energy futures - mit energy initiative · a letter from the directors 2 update on the mit energy...

Post on 29-May-2020

16 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Carbon-capturing enzyme: MIT chemists learn from nature

President Obama at MIT: Gives clean energy speech, tours energy labs

Harnessing the world’s collective intelligence to deal with climate change

Cleaner stoves, better health in rural India

MIT announces new energy minor

Energy FuturesM I T E N E R G Y I N I T I A T I V E A U T U M N 2 0 0 9

I N T H I S I S S U E

A L E T T E R F R O M T H E D I R E C T O R S

2 UpdateontheMITEnergyInitiative

S P E C I A L E V E N T

4 PresidentBarackObamaatMIT:Givescleanenergyspeech,toursenergylabs

R E S E A R C H R E P O R T S

6 Carbon-capturingenzyme:MITchemistslearnfromnature

8 Enlistingbacteriatomakebetterbiofuelsforvehicles

11 Cleancoal:Newplantdesignpromisescarboncapture,efficiency, noatmosphericemissions

14 Profile:TheEni-MITSolarFrontiersCenter

16 Energy-efficientlighting:Bringingindaylightwhilecontrollingheatandglare

19 Cleanerstoves,betterhealthinruralIndia

22 Harnessingtheworld’scollectiveintelligencetodealwithclimatechange

R E S E A R C H N E W S

25 DOEestablishestwoEnergyFrontierResearchCentersatMIT

26 MIT:Anengineofenergyinnovation

28 MITEIawardsfourthroundofseedgrants

E D U C A T I O N

29 MITannouncesnewenergyminor

31 SummerUROPscutacrossdisciplinestoaddressreal-worldenergyissues

34 MITEIhelpspre-froshgetintotheflowofenergyatMIT

35 NamedMITEnergyFellows,2009–2010

E D U C A T I O N & C A M P U S E N E R G Y A C T I V I T I E S

36 RecycledfryingoiltopowerMITshuttles

38 Flippingaswitchforenergysavings

C A M P U S E N E R G Y A C T I V I T I E S

40 Gainingvisibilityintobuildings’real-timeenergyperformance

O U T R E A C H

42 MITreleasesreportonretrofittingcoal-firedpowerplantsforCO2capture

43 MajorMITstudyexaminesthefutureoftheelectricgrid

LFEE • LaboratoryforEnergyandtheEnvironment

45 MartinFellowswadeintosaltmarshecology

46 UROPshineslightonenergyinruralAfrica

M I T E I M E M B E R S

48 MITEIFounding,Sustaining,Associate,andAffiliatemembers

Energy FuturesC O N T E N T S

Energy Futures ispublishedtwiceyearlybytheMITEnergyInitiative.Itreportsonresearchresultsandenergy-relatedactivitiesacrosstheInstitute.Tosubscribe,sendyouraddresstostauffer@mit.edu.

Copyright©2009MassachusettsInstituteofTechnology.Forpermissiontoreproducematerialinthisnewsletter,pleasecontacttheeditor.

NancyW.Stauffer,editorstauffer@mit.edu617.253.3405

ISSN1942-4671(OnlineISSN1942-468X)

MIT Energy InitiativeTheMITEnergyInitiativeisdesignedtoaccelerateenergyinnovationbyintegratingtheInstitute’scutting-edgecapabilitiesinscience,engineering,management,planning,andpolicy.

MITEnergyInitiativeMassachusettsInstituteofTechnology77MassachusettsAvenue,E19-307Cambridge,MA02139-4307

617.258.8891web.mit.edu/mitei

Coverdiagram:YanKung,MITDesign:TimBlackburnPrinting:PuritanPress,Inc.PSB 09.10.0580

Printedonpapercontaining30%post-consumerrecycledcontent,withthebalancecomingfromresponsiblymanagedsources.

2 | Energy Futures | MIT Energy Initiative | Autumn 2009

A L E T T E R F R O M T H E D I R E C T O R S

Update on the MIT Energy Initiative

MITEI’sresearch,education,campusenergy,andoutreachprogramsarespearheadedbyProfessorErnestJ.Moniz,director(right),andProfessorRobertC.Armstrong,deputydirector.

Phot

o: J

ustin

Kni

ghtDear Friends,

Weliveininterestingtimes!Energyissuesandassociatedenvironmentalchallengescontinuetoholdcenterstageastheworldcommunitytransi-tionsfrompreparingfortheUNclimatechangetalksinCopenhagen(“COP-15”)tomappingtheroadfromCopenhagen.

NowherewasthecentralityoftheseissuesmoreinevidencethanatMITinOctober,whentheInstitutehadthedistincthonorofhostingPresidentBarackObamaforatourofcampusenergyresearchlaboratories,briefingsfromMITenergyfaculty,andanaddressonenergyatKresgeAuditorium.Inhistalk,thePresidentcounteredthe“pessimism”ofthosewhobelievethereislittlewecandotoaddressclimatechangerisksbyexpressingstrongsupportfortheroleoftechnol-ogyandinnovationinmeetingthechallenge.YoucanreadmoreaboutthePresident’svisitonpage4ofthisissueofEnergy Futures andaccessavideooftheentireeventattheMITEIwebsite(web.mit.edu/mitei).

TheadministrationbackedupthePresident’sfaithinthe“Americanspiritofinnovation”withitsannounce-mentofthewinnersforthefirstroundofawardsfromthenewAdvancedResearchProjectsAgency-Energy(ARPA-E).MITandrecentMITspinoffsintheBostonareawererecipientsof5ofthe37awardsforpotentiallytransformativeenergytechnologies.Massachusettsreceivedthelargestcombineddollaramountofanystateinthenation,demonstratingagainMIT’scontinuingtraditionofdrivingeconomicgrowth.Formoredetails,turntopage26.

Achievinganactionableglobalconsen-susonapathforwardformitigating

climatechangeriskswillbearduous.Closertohome,Washingtonisengagedincomplexlegislativetrade-offstobalanceregionalenergyinterests,economicimpacts,andenvironmentalimperatives.Theseglobalandnationaleffortsareoccurringagainstabackdropofsignificanteconomicuncertaintyandanxiety,lowerenergyprices,andflatconsumption.Suchnear-termtrendsdiminishthepoliticalwilltotransformtheglobalenergymarketplace,evenasgreenhousegasemissionscontinuetoaccumulateintheatmosphere,makingitessentialthatweacceleratethattransformation.Thereisanincreasinglyurgentneedforlow-carbonenergytechnologiesthatmeeteconomictestsinbothdevelopedanddevelopingcountriesandforpoliciesalignedwiththeirintroductionatscale.

Thisimperativeisclearlyrecognizedbythemanycompanies,foundations,governmentprograms,andMITalumniandfriendswhocontinuetosupportMITEI’sresearch,education,campusenergy,andoutreachprogramsinthese

economicallychallengingtimes.Thissteadysupportisessentialforpursuingourresearchandeducationalmissions.

Thisyear,wewerepleasedtowelcome22newMITEImembers,provide47newgraduatefellowshipsto20depart-ments,andsupport24early-stageseedfundprojects.Resultsfromfiveofourearlierseedfundprojects—onefromeachofMIT’sschools—arechronicledintheresearchsectionofthisissuestartingonpage6.Theseprojectshighlightboththediversityofenergychallengeswefaceandtheneedforhigh-impactsolutionsfromavarietyofdisciplines.

ThesponsoredresearchprojectssupportedbyMITEImembersresidein13departmentsandfourlaboratories.Takentogether,theseprojectsmakeupanextraordinarysetofinvestmentsintheenergyfutureandarejustwhatisneededforthelongroadfromCopenhagen.

Dramaticincreasesingovernmentsupportforsignificantandsustainedenergy-relatedresearchprogramsatuniversitiesalsohavecreatednewopportunitiesforMITfacultyandstudents.Thesehavecomeaboutthroughaconvergenceofnewadminis-trationpriorities,congressionalfocus,andtheeconomicstimuluspackage.MITisnowhometotwonewEnergyFrontierResearchCenters(EFRCs)fundedbytheUSDepartmentofEnergy(DOE)OfficeofScience(seepage25).MITisalsoacollaboratoronfourothers.Selectedafterahighlycompeti-tivesolicitation,theEFRCsaredesignedtoprovidescience-basedsolutionstosomeofthemostdifficultandintractableenergychallenges.MITEIcoordinatedthecampus-wideresponsetothisopportunityandlooksforwardasnovelDOEprograms—additional

Autumn 2009 | MIT Energy Initiative | Energy Futures | 3

A L E T T E R F R O M T H E D I R E C T O R S

AtaMITEIcolloquiumonOctober29,TonyHayward,CEOofBPandamemberofMITEI’sexternaladvisoryboard,stressedthatthereisnomagicsolutiontotheworldenergysituationandthatgovernmentinvolvementwillbeneededtoresolvetheenergy/climatedilemma.(Moreatweb.mit.edu/mitei/news/spotlights/many-answers.html.)

DuringhisOctober23energyaddressatMIT,PresidentBarackObamacalledonthenationtoleadtheworldindevelopingnew,efficient,cleanenergytechnologies.AftervisitingseveralMITenergylabs,hesaid,“Extraordinaryresearch[is]beingconductedatthisInstitute.”(Moreonpage4.)

AtaMITEIcolloquiumonOctober7,FrancesBeinecke,presidentoftheNaturalResourcesDefenseCouncilandamemberofMITEI’sexternaladvisoryboard,describedsignsofglobalwarming,includingmeltingArcticseaice,risingsealevels,andincreasingacidityoftheseawaters.Sheurgedrapidpassageofclimatelegislation.(Moreatweb.mit.edu/mitei/news/spotlights/beinecke.html.)

Phot

os: J

ustin

Kni

ght

roundsofARPA-EawardsfundedthroughthestimuluspackageandtheEnergyInnovationHubsproposedbytheObamaadministration—areadvanced.Otheragencies,suchastheDepartmentofDefenseandtheNationalScienceFoundation,arealsoincreasingenergy-relatedprojectsupport.

Ontheoutreachfront,wecontinuetohelpbringtechnicallygroundedanaly-sistobearonnationalandinternationaldiscussionsaboutenergyandR&Dpolicies.MITEImembershavejoinedwithustosupportanewsymposiumseriesontimelyenergytopics,withagoalofinformingpolicycirclesabouttechnicalrealities.ThefirstsymposiumwasontheretrofitofcoalplantsforCO2emissionsreduction(seepage42),andthenextwillbeontheelectrifica-tionofthetransportationsystem.Also,fourmajorinterdisciplinaryintegrativestudies—theFutureofSolarEnergy,theFutureofNaturalGas,theFutureofNuclearFuelCycles,andtheFutureoftheElectricGrid—areatvariousstagesoftheirtwo-yearjourneys.

MITEI’sEnergyEducationTaskForcereachedasignificantmilestonebyestablishingtheInstitute-wideEnergyStudiesMinorforundergraduates(seepage29).Thedesignofthisprogramdrewontheexpertiseof16facultymembersfrom14departmentstodevelopacurriculumthatincludes10newandredesignedcourses.MITEI’scommitmenttoundergraduateresearchwasalsoexpandedtoincludesupportfor16UndergraduateResearchOpportunitiesProgram(UROP)studentsduringthepastsummer(seepage31).AnothergreatsignforthefutureofenergyeducationatMIT:almostathirdofthe50newfacultymembershiredinfall2009haveresearchinterestsdirectlyrelatedtoenergy.

