energy savings through metering

Post on 23-Jun-2015

639 Views

Category:

Documents

4 Downloads

Preview:

Click to see full reader

DESCRIPTION

This presentation provides details about how exactly to get the most from the data available from energy meters.It is acknowledged by those working in the energy industry that it is rare for more than 50% of the savings potential available from metered data is used. This presentation points to where to find those "hidden" savings. Pleace contact me for more information.

TRANSCRIPT

Andy WatsonDirector – Sim Energy Ltd

In partnership with BMSi Ltd

Energy Savings Through Energy Savings Through MeteringMetering

Why meter?Why meter?

• “You cannot manage what you cannot measure”

• But you can reduce energy consumption without metering….!

• You cannot know how efficient plant:• Should be• Could be• Is

What benefit

M&TDevelopment &

Interaction

Returns

Devolvement

Install

Raw data & quick wins

Benchmarking & exception reports

Driving factor and CUSUM analysis

Model study…

• A most unusual building…

Phase 1 - What would you normally get…

Quarterly useage Quarterly cost

Summary Electricity Gas Electricity Gas

Spring 96,041 37,230 £ 9,604 £ 1,117

Summer 166,431 14,673 £ 16,643 £ 440

Autumn 104,636 26,864 £ 10,464 £ 806

Winter 103,888 96,360 £ 10,389 £ 2,891

Total 470,996 175,127 £ 47,099.60 £5,253.81

Phase 2 – AMR and 24hr profiles

Electricity - Spring

0

20

40

60

80

100

120

00:0

001

:00

02:0

003

:00

04:0

005

:00

06:0

007

:00

08:0

009

:00

10:0

011

:00

12:0

013

:00

14:0

015

:00

16:0

017

:00

18:0

019

:00

20:0

021

:00

22:0

023

:00

Electricity - Summer

0

20

40

60

80

100

120

00:0

001

:00

02:0

003

:00

04:0

005

:00

06:0

007

:00

08:0

009

:00

10:0

011

:00

12:0

013

:00

14:0

015

:00

16:0

017

:00

18:0

019

:00

20:0

021

:00

22:0

023

:00

kW

Electricity - Autumn

0

20

40

60

80

100

120

00:0

001

:00

02:0

003

:00

04:0

005

:00

06:0

007

:00

08:0

009

:00

10:0

011

:00

12:0

013

:00

14:0

015

:00

16:0

017

:00

18:0

019

:00

20:0

021

:00

22:0

023

:00

kW

Electricity - Winter

0

20

40

60

80

100

120

00:0

001

:00

02:0

003

:00

04:0

005

:00

06:0

007

:00

08:0

009

:00

10:0

011

:00

12:0

013

:00

14:0

015

:00

16:0

017

:00

18:0

019

:00

20:0

021

:00

22:0

023

:00

kW

Gas - Spring

0

10

20

30

40

50

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

kW

Gas - Summer

05

101520253035404550

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

kW

Gas - Autumn

05

101520253035404550

00:0

0

01:0

0

02:0

0

03:0

0

04:0

0

05:0

0

06:0

0

07:0

0

08:0

0

09:0

0

10:0

0

11:0

0

12:0

0

13:0

0

14:0

0

15:0

0

16:0

0

17:0

0

18:0

0

19:0

0

20:0

0

21:0

0

22:0

0

23:0

0

kW

Gas - Winter

05

101520253035404550

00:0

0

01:0

0

02:0

0

03:0

0

04:0

0

05:0

0

06:0

0

07:0

0

08:0

0

09:0

0

10:0

0

11:0

0

12:0

0

13:0

0

14:0

0

15:0

0

16:0

0

17:0

0

18:0

0

19:0

0

20:0

0

21:0

0

22:0

0

23:0

0

kW

Phase 3 – Energy Management Strategy

• Improve granularity of data – install more meters

• Group into asset types:– HVAC– Lighting– Small power etc

• Analyse asset loads• Identify quick wins

Electricity - Spring

0

20

40

60

80

100

120

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

kW

Lifts

Small power

Lighting

AHU

Chiller

Electricity - Summer

0

20

40

60

80

100

120

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

kW

Lifts

Small power

Lighting

AHU

Chiller

Electricity - Autumn

0

20

40

60

80

100

120

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

kW

Lifts

Small power

Lighting

AHU

Chiller

Electricity - Winter

0

20

40

60

80

100

120

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

kW

Lifts

Small power

Lighting

AHU

Chiller

Quick wins…

• Chilling fighting the heating• Lighting and small power left on at

night• Building being conditioned at

night/weekends

10 – 20% improvement possible

Benchmarking and exceptions

• Feature of most energy databases• Requires historical or industry data to make

benchmarks• Dynamic benchmarking• DRIVING FACTORS:

– By nature of business• Property – energy/m2

• Manufacturing – energy/item made• Commercial – energy/turnover

– By nature of equipment• Air conditioning – energy/Degree day• Escalators – energy/m ascent

• leading to…

Cumulative Sum Analysis (CUSUM)

