)2

Penn ESE 370 Fall 2017 - Khanna 29

Current

!  Which Voltages matters here? (Vgs,Vds,Vth…) !  Transistor charging looks like

voltage-controlled current source !  Saturation Current scaling?

Id=(µCOX/2)(W/L)(Vgs-VTH)2

Vgs=V$ S×V

VTH$ S×VTH

W$ S×WL$ S×LCox $ Cox/S Id$ S×Id

Penn ESE 370 Fall 2017 - Khanna 30

Current

!  Velocity Saturation Current scaling?

Vgs=V$ S×V

VTH$ S×VTH

L$ S×L W$ S×WCox $ Cox/S

Penn ESE 370 Fall 2017 - Khanna 31

Current

!  Velocity Saturation Current scaling?

Vgs=V$ S×V

VTH$ S×VTH

L$ S×L W$ S×WCox $ Cox/S

VDSAT $ S×VDSAT

VDSAT ≈Lνsatµn

Penn ESE 370 Fall 2017 - Khanna 32

Current

!  Velocity Saturation Current scaling?

Vgs=V$ S×V

VTH$ S×VTH

L$ S×L W$ S×WCox $ Cox/S

VDSAT $ S×VDSAT

Id$ S×Id

IDS ≈νsatCOXW VGS −VTH −VDSAT

2%

& '

(

) *

VDSAT ≈Lνsatµn

Penn ESE 370 Fall 2017 - Khanna 33

Gate Delay

#  Gate Delay scaling? #  τgd=Q/I=(CV)/I #  V$ S×V

#  Id $ S×Id

#  C $ S×C

Note: Ids modeled as current source; V is changing with scale

factor

Penn ESE 370 Fall 2017 - Khanna 34

Gate Delay

#  Gate Delay scaling? #  τgd=Q/I=(CV)/I #  V$ S×V

#  Id $ S×Id

#  C $ S×C

#  τgd $ S×τgd

Note: Ids modeled as current source; V is changing with scale

factor

Penn ESE 370 Fall 2017 - Khanna 35

Wire Delay

#  Wire delay scaling? #  τwire=R×C

#  R $ R/S #  C $ S×C #  τwire $ τwire

!  …assuming (logical) wire lengths remain constant...

Penn ESE 370 Fall 2017 - Khanna 36

Power Dissipation (Dynamic)

!  Capacitive (Dis)charging scaling?

! P=(1/2)CV2f

! V$ S×V

! C $ S×C

! P$ S3×P

Penn ESE 370 Fall 2017 - Khanna 37

Power Dissipation (Dynamic)

!  Capacitive (Dis)charging scaling?

! P=(1/2)CV2f

! V$ S×V

! C $ S×C

! P$ S3×P

!  Increase Frequency?

!  τgd $ S×τgd

! So: f $ f/S

! P $ S2×P

Penn ESE 370 Fall 2017 - Khanna 38

Effects?

!  Area S2 !  Capacitance S !  Resistance 1/S !  Threshold (Vth) S !  Current (Id) S !  Gate Delay (τgd) S !  Wire Delay (τwire) 1 !  Power S3, S2 (w/ freq scaling)

Penn ESE 370 Fall 2017 - Khanna 39

S=0.7

Power Density

!  P% S2P (increased frequency)!  P% S3P (same frequency)!  A % S2A

!  Power Density: P/A two cases? "  P/A % P/A increase freq. "  P/A % S×P/A same freq.

Penn ESE 370 Fall 2017 - Khanna 40

Cheating…

!  Don’t like some of the implications !  High resistance wires !  Higher capacitance !  Atomic-scale dimensions

!  …. Quantum tunneling

!  Need for more wiring !  Not scale speed fast enough

Penn ESE 370 Fall 2017 - Khanna 41

Improving Resistance

! R=ρL/(W×t) ! W$ S×W! L, t similar ! R $ R/S

Penn ESE 370 Fall 2017 - Khanna 42

Improving Resistance

! R=ρL/(W×t) ! W$ S×W! L, t similar ! R $ R/S

What might we do? Didn’t scale t quite as fast $ now taller than wide.