Finally,inrecognitionoftheglobalnatureofenergyandclimatechallenges,wearemovingtowardenhancedcooperationwithcorrespondinginstitu-tionsinthemajoremergingeconomiesandindevelopingcountries.TogetherwithCambridgeUniversity,werecentlyenteredintoaLowCarbonEnergyUniversityAllianceagreementwithTsinghuaUniversity.Planningisintheearlystagesforseveralotherinternationalinitiatives.

MITEIhasbeenbuiltonthecontinuedhardworkofitsstaff,MITfacultyandstudents,andtheengagementofitsmembers,thebroaderenergytechnol-ogyandpolicycommunity,andalumniandfriends.Wearegratefulforyoursupportandvalueyourcontinuedinterestandinput.WehopeyouenjoythisfourtheditionofEnergy Futures.

Sincerely,

Professor Ernest J. MonizMITEIDirector

Professor Robert C. ArmstrongMITEIDeputyDirector

December2009

4 | Energy Futures | MIT Energy Initiative | Autumn 2009

S P E C I A L E V E N T

President Barack Obama at MIT: Gives clean energy speech, tours energy labsProfessorPaulaHammond’sweekatMITstartedoutlikeanyother—teaching,meetingwithstudents,workingonherresearch.ItendedwithHammondandhercolleagueProfessorAngelaBelcherbriefingPresidentBarackObamaonanovelapproachtoenergystorage—batteriesthatcanbegrown,notmanufactured.

HammondandBelcherwerepartofateamofenergyresearchersatMITwhometwiththePresidentonhisvisittotheMITcampusonOctober23.ObamaalsoheardfromProfessorsAlexSlocumandMarcBaldoandtouredthelaboratoryofProfessorVladimirBulovic.TheywerejoinedinthebriefingsbytwograduatestudentsworkingwithHammondandBelcher,RebeccaLynnLadewskiandLt.Col.F.JohnBurpo,whohascompletedhissecondtourinIraqandwasanEni-MITEnergyFellowin2008–2009.

HammondhadthistosayaboutthePresident:“Heputeveryoneintheroomateasethemomenthewalkedintothelab.AsAngieandIexplaineddifferentaspectsofthescience,hewouldstopusandaskspecificques-tionsaboutthetechnology.…Hewantedtoknowwhentheseinnovationswouldbecomecompanies,startups,andultimatelynewjobs.ItwasclearthatthePresidentknewtheimportanceofscienceandengineeringbothforitspracticalcontributionsanditsdownstreameconomicvalue.”

BelchernotedthePresident’squickmindandquickwit.HeranswertoObama’squeryaboutherabilitytodoabillionexperimentssimultaneously—“yeswecan”—promptedthePresidenttorespond,“Hey,that’smycampaignslogan.”

MITPresidentSusanHockfield,Gover-norDevalPatrick,SenatorJohnKerry,andProfessorErnestMoniz,directoroftheMITEnergyInitiative(MITEI),joinedthePresidentonhistour.AfterhearingfromMITfacultyaboutseveralpromisingresearchprojectsinrenew-ableenergy,storage,andefficiency,PresidentObamadeliveredanaddressonAmericanleadershipincleanenergy.

Hockfieldopenedtheevent,emphasiz-ingtheimportanceofincreasedandsustainedfundingforenergyresearchanddevelopment.ShenotedthatPresidentObama’sstimuluspackageandotherfundingprioritiesunderscore“hisforcefulsupportoffederalfundingforenergyR&D.”

MonizintroducedthePresidenttoapackedaudienceatKresgeAuditorium.Attendeesincludednumerouslocal,state,andfederalofficialsandclean-techentrepreneurs,inadditiontomanyMITfaculty,students,andstaff.WelcomingthePresidenttoMIT,Monizsaid,“ThePresident’scommit-menttointegratingsoundscience

andcriticalanalysisintotheformulationandimplementationofpolicyacrosstheboardisprofoundlyimportant—andindeedessentialformovingustoasustainableenergyfuture.”

Monizadded,“ThePresidenthasre-establishedtheUnitedStatesasamemberofthecommunityofnationsthatarecommittedtomeetingthelinkedchallengesofclimatechange,economicdevelopment,andsecurity.”Inhisaddress,ObamapraisedMIT’scommitmenttoenergyresearch,singlingouttheMITEnergyInitiativeandmakingastrongcallforthenationtoleadtheworldinthedevelopmentofnew,efficient,andcleanenergytechnologies.ThePresident’saspiration:“Nationseverywhereareracingtodevelopnewwaystoproduceanduseenergy.Thenationthatwinsthiscompetitionwillbethenationthatleadstheglobaleconomy.I’mconvincedofthat.AndIwantAmericatobethatnation.”

Describinghistourearlierintheday,thePresidentsaid,“Extraordinaryresearch[is]beingconductedatthisInstitute.”AnappropriateexclamationpointtothissentencewasthePresi-dent’ssignatureonequipmentinBulovic’slabthatsaid,“Greatwork!”(Seephotoonbackcover.)

HereisanoverviewoftheresearchthatinspiredPresidentObama’spraise.

Solar.Baldoofelectricalengineeringandcomputersciencedemonstratedhisworkonluminescentsolarconcentra-tors,whichcollectsunlightforsolarcells.Theseconcentratorsreducethenumberofsolarcellsneededforagivenenergyoutput,therebyreducingthecostofsolar-generatedelectricity.Theluminescentconcentrators

PresidentObamagreetsmembersoftheaudienceafterhisspeech.OfhisvisittoMIThesaid:“Youjustgetexcitedbeinghereandseeingtheseextraordinaryyoungpeople....IttapsintosomethingessentialaboutAmerica.”Heassertedthatthenationhas“alwaysbeenaboutdiscovery.It’sinourDNA.”

Autumn 2009 | MIT Energy Initiative | Energy Futures | 5

S P E C I A L E V E N T

canbemountedonrooftopsandotherspace-andweight-sensitivelocationsthatcannotsupportconventionalsolarconcentrators.Baldo’sresearchisfundedbytheUSDepartmentofEnergy.

Wind.Slocumofmechanicalengineer-ingdemonstratedanoffshorerenew-ableenergysystem(ORES)inwhichexcesspowerfromawindturbinepumpswateroutofastoragevolumeanchoredtotheseabed.ORESoperatesbyhavingwaterflowpastaturbineintothestoragevolume,creatinganinverselakeonthebottomoftheocean.Thisstoragesystemhastwopurposes:itenablesoffshorepowergenerationwhenthewindisnotblowingandpowerisneeded;anditcanbeusedformooringafloatingwindturbine.Storageisakeyenablingtechnologyforintermittentrenewableenergysourcessuchaswind.ThisresearchwasfundedbyaseedgrantfromMITEI.

Batteries and solar cells. HammondofchemicalengineeringandBelcherofmaterialsscienceandengineeringandbioengineeringdemonstratedhigh-powerbatteriesandthin-filmsolarcellsthatweregrownandassembledatroomtemperatureusingbiologicalprocesses.Thematerialsinvolvedareinexpensiveandnontoxic,andtheprocessingtechniquesarelow-cost,water-based,andreadilycommercial-ized.Theirapproachaddressesoneofthemainchallengesingeneratinghighlyefficientsolarcells:combiningdifferentmaterialcomponentssothattheyinteractwitheachotheronthenanometer-lengthscale.Theirassem-bledbatterieshavethesamepowerperformanceastheverybeststate-of-the-artbatteries.Whenscaled,thesematerials—and,moreimportantly,thenextgenerationofmaterials—couldbeusedforcomputersorplug-inhybridvehicles.TheirresearchisfundedbytheNationalScienceFoundation,Eni,MITEI,andtheArmyResearchOffice.

LED technology. Bulovicofelectricalengineeringandcomputersciencedemonstratedquantumdotlighting,whichisapotentialreplacementforexistingincandescentorfluorescentbulbsthatcombineswarm,richcolorwiththehighefficiencyofLEDtechnol-ogy.Theremarkablyhighwhite-lightefficiencyofthisdeviceiscombinedwithalifespanofmorethan20years,whichcouldchangetheparadigmoflightingtechnology.Theselightscanbefabricatedinasimplemoldingprocess,enablingmanufacturabilityandlarge-scaledeployment.Artificiallightingconsumes8%ofallUSenergyand22%ofUSelectricity.TheefficiencyofpresentlightsourcescanbedoubledoreventripledwiththeLEDwhitelightsourcesthatBulovicandcolleaguesaredeveloping.

ThisresearchwasperformedjointlywithProfessorMoungiBawendiofchemistryandwassponsoredbytheNationalScienceFoundationthroughMIT’sCenterforMaterialsScienceandEngineering,theArmyResearchLaboratorythroughMIT’sInstituteforSoldierNanotechnologies,andthePresidentialEarlyCareerAwardforScientistsandEngineers.ThelightingsamplesBulovicshowedwerefabri-catedbyQDVisionofWatertown,MA,anMITstartupfoundedbyBawendiandBulovic’sgraduatestudents.

• • •

By Melanie Kenderdine and Rebecca Marshall-Howarth, MITEI

For links to a webcast of President Obama’s address and printed copies of his address and of introductory remarks by President Hockfield and Professor Moniz, please go to web.mit.edu/mitei/news/spotlights/obama.html.

Inherwelcomingcomments,MITPresidentSusanHockfieldsaid,“ThatPresidentObamahascometoMITtotalkaboutAmerica’spotentialtoleadincleanenergyisatributetothegroundbreakingworkofourfacultyandstudents,includingmanyinthisroom.”

Inhisintroduction,ProfessorErnestMoniz,directorofMITEI,praisedPresidentObama,stating:“ThePresidenthasexpandedourenergyvisionandisfocusedoncreatingtheconditionsforenergyinnovationtoflourishacrossthecountry—atafasterpace,atascalelargeenoughtomatchthechallenge.”

Phot

os: J

ustin

Kni

ght

6 | Energy Futures | MIT Energy Initiative | Autumn 2009

Carbon-capturing enzyme: MIT chemists learn from natureEachyear,microorganismscontainingacertainenzymeremoveanestimated100milliontonsofthepollutantcarbonmonoxide(CO)fromtheenvironment.Now,MITresearchershavenewinsightsintohowtheygoaboutit—happynewsforinorganicchemistswhohavelongbeentryingtosynthesizecompoundsthatcandothesamethingwithoutthelivingcreature.

“Microorganismssuchasbacteriacandolotsofchemistrythatpeoplewouldliketodo,”saysCatherineL.Drennan,professorofchemistryandaHowardHughesMedicalInstituteinvestigator.“Theycanformandbreakcarbonbonds,splitnitrogen,andbreakaparthydrogenandoxygen—allthingsthatwecan’tdoorcandoonlywithgreatdifficulty.”

Keytothemicroorganisms’abilitytoperformsuchfeatsarelarge,powerfulenzymesthatcatalyze(speedup)reactions.Formanydecades,researchersworldwidehavebeenworkingtoreplicatethatchemistryusingsmallermoleculesinanartificialratherthannaturalsetting.Successcouldmeantheabilitytomakehydrogenforfuelcells,toremovethegreenhousegascarbondioxide(CO2)fromtheatmosphere,tocleanupCOinpollutedurbanareas,andmore.

Buttheresearchers’besteffortsarefrequentlyunsuccessful—andDrennanisnotsurprised.“Ifwe’regoingtocopywhatmicroorganismsaredoing,weneedtohaveaclearunderstandingofhowtheydoit—atthemolecularlevel,”shesays.Sheandherresearchgroupaimtodevelopthatunderstandingbyactuallyobservingthephysicalstructureofthekeymoleculesinvolvedandseeinghowtheychangewhenareactiontakesplace.