1. Establish a record 1. Establish a record of driving factor of driving factor against energy useagainst energy use

y = 22.568x + 61.55R2 = 0.96

0

100

200

300

400

500

600

0 5 10 15 20 25

Temp

En

erg

y

2. Plot a scatter graph 2. Plot a scatter graph and establish a trendand establish a trend

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Day

En

erg

y

0

5

10

15

20

25

Tem

p Prediction

Actual

Temp

3. Make predictions and record actual consumption

(60)

(40)

(20)

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4. Calculate the variation between predicted and actual consumption

(200)

(100)

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Day

CU

SU

M e

ner

gy

5. Cumulatively sum the variations

Identify:• Stable performance• Optimum performance• Problems stabilising• Effects of energy efficiency on stable operation

Example – 3 storey common user office building – chiller energy

Stable operation Fault Fault stabilises Repair Energy efficiencyinstalled

Electricity - Spring

0

20

40

60

80

100

120

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

kW

Lifts

Small power

Lighting

AHU

Chiller

Electricity - Spring

0

20

40

60

80

100

120

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

kW

Lifts

Small power

Lighting

AHU

Chiller

Electricity - Summer

0

20

40

60

80

100

120

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

kW

Lifts

Small power

Lighting

AHU

Chiller

Electricity - Summer

0

20

40

60

80

100

120

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

kW

Lifts

Small power

Lighting

AHU

Chiller

Electricity - Autumn

0

20

40

60

80

100

120

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

kW

Lifts

Small power

Lighting

AHU

Chiller

Electricity - Autumn

0

20

40

60

80

100

120

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

kW

Lifts

Small power

Lighting

AHU

Chiller

Electricity - Winter

0

20

40

60

80

100

120

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

kW

Lifts

Small power

Lighting

AHU

Chiller

Electricity - Winter

0

20

40

60

80

100

120

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

kW

Lifts

Small power

Lighting

AHU

Chiller

Gas - Spring

0

10

20

30

40

50

kW

Gas - Summer

05

101520253035404550

kW

Gas - Autumn

05

101520253035404550

00:0

0

01:0

0

02:0

0

03:0

0

04:0

0

05:0

0

06:0

0

07:0

0

08:0

0

09:0

0

10:0

0

11:0

0

12:0

0

13:0

0

14:0

0

15:0

0

16:0

0

17:0

0

18:0

0

19:0

0

20:0

0

21:0

0

22:0

0

23:0

0

kW

Gas - Winter

05

101520253035404550

00:0

0

01:0

0

02:0

0

03:0

0

04:0

0

05:0

0

06:0

0

07:0

0

08:0

0

09:0

0

10:0

0

11:0

0

12:0

0

13:0

0

14:0

0

15:0

0

16:0

0

17:0

0

18:0

0

19:0

0

20:0

0

21:0

0

22:0

0

23:0

0

kW

Typical savings

30 – 60% by implementation of a full PI strategy including:

• metering• improved controls• behavioural change• devolved responsibility

40% saving in consumption through better control only!

£47,100

£5,254

£52,353

£28,982

£2,310

£31,292

£-

£10,000

£20,000

£30,000

£40,000

£50,000

£60,000

Electricity Gas Total

Typical

Improved

Further references

• Vilnis Vesma - http://vesma.com/

Good Practise examples

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

4500000

0

50

100

150

200

250

300

350

400

450

CONSUMPTION

Av Degree days

Terminal 4, Heathrow Airport

The benefits

Measured savings after programme (extrapolated to one year):– £136k per annum– 2.7 GWh– 108 CO2 tonnes

– 13% saving on T4 total power

Latest detailed HV reading:• March 2005

– 27% below average monthly consumption– 37% below March 2004 consumption– 17% below March 2003 consumption– Lowest monthly consumption in five years

Good Practise Examples

Heathrow Point Complex – 3 multi-use office buildings

HPW Annual kWh

0

50

100

150

200

250

0:00

1:00

2:00

3:00

4:00

5:00

6:00

7:00

8:00

9:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

21:00

22:00

23:00

Average WD

Average WE

HPN Annual kWH

0

5

10

15

20

25

30

35

0:00

1:00

2:00

3:00

4:00

5:00

6:00

7:00

8:00

9:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

21:00

22:00

23:00

Average WD

Average WE

HPTC Annual kWh

0

10

20

30

40

50

60

70

80

0:00

1:00

2:00

3:00

4:00

5:00

6:00

7:00

8:00

9:00

10:00

11:00

12:00

13:00

14:00

15:00

16:00

17:00

18:00

19:00

20:00

21:00

22:00

23:00

Average WD

Average WE

Building HPW HPN HPTC TotalAnnual cost 121,710£ 16,946£ 34,816£ 173,472£ Baseload % 40% 40% 38%

Eliminate:Weekend load 32,612£ 4,270£ 8,125£ 45,006£ Night load 29,920£ 4,073£ 4,073£ 38,065£

Total saving 83,071£ 48%

Improved annual cost 90,401£

Summary

• Smart metering solution SPB = 1-3 years

• Up to 60% improvement possible• Other requirements:

– Behaviours– Processes/Operations

• Work to get more out of the investment

Thank you for listening

top related