Decrease ρ (copper) – introduced 1997 http://www.ibm.com/ibm100/us/en/icons/copperchip/

Penn ESE 370 Fall 2017 - Khanna 43

Capacitance and Leakage

!  Capacitance per unit area "  Cox= εSiO2

/Tox

"  Tox% S×Tox

"  Cox % Cox/S

What’s wrong with tox = 1.2nm?

source: Borkar/Micro 2004

Penn ESE 370 Fall 2017 - Khanna 44

Capacitance and Leakage

!  Capacitance per unit area "  Cox= εSiO2

/Tox

"  Tox% S×Tox

"  Cox % Cox/S

What might we do? Reduce dielectric constant, ε, and increase

thickness to mimic tox scaling. Penn ESE 370 Fall 2017 - Khanna 45

ITRS 2009 Table PIDS3B Low Operating Power Technology Requirements

Grey cells delineate one of two time periods: either before initial production ramp has started for ultra-thin body fully depleted (UTB FD) SOI or multi-gate

(MG) MOSFETs, or beyond when planar bulk or UTB FD MOSFETs have reached the limits of practical scaling (see the text and the table notes for further

discussion).

Year of Production 2009 2010 2011 2012 2013 2014 2017 2017 2017 2018 2019 2020 2021 2022 2023 2024 MPU/ASIC Metal 1 (M1) ½ Pitch (nm) (contacted) 54 45 38 32 27 24 21 18.9 16.9 15 13.4 11.9 10.6 9.5 8.4 7.5 Lg: Physical Lgate for High Performance logic (nm) 29 27 24 22 20 18 17 15.3 14 12.8 11.7 10.7 9.7 8.9 8.1 7.4 Lg: Physical Lgate for Low OperatingPower (LOP) logic (nm) [1] 32 29 27 24 22 18 17 15.3 14 12.8 11.7 10.7 9.7 8.9 8.1 7.4 EOT: Equivalent Oxide Thickness (nm) [2] Extended planar bulk 1 0.9 0.9 0.85 0.8 UTB FD 0.9 0.85 0.8 0.75 0.7 MG 0.8 0.8 0.75 0.73 0.7 0.7 0.65 0.65 0.6 0.6 Gate poly depletion (nm) [3] Bulk 0.27 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Channel doping (E18 /cm3) [4] Extended Planar Bulk 3 3.7 4.5 5 5.5 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 Junction depth or body Thickness (nm) [5] Extended Planar Bulk (junction) 14 13 11.5 10 9 UTB FD (body) 7 6.2 6 5.1 4.7 MG (body) 8 7.6 7 6.4 5.8 5.4 4.8 4.4 4.2 4 EOTelec: Electrical Equivalent Oxide Thickness (nm) [6] Extended Planar Bulk 1.64 1.53 1.23 1.18 1.14 UTB FD 1.3 1.25 1.2 1.15 1.1 MG 1.2 1.2 1.15 1.13 1.1 1.1 1.05 1.05 1 1

Penn ESE 370 Fall 2017 - Khanna 46

High-K dielectric Survey

Wong/IBM J. of R&D, V46N2/3P133—168, 2002 Penn ESE 370 Fall 2017 - Khanna 47

Intel NYT Announcement

!  Intel Says Chips Will Run Faster, Using Less Power "  NYT 1/27/07, John Markov "  Claim: “most significant change in the

materials used to manufacture silicon chips since Intel pioneered the modern integrated-circuit transistor more than four decades ago”

"  “Intel’s advance was in part in finding a new insulator composed of an alloy of hafnium…will replace the use of silicon dioxide.”