Recently,herworkhasfocusedonanenzymethat—dependingonitschange-ablestructure—cantakeupCOandreleaseCO2,ortakeupCO2andreleaseCO,orusetheCOtomakeaformofacetatethatplaysakeyroleinmetabo-lism.“Unlikehumans,theseorganismsareveryflexible,”saysDrennan.“They’lltakewhateverisaroundthemandfindawaytoliveonit.”

Tostart,shehasbeeninvestigatingthereactionwherebyCOispickedupbytheenzyme,whereitreactswithwatertoformCO2.ThatchemistrycanbetracedtoasmallsectionwithintheenzymeknownastheC-cluster—anunusualandpossiblyquiteancientcombinationofmetalsandinorganiccompoundsincludingiron,nickel,andsulfur.

TohelpinorganicchemistsreplicatetheabilitiesoftheC-cluster,Drennan

R E S E A R C H R E P O R T S MITEIseedgrantproject

hasbeenexploringitsstructuraldetails.Usingcrystallineenzymesamples,shehaslookedatwheretheatomsarelocated,howtheyareoriented,andwhereemptysitesareneededforotheratomstoattachandcatalyzechemicalreactions.

Using X-rays to “see” atoms

Atomsaretoosmalltoseewithanopticalmicroscope,soDrennanturnstoX-rays,whichhaveawavelengthathousandtimesshorterthanthatofvisiblelightandcomparabletothespacingofatomsinacrystal.Thetechniquesheuses,calledX-raycrystallography,involvesbeamingX-raysthroughacrystalsample.AtomsinthesamplediffracttheX-rays,creatingadiffractionpatternthatacrystallographer—withthehelpofmathematicalmethods—convertsintoanelectrondensitymapand

Thisdiagramshowstheoverallstructureofanenzymethatenablesmicroorganismstocapturelargequantitiesofcarbondioxide(CO2)andcarbonmonoxide(CO)fromtheenvironment.UsingX-raycrystallography,MITresearchershavesolvedtheenzyme’sthree-dimensionalstructuretoatomicresolution.Thecolorsinthis“ribbon”diagramindicatethefourproteinchainsthatmakeuptheenzyme.Thegroupedspheresareclustersofmetalatomsthatplaykeyrolesinthecarbonchemistry.

Diag

ram

s: Y

an K

ung

G, M

IT

Autumn 2009 | MIT Energy Initiative | Energy Futures | 7

R E S E A R C H R E P O R T S

ultimatelytoanimage,or“snapshot,”thatshowswheretheatomsinthesamplearelocated.

Forthesestudies,Drennanreceivessamplesoftheenzymefromcollabora-torStephenRagsdaleattheUniversityofMichiganMedicalSchool,whohasalaboratoryspeciallyequippedtogrowthemicroorganismofinterest.Themicroorganismsgrowrapidlyatroomtemperature,andtheenzymeisabun-dantandstable—exceptthatthemetalclustersaresensitivetooxygen,soallworktakesplaceinchambersfilledwithargonornitrogen.

KeepingtheirenzymesawayfromoxygenisaminorinconveniencecomparedwiththechallengesinvolvedinusingX-raycrystallographytostudythem.First,theresearchersmustgettheenzymetoformacrystal—ataskthatDrennandeemsthe“hardpart,”whichcantakemanyyearsoftryingdifferentmaterialsandmethods.Inthiscase,herteamusessaltathighconcentrationstoforcetheenzymemoleculesoutofsolutionandintoacrystallinestate.Theindividualenzymeslineupinaregularlyrepeatingpatterninathree-dimensionalcrystal,present-ingenoughsampletobeanalyzed.

Thenextchallengeistostopthereactionjustbeforeithappens.“WithX-raycrystallographyyouonlygetsnapshotsintime,”saysDrennan.“Ifyougivetheenzymeeverythingitneedsforthereaction,it’llreact—andyoursnapshotwillshowtheendresultbutnothowithappened.”Testsshowedthatprovidingtheenzymewithcyanide(CN)ratherthanCOdoesthetrick.CNissimilartoCOinstructureandwillbindatthesamesitewheretheCOwouldbind—butitwon’treact.Theenzymewillbepoisedforactionbutfrozenintime.

Atomic-level insights

Theirexperimentsworkedwell.Theynowhaveaclearimageofthearrange-mentofthemetalatomsintheC-clusterjustpriortothereaction.TheycanseewheretheCOwouldbind,andtheyknowthelocationofthenearbywatermoleculethatparticipatesinthereaction.Fromthoseobservations,theycanpredicthowthereactionwouldproceed.

Theresearchers’resultssettledalong-standingdebateaboutthepres-enceorabsenceofasinglesulfuratom.AnothergrouphasarguedthatthereisasulfuratomatthesitewheretheCNlatchedon.ButDrennan’sresultssuggestthatifasulfuratomwerethere,itwouldblocktheCOfrombinding.Mostexpertsinthefieldnowagreethatthe“active”formoftheC-clusterhasnosulfurinthatposition—afindingsignificantforinorganicchemistsas

theymanipulatematerialstomimicthecluster’sCO-removalaction.

ResultsfromHolgerDobbekandhisresearchgroupattheMax-Planck-InstitutfürBiochemie(Germany)bothverifyandsupplementtheMITfindings.ThatgroupproducedanimageoftheC-clusterwithaCO2moleculeinplace—astructurethatcanbeinter-pretedasapost-reactioncounterparttoDrennan’spre-reactionimageswithCN(thestand-inforCO).Indeed,thestructuresfromthetwogroupssuper-imposeremarkablywell,andinneithercaseisthedisputedsulfuratominevidence.“Soatanatomicresolution,wehaveimagesthatenableustounderstandoneoftheimportantchemicalreactionsthathappensonthismetalsite,”saysDrennan.“It’sreallyveryexciting.”

Drennanandhercolleaguesarenowinvestigatingothermetalclustersinthe

Basedontheiranalyses,theresearchersdeterminedtheabovestructureoftheC-cluster,ametalclusterwithintheenzymethatcapturesCO,whichthenreactswithwatertoformCO2.Intheseexperiments,cyanide(CN)wasusedasastand-inforCObecauseitwouldbindatthesamesiteasCOwouldbutnotreact.ThestructurethereforeshowswhereCOandwatermoleculesareboundtothemetalclusterjustbeforethereactionoccurs.Knowingwheretheatomsbind—andwhereemptybindingsitesarelocated—willhelpguideinorganicchemistsastheymanipulatematerialstomimictheC-cluster’sremovalofCO.

8 | Energy Futures | MIT Energy Initiative | Autumn 2009

R E S E A R C H R E P O R T S

sameenzyme,inparticular,onethatcontrolstheacetate-formingreactions.But,shewarns,thereisalwaysthechancethat—evengettingtherightstructure—human-madecopiesofthemetalclustersmaynotwork.Forexample,itmaybeimpossibletomakeasmallversionthatisstablebutstillflexibleenoughtodochemistry.(IntheCOreaction,forexample,thecarbonatomneedstorotatetoreactwiththewater.)Orthereactionmayrequireotherelementsintheenzyme,notjustthemetals.Asaresult,itmaybenecessarytousethewholeenzymeorperhapseventhewholemicroorganismtoachievethedesiredeffect.

Fromacommercialperspective,thisparticularenzymeisattractivebecauseitcanbemadeinlargequantitiesandatroomtemperature.Theonlydown-sideishavingtokeepitawayfromoxygen—aproblemDrennanthinksshecanfix.“IthinkIknowthesourceoftheproblemwithoxygen,”shesays.“Wemaybeabletoredesigntheenzymetomakeitmorestableinanoxygenenvironment.”

• • •

By Nancy Stauffer, MITEI

This research was funded by the National Institutes of Health and by a seed grant from the MIT Energy Initiative. More information can be found in:

Y. Kung, T. Doukov, J. Seravalli, S. Ragsdale, and C. Drennan. “Crystallographic snapshots of cyanide- and water-bound C-clusters from bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase.” Biochemistry, vol. 48, no. 31, 2009, pp. 7432–7440.

Enlisting bacteria to make better biofuels for vehiclesUsingspeciallyprogrammedbacteria,MITresearchershaveproducedbiofuelsthat—unlikeethanol—containalmostasmuchenergypervolumeasgasolinedoesandcanbeusedintoday’svehiclesandpipelineswithoutthreatofcorro-sion.Inrelatedwork,theresearchershavefoundmaterialsthatcaneffectivelyremovetheproductasitforms—acriticalroleastheproductcanbetoxictothebacteriathataremakingit.

Thesearchforbiomass-derivedfuelsfortransportationhasledtonewinterestinethanol.Indeed,annualdemandforethanoltripledbetween2000and2006.Butethanolisnotwellsuitedtothetask.Pureethanolhasonly60%theenergydensityofgasoline,sotravelingagivendistancerequiresmoreethanolthangasoline.Also,ethanoltendstoabsorbwater,soitcanpotentiallycausecorrosioninthecurrentUSpetroleuminfrastructure.

ThefocusonethanolraisesconcernsforKristalaJonesPrather,theJosephR.Mares(1924)AssistantProfessorofChemicalEngineering.“Weshouldn’tdoethanoljustbecauseweknowhowtodoethanol,”shesays.“Ifwe’regoingtohavealong-terminvestmentandrealcommitmenttousingbiomass-derivedfuels,thenweshouldtakethetimetofindalternativesthatmakesense—moleculesthathavethebestphysicalandchemicalcharacteristicsandwillbecompatiblewithtoday’scars,pipelines,andotherinfrastructure.”

Pratherpointstobutanolasapoten-tiallybetteroption.Itsthermodynamicandphysicalpropertiesaremuchlikethoseofgasoline;ithas95%theenergydensityofgasoline;anditismuchlessmisciblewithwater.Anevenbettermoleculemaybepentanol,whichhasstillhigherenergydensityandmorefavorableproperties.“Asageneralrule,

energydensitygoesupwiththenumberofcarbonatomsinamolecule,”shesays.“Ethanolhastwo,butanolhasfour,andpentanolhasfive.”

Asafirststeptowardproductionofhigher-carbonbiofuels,Pratherandhercolleagueshavebeenfocusingonbutanol.AbacteriumcalledClostridiumacetobutylicumcanfermentrenewablesubstratessuchasglucosetoformbutanol.ButClostridiumisnotalwaysstable,andatarelativelylowconcen-trationthebutanolitproducesistoxictothebacterium.PeoplehavetriedtoimprovethebutanolproductionefficiencyofClostridiumbutwithoutrealsuccess.

Pratheristhereforeturningtootherbacteria—onesthatdonotnaturallymakebutanolbutmightwithsomegeneticengineering.“GiventhegenesthatcauseClostridiumtoproducebutanol,someotherbacteriummightproducelargerquantitiesandmightbemorestable,”shesays.

Workthusfarhasfocusedonthreeorganisms:E. coli,Bacillussubtilis,andPseudomonasputida.(Eachoftheseorganismshasbeenusedsafelyinindustrialprocesses.)ThoughotherinvestigatorshavestudiedbutanolproductionfromE. coli,Pratherandhercolleaguesbelievethattheothertwobacteriahavenotpreviouslybeenusedforthispurpose.Asastartingmaterialtheyuseglycerol,whichiscloselyrelatedtothesugarsincelluloseandisabyproductofbiodieselproductionsoisnowbecomingabundantlyavailable.

Thefermentationtoproducebutanolrequiresaseriesofsixenzymaticreactions,eachoneinvolvingtheproductsofthepreviousreactionplusaspecificenzyme.Sotoreconstruct

MITEIseedgrantproject

Autumn 2009 | MIT Energy Initiative | Energy Futures | 9

Rel

ativ

e ce

ll d

ensi

ty(p

erce

nt

of

max

imu

m)

Time (h)

100%

80%

60%

40%

20%

0%0 3

No resin

High affinity resin

Moderate affinity resin

No butanol, no resin

Addition of butanol

(20 g/L)

2.9 g/L

13.1 g/L

18.4 g/L

6 9 12 15

R E S E A R C H R E P O R T S

the“butanolsynthesispathway”intheirthree“host”organisms,theyinsertedallofthegenesthatencodeforthoseenzymes—genesforeigntotheneworganisms.“Andwegotthemalltomakebutanol,”Prathersays.

Lessons learned

Thosefindingsdemonstratethatavarietyoforganismscanbeusedtoproducebutanol—amongthem,organismsthatpreviouslywereconsideredwithoutpotential.Accordingtotheliterature,oneoftheenzymesintheresearchers’butanolpathwaydoesnotfunctioninthepresenceofoxygen.ButtheirgeneticallyalteredPseudomonas—anorganismthatrequiresoxygentogrow—generated10timesmorebutanolthanpreviouslyachievedinanoxygenenvironment.

Theresearchershavebeenabletocharacterizemostofthestepsintheirbutanolsynthesispathway.Oneobservationofnoteisthattruncatingthestepspartwaythroughtheseriesyieldsproductsthatarenotfuelsbutareofvaluetothechemicalindustry.Also,basedontheirfindings,theresearchershavenewideasabouthowtoproduceevenmoredesirablemolecules—onesthatcontainmorecarbonatomsandbetterpropertiesforuseasabiofuel.

Whileallthreeoftheirhostorganismsproducedbutanol,theydidnotmakealotofit.ButthatdoesnottroublePrather.“We’reprettysuretheproblemisthatourenzymesaren’tverygood,”shesays.“Buttheworldisabigplace,andthere’slotsofbiologicaldiversityoutthere.Withpersistenceandsometechnologicalinnovation,weshouldbeabletofindbetteralternatives.”

Tohelpinthatprocess,PratherislookingtocollaboratewithBruceTidor,MITprofessorofbiologicalengineeringandcomputerscience.Tidorisformulat-ingcomputationalmethodsforpre-dictingtheimpactsofspecificenzymesonorganismsandsystems.“Gettingguidanceonwhichenzymeswillgiveusthedesiredoutcomewillbeenor-mouslyhelpful,”saysPrather.“Accesstobetterenzymeswillallowustobroadentherepertoireofmoleculesthatwecanmake—whetherfuelsorvaluablechemicals.”

Practical concerns

Thefinalcomponentoftheworkfocusesonanotherpracticalproblem:thechemicalsthatthebacteriamakecanharmandevenkillthem.“It’sbeennearly100yearssinceabutanol-producingfermentationwasfirstdiscoveredandcommercialized,”saysDavidR.Nielsen,apostdoctoralfellowinchemicalengineeringwhoworkswithPrather.“Butthedevelopmentofeconomicallyviablesystemshasbeenlimitedlargelybecauseevenfairlylowconcentrationsofbutanolinhibit

Protecting butanol-producing organisms from toxicity

Thisgraphdemonstratestheabilityofpolymerresinbeadstoadsorbbutanol,therebyprotectingthebacteriathataremakingitfromitstoxicity.Inaculturewithoutbeads(triangles),theadditionofconcentratedbutanolat7hoursstopsthegrowthofbutanol-producingE. coli.Whenbeadsofamaterialwithmoderateaffinitytobutanolarepresent(circles),cellgrowthalsostopsbutatahigherlevel.Whenthebeadshaveahighaffinitytobutanol(diamonds),cellgrowthcontinuesevenafterthebutanolisadded.Indeed,growthfollowsalmostthesamepathwayexhibitedbycellsinacontrolexperimentwithouttheaddedbutanolortheresinbeads(dashedline).Measurementsofbutanolconcentrationsat9hoursconfirmtheeffectivenessofthehigh-affinitybeadsinremovingbutanolfromthesystem.

Grap

h: D

avid

R. N

iels

en

10 | Energy Futures | MIT Energy Initiative | Autumn 2009

R E S E A R C H R E P O R T S

organismsthatnaturallyproducebutanolfromproducingmore.”

Tosolvethatproblem,hehasbeenlookingatwaystoremovethebutanolfromtheproductmixassoonasitforms.Hehasbeenexperimentingwiththeuseofsmallbeadsofpolymerresinsthatselectivelyadsorbbutanolinsolutions.

Inonesetofexperiments,hetestedtheeffectivenessoftwoofthoseresinsinremovingbutanolfromgrowingcultures.Asamodelorganism,heusedthebacteriumE. coli,geneticallyengineeredtomakebutanolandculturedinglucose.Hemeasuredthebacteria’sgrowthovertime(incelldensitypervolume),withandwithouttheadditionofbutanol(20g/L)after7hours.Forreference,healsoranacontrolexperimentthatshowshowthecellsgrowwithouttheaddedbutanolortheresinbeads.(Inthatexperiment,growthlevelsoffatabout10hoursbecausethecellshaverunoutoftheirgrowthsubstrate,glucose.)

Resultsareshowninthefigureonpage9.Inthesamplewithnoresinbeads(triangles),thebacteriastoppedgrowingassoonasthebutanolwasadded,andcelldensitythendeclinedovertime.Insamplescontainingbeadswithamoderateaffinitytobutanol(circles),growthalsostoppedonadditionofthebutanolbutatasome-whathighercelldensity.Butinthesamplescontainingthehigh-affinitybeads(diamonds),thebacteriacontin-uedtogrow,followingalmostthesamepathwayassamplesgrownwithouttheaddedbutanol(dashedline).Measurementsofbutanolconcentra-tionsat9hours—2hoursafteradditionofthebutanol—showthatonlythehigh-affinitybeadsreducedthebutanoltowellbelow10g/L,thelevelatwhich

theresearchersbegintoobserveimpactsonthegrowthandviabilityofE. coliinotherexperiments.

Inotherwork,NielsenmeasuredhowmuchbutanolClostridiumproducedinsampleswithandwithouttheaddedresinbeads.Intheabsenceofthebeads,thebacteriaproduced170mgofbutanol.Butwhenthebeadswerepresent,butanolproductionwasashighas487mg—nearlyatriplingoftheproduct.Becausethebeadssuccessfullyremovedthebutanolfromthesolution,thecellswerenotinhibitedintheirproduction.

Furtheranalysisshowsthatthebutanol-ladenpolymerbeadscaneasilybeseparatedfromtherestoftheculture,thebutanolremovedbyvaporization,andthebeadsreinsertedintosubse-quentcultures—atleastthreetimeswithnodegradationinperformance.Preliminaryestimatessuggestthatremovingthebutanolfromthebeadsshouldtakeroughly80%lessenergythanexpendedwhenusingaconven-tionaldistillationprocess.

OnelimitationofNielsen’sstudywasthatheusedonlycommerciallyavailablematerials.“Infutureworkwe’dliketotailorthechemicalandphysicalcharacteristicsofpolymerstobestdealwithspecificmoleculesofinterest,”hesays.Developingalibraryof“designer”polymerswouldbeanexpensiveundertaking,butitwouldprovidepowerfultoolsfortheinsiturecoveryofproducts—ausefulcapabilityforresearcherswhoaredevelopingneworganismsandnovelprocessesformakingbiofuelsandothervaluablechemicals.

• • •

By Nancy Stauffer, MITEI

This research was supported by the Synthetic Biology Engineering Research Center funded by the National Science Foundation as well as by a seed grant from the MIT Energy Initiative. David R. Nielsen received fellowship assistance from the Natural Sciences and Engineering Research Council of Canada. More information can be found in:

H-C. Tseng, C. Martin, D. Nielsen, and K. Prather. “Metabolic engineering and Escherichia coli for enhanced production (R)- and (S)-3-hydroxybutyrate.” Applied and Environmental Microbiology, May 2009, pp. 3137–3145.

D. Nielsen, E. Leonard, S-H. Yoon, H-C. Tseng, C. Yuan, and K. Prather. “Engineering alternative butanol production platforms in heterologous bacteria.” Metabolic Engineer-ing, 2009, doi:10.1016/j.ymben.2009.05.003.

D. Nielsen and K. Prather. “In situ product recovery of n-butanol using polymeric resins.” Biotechnology and Bioengineering, v. 102, no. 3, February 15, 2009, pp. 811–821.

Autumn 2009 | MIT Energy Initiative | Energy Futures | 11

R E S E A R C H R E P O R T S

Clean coal: New plant design promises carbon capture, efficiency, no atmospheric emissionsMITresearchershavedesignedanovelcoal-firedpowerplantthatcancaptureessentiallyallofitscarbondioxide(CO2)andotheratmosphericemissions;canproducemorewaterthanitconsumes;andismorefuelefficientthananycomparablecoalplantnowrunningorbeingplanned,withorwithoutcarboncapture.Thenewplant,whichcombinescoalgasificationandsolidoxidefuelcells(SOFCs),willbeexpen-sivetobuild;butifnewfederalpoliciesputevenalowpriceoncarbonemis-sions,thenewdesignwouldbecomecostcompetitive.

“Large-scaleimplementationofourdesignshouldbepossiblewithinafewyears,”saysresearcherPaulI.Barton,professorofchemicalengineering.“WheretostorethecapturedCO2andhowmuchstoragespaceisavailablearestillmajorissues.Iseeourdesignaspartofamedium-termsolutionthatwillletuskeepusingcoalwhilewedevelopcarbon-freeenergytechnologies.”

Theworld’srelianceoncoaltomeetitsenergyneedsisexpectedtocontinueforsometime.Buttoday’scoal-firedpowerplantsgeneratesignificantquantitiesofgreenhousegases.IntheUnitedStates,forexample,suchpowerplantsareresponsibleforfullyathirdofthenation’stotalCO2emissionsfromfossilfueluse.Astheworldwideconstructionanduseofcoal-firedplantscontinuetogrowrapidly,findingawaytorestrictthoseemissionsiscriti-cal.Asdescribedinthe2007MITstudyThe Future of Coal(web.mit.edu/coal/),theanswerliesincapturingCO2frompowerplantsandothersourcesandthenstoringitindeepgeologicalbasins—atechnologyknownascarboncaptureandsequestration(CCS).

CapturingtheCO2is,however,achallenge.Inconventionalcoal-fired

powerplants—includingthosenowbeingbuiltinChina—pulverizedcoalisburnedinair,generatingelectricityplusexhaustthatcontainsCO2,water,andnitrogen.ButseparatingrelativelysmallamountsofCO2fromnitrogenisextremelyenergyintensive.Toreducetheenergyintensity,theintegratedgasificationcombinedcycle(IGCC)process—anoptionfavoredbymanyexperts—removestheCO2beforecombustionoccurs.Coalisgasified,theCO2isremovedbyabsorption,andhydrogencombustioninairpowersanelectricity-generatinggasturbine.However,theequipmentusedtoabsorbandregeneratetheCO2ismassive,expensive,andenergyconsuming.

Ayearago,BartonandhiscolleagueThomasA.AdamsII,apostdoctoralassociateinchemicalengineering,decidedtotryadifferentapproach:generatingelectricitywithoutevermixingtheairandthefuel.“I’dbeenworkingwithsolidoxidefuelcellsandsuddenlyrealizedthatthosefuelcellscandojustwhatweneed:mixoxygenwiththefuelbutkeeptherestoftheair—includingthenitrogen—separated,”Bartonsays.