Penn ESE 370 Fall 2017 - Khanna 48

Wire Layers = More Wiring

Penn ESE 370 Fall 2017 - Khanna 49

Gate Delay

#  τgd=Q/I=(CV)/I #  V$ S×V #  Id=(µCOX/2)(W/L)(Vgs-VTH)2

#  Id $ S×Id

#  C $ S×C

#  τgd $ S×τgd

How might we accelerate?

Penn ESE 370 Fall 2017 - Khanna 50

Improving Gate Delay More

#  τgd=Q/I=(CV)/I #  V$ V #  Id=(µCOX/2S)(SW/SL)(Vgs-VTH)2

#  Id $ Id/S#  C $ S×C

#  τgd $ S2×τgd

Don’t scale V!

How might we accelerate?

Penn ESE 370 Fall 2017 - Khanna 51

But… Power Dissipation (Dynamic)

!  Capacitive (Dis)charging

#  P=(1/2)CV2f #  V$ V#  C $ S×C #  P$ S×P

Penn ESE 370 Fall 2017 - Khanna 52

But… Power Dissipation (Dynamic)

!  Capacitive (Dis)charging

#  P=(1/2)CV2f #  V$ V#  C $ S×C #  P$ S×P

!  Increase Frequency? #  f $ f/S2 #  P $ P/S

If don’t scale V, power dissipation doesn’t scale down!

Penn ESE 370 Fall 2017 - Khanna 53

…And Power Density

!  P$ P/S (increase frequency)!  Α $ S2×Α!  What happens to power density?

Penn ESE 370 Fall 2017 - Khanna 54

…And Power Density

!  P$ P/S (increase frequency)!  Α $ S2×Α!  What happens to power density?

!  P/A $ (1/S3)P

!  Power Density Increases

…this is where some companies have gotten into trouble…

Penn ESE 370 Fall 2017 - Khanna 55

Historical Voltage Scaling

!  Frequency impact? !  Power Density impact?

http://software.intel.com/en-us/articles/gigascale-integration-challenges-and-opportunities/

Penn ESE 370 Fall 2017 - Khanna 56

Scale V separately with Factor U

!  τgd=Q/I=(CV)/I ! V$U×V

Penn ESE 370 Fall 2017 - Khanna 57

Scale V separately with Factor U

!  τgd=Q/I=(CV)/I ! V$U×V!  Id=(µCOX/2S)(SW/SL)(UVgs-UVTH)2

!  Id $ U2/S×Id

! C $ S×C

Penn ESE 370 Fall 2017 - Khanna 58

Scale V separately with Factor U

!  τgd=Q/I=(CV)/I ! V$U×V!  Id=(µCOX/2S)(SW/SL)(UVgs-UVTH)2

!  Id $ U2/S×Id

! C $ S×C

!  τgd $ (SU/(U2/S))×τgd

!  τgd $ (S2/U)×τgd

Penn ESE 370 Fall 2017 - Khanna 59

Scale V separately with Factor U

!  τgd=Q/I=(CV)/I ! V$U×V!  Id=(µCOX/2S)(SW/SL)(UVgs-UVTH)2

!  Id $ U2/S×Id

! C $ S×C

!  τgd $ (SU/(U2/S))×τgd

!  τgd $ (S2/U)×τgd

!  f $ (U/S2)×f

Ideal scale factors: S=1/100 U=1/100 τ=1/100 fideal=100

Penn ESE 370 Fall 2017 - Khanna 60

Scale V separately with Factor U

!  τgd=Q/I=(CV)/I ! V$U×V!  Id=(µCOX/2S)(SW/SL)(UVgs-UVTH)2

!  Id $ U2/S×Id

! C $ S×C

!  τgd $ (SU/(U2/S))×τgd

!  τgd $ (S2/U)×τgd

!  f $ (U/S2)×f

Ideal scale factors: S=1/100 U=1/100 τ=1/100 fideal=100

Penn ESE 370 Fall 2017 - Khanna 61

What are U and S?