“ByreplacingthecombustionsectionofthepowerplantwiththeSOFC,wecanactuallychangetheentiresystemsothatwe’reabletorecovertheCO2veryeasily,”saysAdams.Moreover,theelectricityisgeneratedbyelectro-chemicalreactions,aprocessthatisinherentlymoreefficientthanburningfueltopoweraturbine.

TheMITdesignisshownonpage12.ThefirstfewstepsarethesameasintheIGCCprocess.Coalpluswaterandoxygenenteragasifier,wheretheyareconvertedto“syngas,”amixturethatislargelycarbonmonoxide,hydrogen,water,andCO2.Nextcomes

thewater-gasshiftreaction,whichproduceshydrogengasandmoreCO2.IntheIGCCprocessthoseproductswouldthenentertheabsorptionsystem,butinBartonandAdams’sdesigntheyinsteadenteranSOFC.

Likeallfuelcells,theSOFCconsistsoftwochambers—hereseparatednotbyaporousmembranebutratherbyasolidoxideelectrolyte.Productsofthewater-gasshiftreactionenteronechamber(theanodeside)whileairisinjectedintotheother(thecathodeside).Inmostfuelcells,thefuelwouldthenmigratethroughamembranetotheairontheotherside.ButinanSOFC,oxygenionsareconductedinthereversedirectionthroughthesolidelectrolytetothefuel,leavingtherestoftheairbehind.Theoxygenandfuelreact,generatingelectricityandawastestreamconsistinglargelyofCO2andwatervapor.Thoseproductsthenenteracondenserandaseriesof“flashdrums,”wherechangesintemperatureandpressurecauseliquidwatertosettletothebottomandCO2vaportorisetothetop,whereitentersapipeline.Ontheothersideofthefuelcell,theexhauststreamissimplyair,somewhatdepletedinoxygen.Innovations and benefits

Otherresearchershaveproposedsystemsthatcombinecoalgasificationandfuelcells.ButtheMITSOFCdesignincludestwoinnovations.Firstistheinclusionofthewater-gasshiftreaction.Withoutthatstep,carbonmonoxidegoesdirectlyintothefuelcell.Overtime,blackcarbondepositswillbuildupandinterferewithfuelcelloperation.WhileMIT’sSOFCprocesscanbebuiltwithexistingtechnology,otherdesignswillhavetowaituntilcarbon-resistantfuelcellmaterialscanbetestedanddemonstrated.

12 | Energy Futures | MIT Energy Initiative | Autumn 2009

R E S E A R C H R E P O R T S

ThenewMITdesignreplacesthecombustionsectionofaconventionalpowerplantwithasolidoxidefuelcell.Benefitsincludeeasyrecoveryofcarbondioxide,removalofallatmosphericpollutants,littleornowaterconsumption,andhighplantefficiency.

Anothermajorinnovation—usefulinmanytypesofprocesses—isanimprovedmethodofseparatingtheCO2andwater.AccordingtoAdams,thegeneralassumptionthatasuddendropintemperaturewillachieveacleanseparationisincorrectbecauseofthehighpressuresprevailingingasifica-tion/fuelcellsystems.UnlesstheCO2andwatervapormixtureisatatmo-sphericpressure,thedropintempera-turewillleaveexcessiveCO2intheliquidwaterthatforms.ButadroptoatmosphericpressurewillleavewaterintheCO2—acorrosivemixturethatcandamagethepipeline.Worsestill,itwilltakeconsiderableenergytocom-presstheCO2backuptothehighpressureneededforinjectionintothe

pipeline.SoAdamspreparedanewdesigninvolvingacondenserandaseriesofflashdrums,eachoneatalowerpressurethantheonebeforeit.Thesystemrequireslittleenergytooperate,andtheproductswillbenearlypurestreamsofwaterandofCO2—withmostoftheCO2stillathighpressure.

TheresearchershaveperformeddetailedsimulationsoftheirSOFCprocess,andthepotentialbenefitsitoffersaremany.TheSOFCplantshouldcapturemorethan99.95%ofthecarboninthecoalasCO2,whichiswellabovetheoften-soughtgoalof90%CO2capture.Indeed,thetotalatmosphericemissionsfromtheSOFCsystemareessentiallyzero,saysAdams.

Asecondbenefitoftheprocessisitshighefficiency.Usingsimulationsplussurveysofexistingplants,theresearchersestimatedefficienciesfortraditionalpulverizedcoal(PC),IGCC,andSOFCplants,withoutandwithcarboncapture.Thecoolingstrategyusedaffectsoverallefficiency,sotheanalysesconsideredtwooptions:coolingtowers(asysteminwhichwaterisconsumedforcooling)andaircooling(asystemthatusesairinsteadofwater).

Assumingcoolingtowersbutnocarboncapture,theSOFC-basedpowerplantachievesabout45%efficiency—significantlyhigherthanaPCplantat36%–39%andanIGCCat38%–41%.

Gasifier

Solid oxide fuel cell power plant

Water-gas shift reactors

Coal, water,oxygen

Syngas:carbon monoxide,hydrogen, water,CO2

Oxygen ions

Air in

Steam

Air out

Water, CO2

CO2

> 99% water

(thousands of feet below)

(miles away)Hydrogen, CO2

Slag (used to build roads)

Solid oxidefuel cell

Electricity

Condenser andflash drums

Solid oxideelectrolyte

CO2 pipeline

Underground CO2 storage

Solid oxide fuel cell power plant

Diag

ram

: Tho

mas

A. A

dam

s II,

MIT

Autumn 2009 | MIT Energy Initiative | Energy Futures | 13

R E S E A R C H R E P O R T S

(Thesenumbersdependonthetypeofcoalusedandhowitisgasified,amongotherfactors.)WhenCCScapabilityisincluded,thePCefficiencydropsby9–12percentagepointsandtheIGCCby4–7,whiletheSOFCefficiencyisreducedbylessthan1percentagepoint.Evenwiththewater-savingair-coolingsystem,theSOFCplantismoreefficientthantheotheroptions,withorwithoutcarboncapture.

AnotherbenefitoftheSOFCisitsminimalwaterconsumption.Assumingtheuseofcoolingtowers,conventionalPCplantsconsumingabout5,500tonnesofcoalperday(roughly600–700MWofpoweroutput,depend-ingonthetechnology)useasmuchas11billionlitersofwaterperyear—aseriousprobleminregionswherewaterisavaluable,fought-overcommodity.AnIGCCplantrequires30%lessfreshwater,whiletheSOFCplantrequiresnearly50%less.

Buttherealreductioncomeswithaircooling.Indeed,usingaircooling,theSOFCcanbeanetwaterproducer.Evenafterrecyclingwatertomeetalltheneedsoftheplant,therewillbeasurplusofabout1billionlitersperyear—andaccordingtoAdams’scalcu-lations,thatwatershouldbealmostpureenoughtodrink.

Costs and timing

TheresearchersarestillworkingtodevelopreliablecostestimatesfortheirSOFCpowerplant—ataskmadedifficultbystill-evolvingcostprojec-tionsfortheSOFCfuelcelltechnology.BuildingtheSOFCplantwillbeexpensive,butthehighefficiencyandresultinglowoperatingcostsmaycombinetomaketheoverallcostofgeneratingelectricitylowerwiththeSOFCtechnologythanwiththeIGCC.

Ifbothtechnologiesincorporatecarboncapture,theSOFCistheeconomicwinner.Andifacap-and-tradepolicygoesintoeffect,theSOFCprocesswouldbeeconomicallycompetitiveatcarbonpricesof$5–$10pertonne—muchlowerthantheroughly$50–$60pertonnenowbeingdiscussedinCongressandbeingrejectedastoohighbymostpowercompanies.

Althoughlarge-scalesolidoxidefuelcellshavenotyetbeenbuilt,companiesarenowcompetingtoproducea1MWfuelcellunit—agoalthatAdamsthinkswillbeachievedinthenexttwoyears.Theseunitscaneasilybestackedandinterconnectedtoproducea500MWpowerplant.“Insteadofhavingafewgiganticgasturbines,you’dhavehundredsofthesefuelcellunitsinstacksandrows,”saysAdams.“Andifafewofthefuelcellsfailed,youwouldn’thavetoshutdowntheplant,asyouwouldifthemaingasturbineinyourplantmalfunctioned.”

“We’rereallyexcitedaboutthisnewdesign,”saysAdams.“We’vecrunchedallthenumberstothepointthatwecanbeconfidentthatwecanactuallydothisinpractice.”

• • •

By Nancy Stauffer, MITEI

This research was supported by BP under the BP-MIT Advanced Conversion Research Program. The program is part of the agree-ment under which BP became the inaugural Founding member of the MIT Energy Initiative.

14 | Energy Futures | MIT Energy Initiative | Autumn 2009

R E S E A R C H R E P O R T S

Profile: The Eni-MIT Solar Frontiers Center

TheEni-MITSolarFrontiersCenter(SFC),establishedinJuly2008,isthecenterpieceofaclosecollaborationbetweenEniandMITthatwasformal-izedinFebruary2008whenEnibecameaFoundingmemberoftheMITEnergyInitiative(MITEI).SFCresearchfocusesondevelopingadvancedsolartech-nologies,withprojectsrangingfromnovelphotovoltaicmaterialstosolarhydrogenproductiontothedesignofoptimizedsolarpowerplants.SnapshotsofongoingSFCprojectsbegininthenextcolumn.

TheresearchactivitiesoftheSFCareoverseenbyitsco-directors,VladimirBulovic,theKDDAssociateProfessorofCommunicationsandTechnologyintheDepartmentofElectricalEngineer-ingandComputerScience,andDanielG.Nocera,theHenryDreyfusProfessorofEnergyandprofessorofchemistry.Eni’son-campusrepresentativeisMITVisitingScientistNicolaDeBlasio,vicepresidentforR&DInternationalDevelopment.

TheSFCrecentlyannouncedtheappointmentofCliftonG.FonstadJr.,theVitesseProfessorofElectricalEngineering,asexecutivedirector.Fonstadisresponsiblefororganizingthecenter’son-campusactivities,includingsettingupanongoingsemi-narseriesandidentifyingandrunningotheroutreachevents.HeisalsoparticipatinginMIT-Enidiscussionsaboutestablishingsharedresearchfacilitiesoncampus.

InadditiontotheSFC,EnisupportsMITresearchprojectsthatspantheenergyspectrumfromtraditionaloilandgastomethanehydratestoglobalchangetotransportationoptions.

Nanostructured thin-film photovoltaicsVladimirBulovic,Electrical Engineering

and Computer ScienceMoungiBawendi,ChemistrySilvijaGradecak,Materials Science

and EngineeringFrancescoStellacci,Materials Science

and EngineeringMichaelStrano,Chemical EngineeringTimothySwager,Chemistry

Thisprojectaimstodeveloptechniquesforfabricatinglow-costphotovoltaic(PV)devicesatroomtemperatureoverlargeareasthatcanachieve12%conversionefficiency.Thedevicesconsistofthinfilmsofquantumdots,polymers,organicmolecules,metaloxides,orothermaterialscontrolledatthenanoscale.Insomecases,thePVcellshavemultiplelayers,eachtunedtocaptureaspecificportionofthesolarspectrumandassembledtominimizeenergylosswithinthecell.Someversionsaresyntheticstructuresthatmimicnaturalbiologicalfunctionssuchasself-assemblyandself-repair.Theoverallresultshouldberobustthin-filmPVdevicesthatcombineefficientperformance,low-costmanu-facturing,andlonglifetimes.

Materials genome: Materials design for solar energy technologyGerbrandCeder,Materials Science

and EngineeringNicolaMarzari,Materials Science

and EngineeringDonaldSadoway,Materials Science

and EngineeringTroyVanVoorhis,Chemistry

Thedevelopmentofnewtechnologiesforsolarenergycaptureandstoragedependscriticallyonthedevelopmentofnew,innovativematerials—aprocess

thatistypicallyextremelyslow.Tohelpacceleratethatprocess,thisprojectisformulatingacomputationalmethodologyforpredictingtheelec-tronic,structural,andthermodynamicpropertiesofmaterialsforsolarenergycaptureandstorage.Thenewmethod-ologycombinedwithanenvironmentforvirtualdesignandtestingwillpermithundredstothousandsofmaterialsandstructurestoberapidlyandsystem-aticallyevaluatedfortheirpotentialperformanceindevices.CollaboratingexperimentalteamsworkingonEni-MITprojectswillusethenewmethodologytoacceleratethedesignofviablematerialsanddevicesforsolarenergy.Whilethisprojectfocusesonsolartechnology,themethodologywillprovevaluabletomaterialsinnovationwellbeyondthatfield.

Paper-thin solar cellsKarenGleason,Chemical EngineeringTonioBuonassisi,Mechanical

EngineeringVladimirBulovic,Electrical Engineering

and Computer ScienceJingKong,Electrical Engineering

and Computer ScienceMichaelStrano,Chemical Engineering

Polymersprovideextraordinaryoppor-tunitiesforcreatingconductingandsemi-conductingthinfilmsthatcanbeintegratedintoflexible,paper-thindevices.Thisworkusesnew,scalablechemicalvapordepositiontechniques—developedatMIT—tofabricatesolvent-freepolymerthinfilmsandusethemincombinationwithinorganicmaterialstocreateprototypesofefficientandenvironmentallystablePVs.Usingthesenoveldepositionmethods,theresearchteamwillsystematicallytunepropertiesofthedepositedthinfilms;createcoatingsofuniformthicknessoverlargeareas,includingtheirregularsurfacesofflexiblesubstrates;and

Research projects in the SFC

Autumn 2009 | MIT Energy Initiative | Energy Futures | 15

R E S E A R C H R E P O R T S

achievehighpurityofmaterialsandpreciseinterfacedefinition.Thislow-cost,low-temperature,low-energy-consumptiontechniquecanalsobeusedtodepositfilmsthatareintegratedintodevicesinwhichlayersofnano-materialscombinetoboostefficiency.

Self-assembly of nanomaterials for low-cost, flexible, large-area solar cellsPaulaHammond,Chemical EngineeringAngelaBelcher,Biological Engineering

and Materials Science and Engineering

Thin,lightweightsolarcellsthatcanbeincorporatedatlowcostonvarioussubstrates,particularlyflexiblesubstratessuchasplasticfilmsorfabrics,arepromisingforcommercialapplicationsforportableoreasilydeployablepowersourcesaswellasstationaryenergyneeds.Promisingoptionsareorganicandorganic-inorganichybriddevicessuchasdye-sensitizedsolarcellsandbulkhetero-junctioncells.However,achievingthefullpotentialofsuchdevicesrequiresengineeringthemwithnanometer-levelcontroltooptimizetheinterfacesandmaterialspropertiesforhighpowerefficiencies.Thisprojectwillconstructsuchdevicesusingbio-inspiredself-assemblymethods,inexpensivematerials,andlow-cost,facileprocess-ingtechniquesthatcanbereadilycommercialized.Thetechniquescanbeappliedtobothlarge,macroscalesystemsandmicrofabricatedstructuresonsurfaces.

Water splitting: The artificial leafDanielNocera,ChemistryChristopherCummins,ChemistryKlavsJensen,Chemical EngineeringYangShao-Horn,Mechanical

Engineering

Thisprojectaddressesoneoftheoutstanding“holygrails”ofscienceinthe21stcentury—theefficientandeconomicalstorageofsolarenergyintheformoffuels.Thegoalistoimitatephotosynthesis,theprocessbywhichplantsseparatewaterintohydrogenandoxygenusingsolarlightastheenergyinput.TheproposeddeviceusesaPVtocaptureandconvertabsorbedlightintocharge-separatedholesandelectrons.Speciallydesignedcatalystswillcapturetheholesandelectronsandusethemtotransformwaterintoitschemicalconstituents,hydrogenandoxygen.Theenergyofthoseproductswillbereleasedinafuelcell,whichrecombinesthehydrogenandoxygentoformwatertostarttheprocessagain.Thisadvancewilldeliverwater—withsolarlightasaninput—asarenewable,environmentallybenignstoragevehicleforthefuture.

Maximizing return on investment in solar thermal plantsAlexanderSlocum,Mechanical

Engineering

Thisprojectwillcreateanovelparabolictroughconcentratedsolarpower(CSP)systemthatiseconomicaltobuild,install,andoperate,allowingahigherreturnoninvestmentcomparedtoaconventionalCSPplant.Itusesstampedmetaltroughsectionswithareflectivecoating,wherethetroughitselfactsasthestructure.Smallelectricmotorsrotatethetroughstokeepthempointedatthesun.Forstorage,aconventionalnitratesalttanksystemcanbeheatedbythermaloilfromthereceivertubes.

• • •Ph

oto:

Jus

tin K

nigh

t

Lefttoright,NicolaDeBlasio,vicepresidentforR&DInternationalDevelopmentatEniandMITvisitingscientist;ProfessorErnestMoniz,directoroftheMITEnergyInitiative;andProfessorCliftonFonstadJr.,executivedirectoroftheSolarFrontiersCenter.

16 | Energy Futures | MIT Energy Initiative | Autumn 2009

R E S E A R C H R E P O R T S

Energy-efficient lighting: Bringing in daylight while controlling heat and glare

MITEIseedgrantproject

Architectsanddesignerscouldsignifi-cantlyreducethefutureenergyneedsoftheirnewandrenovatedbuildingsbyusingnovelwindowsystemsthatbringinmoredaylight,filteroutheat,controlglare,andmore.Butdetailedinforma-tionaboutsuchsystemscanbehardtofindandevenhardertounderstand.MITresearchersarenowdevelopinganonline“searchandselection”toolthatwillcontainreadilyunderstandableinformationonwelloverahundredwindowsystemsandanavigationtoolthatwillguideuserstothosethatbestsuittheircurrentproject.

BuildingsconsumemorethanathirdofalltheenergyusedintheUnitedStates,and25%–40%ofthatthirdisusedforlighting.Increasingtheuseofnaturallighting(daylighting)inplaceofelectriclightingcouldbringsignificantenergysavings.“Dependingonthesituation,agooddaylightingstrategycanreducetheneedforenergy-consumingelectriclightingby20%to80%,accordingtocurrentresearchliterature,”saysMarilyneAndersen,associateprofessorofarchitectureandamemberofMIT’sBuildingTechnologyProgram.

Butitisnotsosimple.Withthedaylightcancomesolarradiationandglare,whichcanmakeoccupantsuncomfort-ableenoughtoturnuptheaircondi-tionerorpulldowntheshadesandturnonthelights.

Manynew“fenestrationsystems”havebeendesignedtosolvethoseproblems,buttheyarenotwidelyused,largelybecausearchitectsanddesignershaveahardtimefindingoutaboutthem,accordingtoAndersen.Inthepast,architectswereactivelyengagedinthedevelopmentofbuildingsystemsandmaterials.Butinrecentdecades,suchsystemsandmaterialshavereliedmoreandmoreonsophisticatedtechnologi-

caladvances.Asaresult,thecharacter-isticsandperformanceofnewproductsareoftendescribedintechnicalpublica-tionsusingnumericaldata—notwellsuitedtoarchitectsanddesigners,whoareusedtoworkingwithmorevisualrepresentations.

Andersen’scolleagueRosaUrbano—anarchitect,PhDcandidateatEscuelaTécnicaSuperiordeArquitecturadeMadrid,andvisitingstudentinMIT’sDepartmentofArchitecture—experiencedthisproblemfirsthand.“AtthebeginningofmyresearchIhadtoworkonafaçadeprojectanddidn’tknowwhatadvancedlight-controlmaterialstouse,”saysUrbano.“WhenIstartedtoread,Irealizedthatalltheinformationwasnotonlywidelydispersedbutalsogenerallycrypticandhardtounderstandifyouarenotaphysicist.”

TogetherAndersenandUrbanodecidedthattheywouldpullinformationonlightand“sun-control”productstogetherandpresentitinawaythatarchitectsanddesignerscanuse.Theirtool,calledDatabaseofLightInteractingTechnologiesforEnvelopes,orD-LITE(www.d-lite.org/),includesacompre-hensivedirectorythat—whendataentryiscompleted—willcontainextensiveinformationon160products.

Tomaketheinformationuser-friendly,theyhavedevelopedvisualmethodsofexpressingtechnicalaspectsandperformancedata—apresentationthatisintuitiveandwellmatchedtothedecisionsthatanarchitectislikelytomakeinarealisticdesignprocess.Finally,theyhavecreatedaninteractivenavigationtoolthatcanguideausertoalimitedsetofoptionsthataresuitablefortheprojectathand.

Navigating the database

Thefiguretotherightshowsthe“searchinterface”fornavigatingthedatabase.Thebuttonsinthetwocolumnsattheleftactasfilterstonarrowdowntheavailableoptions.The“mainfunctions”choicesaddressthelikelyreasonsthatadesignerwouldbeconsideringanadvancedfenestrationsystemratherthanstan-darddouble-glazedwindows.Theymaywanttoreduceglare,getdaylighttocomefartherintotheroom,controlsolarheating,ensuretheoccupants’privacy—ortheymaywanttoachieveacombinationofthosegoals.Therestofthetwo-columnlistcontainsotheraestheticandpracticalconsider-ationsthatthearchitectcanselectasimportantinhisorhercurrentproject.

Eachofthe53hexagonsattherightrepresentsafamilyofproductsthatfulfillthesamesetoffiltersandhavesimilarfunctionandapplicationcharac-teristics.Thecolorsofthehexagonsshowwhichofthemainfunctionstheproductsinthatfamilyfulfill.

Tobegin,theusermakesselectionsamongthefunctionsandfilters.Assearchfiltersgetactivated,hexagonsrepresentingproductsthatdonotmeettheneedsareeliminatedfromthematrix.“Themorerequirementstheuserstipulates,themoreaccuratetheoutcomewillbe,hencethemoresuitablefortheparticularapplication,”saysAndersen.

Havingcompletedtheselectionprocess,theusercanclickonanyofthehexa-gonsthatremainandgetapop-upwindowpresentingpicturesofseveralproductsthatqualify.Byclickingoneofthosepictures,theusergetstothedescriptionpageforasinglelight-interactingproduct,repletewith

Autumn 2009 | MIT Energy Initiative | Energy Futures | 17

R E S E A R C H R E P O R T S

Search interface that enables users to find suitable products in the Database of Light Interacting Technologies for Envelopes (D-LITE)

informationpresentedinahighlyvisualandintuitivefashion.

Thepageincludesadetaileddescriptionoftheproduct;linkstothecompaniesorresearchinstitutesthatdevelopedandsupplyit;anddrawingsthatshowhowitlooks,howitworks,andhowitshouldbeinstalled.Wherepossible,casestudiesshowexamplesofprojectswheretheproducthasbeenused,withdescriptions,photos,andlinkstothearchitecturalfirmsordesignersinvolved.Finally,aninteractivegraphenablestheusertocomparetheselectedproducttoothersinthematrixonsuchmeasuresascost,lighttrans-mission,lightreflection,thermalbehavior,andpowerconsumptionorproduction.