Scale V separately with Factor U

!  τgd=Q/I=(CV)/I ! V$U×V!  Id=(µCOX/2S)(SW/SL)(UVgs-UVTH)2

!  Id $ U2/S×Id

! C $ S×C

!  τgd $ (SU/(U2/S))×τgd

!  τgd $ (S2/U)×τgd

!  f $ (U/S2)×f

Ideal scale factors: S=1/100 U=1/100 τ=1/100 fideal=100

Cheating factors: S=1/100 U=1/10

Penn ESE 370 Fall 2017 - Khanna 62

How much faster are gates?

Scale V separately with Factor U

!  τgd=Q/I=(CV)/I ! V$U×V!  Id=(µCOX/2S)(SW/SL)(UVgs-UVTH)2

!  Id $ U2/S×Id

! C $ S×C

!  τgd $ (SU/(U2/S))×τgd

!  τgd $ (S2/U)×τgd

!  f $ (U/S2)×f

Ideal scale factors: S=1/100 U=1/100 τ=1/100 fideal=100

Cheating factors: S=1/100 U=1/10 τ=1/1000 fcheat=1000 fcheat/fideal=10

Penn ESE 370 Fall 2017 - Khanna 63

Power Density Impact

!  P = 1/2CV2 f !  P $ S U2 (U/S2) = U3/S !  P/A = (U3/S) / S2 = U3/S3

Penn ESE 370 Fall 2017 - Khanna 64

Power Density Impact

!  P = 1/2CV2 f !  P $ S U2 (U/S2) = U3/S !  P/A = (U3/S) / S2 = U3/S3

!  U=1/10 S=1/100 !  P/A $ 1000 (P/A)

Penn ESE 370 Fall 2017 - Khanna 65

Power Density Impact

!  P = 1/2CV2 f !  P $ S U2 (U/S2) = U3/S !  P/A = (U3/S) / S2 = U3/S3

!  U=1/10 S=1/100 !  P/A $ 1000 (P/A)

!  Compare with ideal scaling: !  P/A $ (1/S3)P (ideal scaling) !  P/A $ 1,000,000 (P/A) (ideal scaling)

Penn ESE 370 Fall 2017 - Khanna 66

uProc Clock Frequency

The Future of Computing Performance: Game Over or Next Level? National Academy Press, 2011

http://www.nap.edu/catalog.php?record_id=12980

MHz

Penn ESE 370 Fall 2017 - Khanna 67

uP Power Density

Watts

The Future of Computing Performance: Game Over or Next Level? National Academy Press, 2011

http://www.nap.edu/catalog.php?record_id=12980 Penn ESE 370 Fall 2017 - Khanna 68

Conventional Scaling

!  Ends in your lifetime !  Perhaps already:

"  "Basically, this is the end of scaling.” "  May 2005, Bernard Meyerson, V.P. and chief technologist for

IBM's systems and technology group

Penn ESE 370 Fall 2017 - Khanna 69

ITRS 2.0 Report 2015

!  “After 2021, the report forecasts, it will no longer be economically desirable for companies to continue traditional transistor miniaturization in microprocessors.”

Penn ESE 370 Fall 2017 - Khanna 70

BUT…

Penn ESE 370 Fall 2017 - Khanna 71

Source:https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/09/mark-bohr-on-continuing-moores-law.pdf

BUT…

Penn ESE 370 Fall 2017 - Khanna 72

Source:https://newsroom.intel.com/newsroom/wp-content/uploads/sites/11/2017/09/mark-bohr-on-continuing-moores-law.pdf

Big Ideas

!  Moderately predictable VLSI Scaling "  unprecedented capacities/capability growth for

engineered systems "  change

"  be prepared to exploit "  account for in comparing across time "  …but not for much longer

Penn ESE 370 Fall 2017 - Khanna 73

Admin

!  HW5 "  More transistor practice "  Hard – prepares you for design project 1 "  Due Wednesday

!  Midterm "  Grades and solutions posted "  Pick up from me after class

Penn ESE 370 Fall 2017 - Khanna 74

top related