Ahighlightoftheproductdescriptionpageisaseriesofphotosshowinghowthewindowsystemaffectslightenteringaroom.Totakethephotos,theMITresearchersusedspecialequipmentintheMITDaylightingLabthatenablesthemtotestscalemodelswithincominglightreplicatingthesunatthreepositions.Onthewebsite,theusercanclickonthephotostoseehowtheangleofincidence—25,50,or75degrees—affectsthepathwayoftheincominglight,sometimesaimingitdownwardandsometimessendingitdeepintotheroom.

Photosfromonesuchtestappearonpage18.Inthisseries,theleftandcenterphotosshowlightenteringawindowattheleftoftheroom.Theangleofincidenceis50degrees.Inthe

leftphoto,thewindowcontainsclearglassasareferencecase.Inthecenterphoto,thewindowisasampleofaproductprovidedbyitsmanufacturer.Thechangeinthedistributionoflightwithintheroomisstriking.

Theright-handphotoshowstheviewlookingthroughthewindowsystematatree.Withthisproduct,thetreeappearsquiteclear.However,withotherproductsitcanlookhazyordistorted.Althoughthatinformationisimportanttoadesigner,itisseldomavailablebecausecapturingitinacomputersimulationisdifficult.Withthedatabase,adesignercangetafirsthandlookatthe“viewout.”

18 | Energy Futures | MIT Energy Initiative | Autumn 2009

R E S E A R C H R E P O R T S

Performance of advanced window system in scale model

Theinformationpageforeachwindowsysteminthedatabaseincludesaseriesofphotosshowingtheproduct’simpactonthedistributionofincominglightinascalemodelroom.Inthesamplesabove,theleftphotoshowsthereferencecasewithclearglassandanincidentsunangleof50degrees.Thecenterphotoshowsthesameconditionsbutwiththelightenteringthroughasampleproductprovidedbyamanufacturer.Theright-handphotoshowstheviewoutthroughthesampleproduct.

“Wehopethatourdatabaseandsearchtoolwillleadtowideruseofadvancedwindowsystems,whichcansaveenergy,reduceemissions,andensurethecomfortandwell-beingofbuildingoccupants,”saysUrbano.“Andbymakingthesearcheasy,wehopetoencouragearchitectsanddesignerstostartplanningtheirlightingfromthebeginningsoit’swellintegratedintotheoveralldesignprocess.”

Other perspectives, opportunities

D-LITEisjustoneavenuethatAndersenandherstudentsarepursuingtoencouragetheuseofadvancedwindowsystems.TheyarealsodevelopingLightsolve(daylighting.mit.edu/research.php),aninteractivesimulationtoolforanalyzingandincreasingthedaylightingpotentialofproject-specificdesigndecisions,suchaswindowtype,arrangement,shadingstrategy,andmaterialchoice.Takingintoaccountthelocation-specificclimateandchangesinlightthroughouttheyear,thesimulationgeneratesinformationthatwillhelpdesignersachievethedelicatebalancebetweenilluminationandvisualand

thermalcomfort.Theresearchersarealsoworkingtodevelopnewperfor-mancemetricsandcalculationmethodsthatwillenablearchitectsandotherstogeneraterealisticestimatesofthepotentialforadvancedwindowsystemstoreduceenergyuseforlighting,heating,andcoolingaswellastoproduceotherbenefitssuchasvisualandthermalcomfort,health,andproductivity.

Finally,incollaborationwiththeMITMuseum,AndersenandUrbanohavebeendevelopinganovelconceptforamuseumexhibitionthatwillletarchitects,designers,andthegeneralpublicexperiencefirsthandavarietyofstate-of-the-artfaçadetechnologiesforadvanceddaylightingcontrol.Theexhibitionwillconsistofaseriesofroundenclosureshousinginstallationsofthesematerials.Visitorswillbeabletowalkthroughthespace,interactingwiththetechnologieswhilelearningthebasicprinciplesofdaylightinganditspotentialforsavingenergyandincreasingsustainability.“Peoplewillbeabletoexperienceandcomparetheeffectsofmanynewsystemsonlight

forthefirsttime,”saysUrbano.“Lightisveryperceptual,andthisexhibitionwillprovidepeoplewithanimmersiveandsensibleexperience.”

• • •

By Nancy Stauffer, MITEI

Research on D-LITE was supported by MIT, the Fulbright Program, Harvard University’s Committee on General Scholarships, a seed grant from the MIT Energy Initiative, and the Fundación Caja Madrid. MITEI seed funds are also supporting the work to develop new performance metrics for assessing the energy-savings potential of leading-edge façade technologies. More information is available on the Building Technology Program at bt.mit.edu/ and on the Daylighting Lab at daylighting.mit.edu/.

Autumn 2009 | MIT Energy Initiative | Energy Futures | 19

R E S E A R C H R E P O R T S

InpoorruralregionsofIndia,traditionalcookingstoves(left)burningfirewoodordunginsidehomeswithlittleventilationcausedangerouslyhighlevelsofindoorairpollution.Topreventsuchpollutionandassociatedhealthimpacts,aruraldevelopmentorganizationhasbeenprovidingsmokelessstovestothousandsoffamiliessince2006.Thenewstove—shownaboverightwithsimmeringfood—ismoldedoutoflocalmudandincludesachimneythatventspollutantsoutdoors.

Cleaner stoves, better health in rural India

EarlyresultsfromanMIT-ledstudyconfirmthataprogramprovidingcleancookingstovestothousandsoffamiliesinIndiaisimprovingtherespiratoryhealthofwomenandchildren.Byventingsmokeandunburnedparticlesoutdoors,thenewstovesreduceindoorairpollution,aleadingcauseofillnessanddeathinpoorruralregionsofmanydevelopingcountries.

On-the-groundworkinIndiaidentifiedtwowaystoimprovetheprogram’seffectiveness:bychangingthestovedesigntoreducethehighfrequencyofbreakageandbyidentifyinga“gooduser”ineachvillagewhocanteachothervillagershowtouseandmaintaintheirnewstovesproperly.

“Thestudy’sfindingswillbeparticularlyimportantforpolicymakersbecauseitisanassessmentofarealprogramthatalreadyexistsandcouldbescaleduporeasilyreplicated,”notesprojectleaderEstherDuflo,theAbdulLatifJameelProfessorofPovertyAlleviationandDevelopmentEconomicsatMIT.

Halftheworld’spopulationcontinuestorelyonfirewood,dung,andcropresidueforcookingandheating.Inpoorcountries,upto95%ofpeopleusethosefuels,frequentlyburningthemintraditionalcookingstovesinsidetheirhomeswithlittleventilation.Theresultisdangerouslyhighlevelsofindoorairpollutionthatposeaserioushealththreat,especiallyforwomenandchildren,whospendconsiderabletimenearthecookingstove.

Tocombatthatproblem,manyorgani-zationsandgovernmentsadvocatethedistributionofimprovedcookingstoves.InIndia,forexample,GramVikas,aruraldevelopmentorganization,beganastovedistributionprogramin2006inOrissa,oneofthepooreststatesinthe

country.The“smokeless”stovesintheirprogramhavebeenshowntoburnlessfuelthantraditionalstovesdo,andtheyincludeachimneythatventsthesmokeoutdoors.

“Inprinciple,you’dthinkthatjustputtingachimneyinandtakingthepollutionoutsidewouldhelpalot,”saysDuflo.“That’sthetechnologysolutiontotheproblem.Butdoesitactuallydoanygood?Dopeopleusethestovesandmaintainthemproperly?Andisthereactuallyanyimpactonhealth?”

DesigningandperformingcontrolledfieldexperimentstoanswersuchquestionsisaspecialtyoftheAbdulLatifJameelPovertyActionLaboratory(J-PAL)atMIT.Co-foundedbyDufloin2003,J-PALseekstoprovidescientificevidencethatcanhelpassessandpotentiallyimprovepoliciestocombatpoverty.“Toshapegoodpolicy,wemustunderstandwhatcausestheprob-lemswe’retryingtocureandwhichcureswork,”notesDuflo,whoinSeptemberreceiveda2009MacArthurFellowship—theso-called“genius”grant—forherinnovativeapproachtohelpingalleviatepovertyworldwide.

Toevaluatetheeffectivenessofthecookingstoveprogram,DufloisworkingwithRemaN.Hanna,assistantprofessorofpublicpolicyattheJohnF.KennedySchoolofGovernment,HarvardUniversity,andMichaelB.Greenstone,the3MProfessorofEconomicsatMITandnowchiefeconomistoftheWhiteHouseCouncilofEconomicAdvisers.Theyareteam-ingupwithcollaboratorsatGramVikasandattheInstituteforFinancialManagementandResearch(IFMR)inChennai,thehomeofJ-PAL’sresearchpartnerforsouthAsia.

Scientific evidence of better health

Toestablishabaseline,GramVikasandtheCentreforMicrofinanceattheIFMRsurveyedalmost2,400householdsin40villagesinOrissa.Thesurvey,performedbetweenJanuaryandJuly2006,includedarangeofquestionsaboutwealthandincome,stovedesignanduse,andpeople’shealthstatusduringtheprevious30days.Eachpersonwasgivenashortphysicalexamination,includingmeasurementsofvariouslungfunctionsusingaspirometerandacarbonmonoxide(CO)analyzer.

MITEIseedgrantproject

Phot

os: c

ourte

sy o

f Ste

phen

Ray

G, M

IT

20 | Energy Futures | MIT Energy Initiative | Autumn 2009

R E S E A R C H R E P O R T S

Inanalyzingthecollecteddata,Duflo,Hanna,andGreenstonefoundevidenceofaveryhighincidenceofrespiratoryillness.Aboutone-thirdoftheadultsandhalfofthechildrenhadexperiencedsymptomsofrespiratoryillnessinthe30daysprecedingthesurvey,with10%oftheadultsand20%ofthechildrenhavinghadaseriouscough.

Theanalysisshowedastrongcorrela-tionbetweenusingastovewithhighemissionsandimproperventilationandhavingsymptomsofrespiratoryillness.However,theresearcherscouldnotsayconclusivelythatthenegativehealthimpactswereduesolelytothepollutingstoves.Householdsthatchoosetouseacleanstovearealsolikelytobewealthier,toeatbetter,andtobemorehealthconscious—factorsthatwouldalsocontributetobetterhealth.

Todisentanglethoseeffects,J-PALisusinganapproachcalledrandomizedtesting.Itworksasfollows.Takealargegroupofpeopleandrandomlychoosesomeofthemtoreceive(forexample)cleanstoves.Afteraperiodoftime,testthehealthofeveryone.Withalargeenoughstudypopulation,thetwogroupswillbestatisticallyindistinguishable—exceptthattheonegroupwillhavehadthenewcookingstoves.Asaresult,anyobserveddifferenceinhealthcanbeattributedtouseoftheimprovedstoves.

ThedistributionofsmokelesscookingstovesbyGramVitaspresentedanidealopportunitytoperformthistypeoftesting.Withinagivenvillage,theorganizationdistributesstovesbasedonalottery.Winnersinthefirstlotteryreceivedtheirstovesin2006,winnersinthesecondroundin2008,andthe

remainingthirdofthevillagersaregettingthemnow.Becausethethreegroupsarefundamentallythesame,householdsinthethirdgroupcanserveasacomparisonforhouseholdsinthefirstgroup.

In2008,GramVikasandtheCentreforMicrofinanceperformedafollow-upsurvey.AlthoughDufloandhercol-leaguesarestillanalyzingdatafrombothsurveys,preliminaryresultsonthehealthimpactsofthenewstovesareencouraging.Inthisstudy,theconcentrationofCOinthebreathservesasameasureofrecentexposuretoairpollutionfrombiomasscombustion.(Becausethestudyareahasfewvehicles,industrialplants,orothersourcesofsuchpollution,theresearch-erscanassumethatelevatedCOinthebreathisduetocookingstoveemis-sions.)InitialfindingsshowthatwomenwhohavethecleanstovesarelesslikelytohavehighCOreadingsthanarewomenwhodonot—andthedifferenceisstatisticallysignificant.

Practical steps for greater benefits

The2008surveyalsopointstosomepracticalproblemsthatcanbeaddressedtomakethestoveprogrammoreeffective.Forexample,ofallthestovesthatwereinstalled,only60%werestillingoodoperatingcondition.Theresthadbroken.

Toinvestigatethatproblem,StephenRay,anMITgraduatestudentinmechanicalengineering,spentthesummeratGramVikasexaminingstoves.“Aftervisitingnumerousvillagesandobservinglotsofstoves,Istartedseeingpatternsinhowtheywerebreaking,”saidRay.“Mostoftenthechimneyswerebroken.They’dbeenknockeddownbychildrenoranimals,orthey’dcomeapartwhile

RepresentativesfromGramVikastestthelungfunctionsofachildinavillageinOrissa,India,wherecleancookingstoveshavebeendistributedtosomefamilies.ResultsfromsuchtestsareamongthescientificdatathatMITresearchersareusingtodeterminewhetherthestovedistributionprogramisactuallyimprovingpeople’shealth.Earlyresultsfromtheiranalysesareencouraging.

Autumn 2009 | MIT Energy Initiative | Energy Futures | 21

R E S E A R C H R E P O R T S

beingcleaned.Sothere’dbeabrokenpipestickingoutofthestove,sendingallofthesmokeandotheremissionsrightintothekitchen.”Typicallytheproblemwaslackofsupport.Thechimneys—someofthem10feettall—weremadeofmultiplesectionsheldtogetheronlybyaclaycompound.

Basedonhisobservations,Raycameupwithdesignchangesthatwouldhelp.Forexample,whenmakinganewstove,hesuggestedrunningbamboopolesdownthebackofthechimneyandintotheclayatthebackofthestove.Foralreadyinstalledstoveshedevelopedseveraldesignsforattachingthechimneytosupportstructuressuchasthewallofthehouse.BeforeheleftIndia,hewasabletoretrofitanumberofstoves;andsixmonthslatertheywerestillingoodworkingorder.

Anotherproblemidentifiedinthesurveywasthatpeoplewhohadsmokelessstovesdidnotalwaysuseandmaintainthemproperly.Forexample,theymightputapotononlyoneofthestove’stwoopenings,leavingthesecondoneuncoveredsothatsmokecouldescape.Sometimestheydidnotcleanthechimney,anditbecameclogged.Andsometimestheyjustcontinuedtousetheirtraditionalstove,arguingthatthosestovescookedfasterandrequiredlessfuel.

Thecollaboratorsarenowdevelopinga“gooduser”systeminwhichtheyidentifyonewomanineachvillagewhoknowshowtouseandmaintainthestoveproperlyandiswillingtoteachotherstodothesame.Thegooduseralsoidentifiesandreportsprob-lemswiththestovestoGramVikas.

Duflosaysthereisstillmuchworktobedone.Inadditiontoanalyzingthedatafrombothsurveysforhealth

impacts,shealsowantstoexaminetheprogram’seffectsoneconomicwell-being.“Ifpeopleareinbetterhealth,householdsshouldhavetospendlessmoneyonmedicalcare,andtheyshouldbemoreproductive,withadultsmissingfewerdaysofworkandchildrenmissingfewerdaysofschool,”shesays.“Knowingtheeconomicbenefitsaswellascostsofthisprogramwillhelppolicymakersastheyconsiderhowaidmoneycanbeusedmostefficientlyandwhatkindsofprogramscanhavelong-termpositiveeffectsinthedevelopingworld.”

• • •

By Nancy Stauffer, MITEI

This research was funded by a seed grant from the MIT Energy Initiative; Institut Veolia Environnement; and ICICI Social Initiative Group. More information can be found in:

E. Duflo, M. Greenstone, and R. Hanna. “Indoor air pollution, health and economic well-being.” Surveys and Perspectives Integrating Environment & Society, v. 1, no. 1, January 1, 2008, pp. 1–9.

E. Duflo, M. Greenstone, and R. Hanna. “Cooking stoves, indoor air pollution and respiratory health in rural Orissa.” Economic & Political Weekly, v. 43, no. 32, pp. 71–76, 2008.

StephenRay,anMITgraduatestudentinmechanicalengineering,spentasummerexaminingsmokelesscookingstovesinpeople’shomestoseewhytheyhadsuchatendencytobreak.Hefoundthatmostoftenthechimneyhadcollapsed(left).Tocorrecttheproblem,hedevelopeddesignchangesthatwouldhelpsupportthechimney,suchasrunningbamboopolesdowntheback(right)orattachingittothewallofthehouse.

22 | Energy Futures | MIT Energy Initiative | Autumn 2009

R E S E A R C H R E P O R T S

Harnessing the world’s collective intelligence to deal with climate changeMITresearchersareaskingyoutohelpdeviseaplanfordealingwithclimatechange.

Attheironlineforum,youcanreviewtheimpactsofplansnowbeingdis-cussedanddebatedinternationally—andyoucantrytodesignaplanthatmightbebetter.

Basedonassumptionsinyourplan,youcanruncomputersimulationstotestitsimpactonglobaltemperatureandsealevelanddetermineitseco-nomiccostsandbenefitsoutto2100.Youcanalsotakepartinorganizeddebateswithothersandultimatelyvoteonwhichplansyoubelievewouldbemosteffectiveandmostfeasible.

Nomatteryourlevelofexpertise,youwouldbehelpingMITachieveitsgoal:toharnesstheworld’scollectivehumanintelligenceandcomputerpowertoaddresswhatisviewedbymanyastheworld’smostimportantandchallengingproblemtoday.

Collective intelligence

Researchersworldwidearetacklingclimatechangeinvariousways,buttheproblemissovastandcomplexthatnoindividualorgroupcanhaveallthesolutionsorevenunderstanditall.Moreover,traditionalmethodsofcommunicating—conferences,journalarticles,publicmedia,andsoon—arenotcapableofgatheringandsynthesizingthedistributedknowledgeaccuratelyandquickly.

ThomasW.Malone,thePatrickJ.McGovernProfessorofManagement,believesthatitistimetoaddresstheclimatechangeproblemusingcollectiveintelligence.“Weneedtoconnectpeopleandcomputerssothatcollec-tivelytheyactmoreintelligentlythan

anyperson,group,orcomputerhaseverdonebefore,”hesays.

Makingsuchconnectionsisnowpossibleonanunprecedentedscale,andtheoutcomecanbepowerful.Toillustrate,MalonecitesnotonlyWikipediaandLinuxbutalsopopularInternetsiteswherethecombinedwisdomofthousandsofusershasprovedsurprisinglyaccurateatpredict-ingtheoutcomesoffutureelections,sportingevents,andmore.

Toapplycollectiveintelligencetotheclimatechangeproblem,Malone,whoisdirectorofMIT’sCenterforCollectiveIntelligence(CCI);RobertLaubacher,CCI’sactingexecutivedirector;andtheirCCIcolleagueshavedevelopedanonlineforumcalledtheClimateCollaboratorium(www.climatecollabo-ratorium.org),acombinationofsoft-waretoolsonawebsiteandabroadcommunityofpeoplewhousethem,includingpolicymakers,business-people,educators,students,activists,andotherconcernedcitizens.

Computer models

KeytotheCollaboratoriumisthenotionof“radicallyopencomputermodeling.”Manycomputermodelsarenowavailablethatcansimulatekeyprocessesandrelationshipspertainingtoclimatechange.However,mosthavebeenwrittenandusedbysmallgroupsofpeoplewhodecidewhatassumptionstomake,whatpossibilitiestoexamine,andhowtointerprettheresults.

TheMITteamisdevelopingalibraryofsuchmodelsthatuserscanrun,tryingouttheirownassumptionsandgeneratingresultsthatothervisitorscanexamineandevaluate.Overtime,theteamhopesthatmanyvisitorstothewebsitewilladdmore

modelsandmodifymodelsthatarealreadythere.

Forexample,thefirstweb-accessible,interactivesimulationmodelintheCollaboratoriumwasC-LEARN—amodeldevelopedbyJohnSterman,theJayW.ForresterProfessorofManagement,graduatestudentJuanMartin,andtheircolleaguesinaconsortiumcalledClimateInteractive.

TotryoutaplanwithC-LEARN,usersselecttargetvaluesforfuturegreen-housegas(GHG)emissionsoverthecomingdecadesinthreeregionsoftheworld:industrialcountries;large,rapidlydevelopingcountries;andotherdevelopingcountries.UsersalsosetfuturechangesinlandusethatwillaffectGHGremoval.Specifically,theydefinetherateofdeforestation(cuttingtreesfordevelopmentoragriculture)andtherateofafforestation(plantingtreestocreatenewforests).Foreachsetofvalues,C-LEARNcalculatestheresultingchangesinatmosphericconcentrationsofGHGsandintempera-tureandsealeveltotheyear2100anddisplaysthemonthesamepagewhereusersentertheirinputs.

Throughothermodelsincorporatedinthesite,userscanalsoassesstheeconomicsoftheirchoices.Forinstance,foragivenplan,howmuchwillwehavetoinvesttoreduceemissions,and—ontheothersideofthebalancesheet—howmuchwillwesavebynothavingtorepairoradapttothedamagethatwouldhaveoccurredhadwenottakenaction?TheCollaboratoriumquantifiessucheconomictrade-offsbydrawingonresultsfromexistinglarge-scalemodels—withoutactuallyrunningthem.

Forexample,severalresearchgroupshaveusedtheirmajormodelsto

MITEIseedgrantproject

Autumn 2009 | MIT Energy Initiative | Energy Futures | 23

R E S E A R C H R E P O R T S

Harnessing the world’s collective intelligence to deal with climate change

examinedifferentstabilizationtargetsforatmosphericcarbondioxide(450ppm,550ppm,andsoon).Themodelsdeterminedtheemissionslevelsandpoliciesthatwouldberequiredtomeeteachtargetandthencalculatedtheresultingdropingrossdomesticproduct(GDP)associatedwitheachstabilizationlevelascomparedto“businessasusual”(thecontinuationofcurrentemissiontrends).

LaubacherandtheCollaboratoriumteamusedtheresultsfromthesemodel

runstocreate“responsesurfaces”—simplifiedmodelsthatcanquicklyshowtherelationshipbetweenselectedstabilizationlevelsandthereductioninGDPassociatedwitheachandthenmathematicallyinterpolatebetweenthosediscretepointssothatuserscanchooseanyvaluestheylike.

Usingthesameapproachwithresultsfromothermodels,theresearchersalsoproducedresponsesurfacesthatshowtheGDPlossesthatcanbepreventedbyavoidingthedamageassociatedwith

specificincreasesintemperature.Withthosetools,usersoftheCollaborato-riumcangetfast,approximatepredic-tionsoftheeconomiccostsandbenefitsofanyproposedplan.

TheCollaboratoriumalsoaddressesnon-economicissuesthatmustbeconsideredwhenjudgingclimateplans.DrawingonqualitativeresultsfromstudiesbytheIntergovernmentalPanelonClimateChangeandothers,theresearcherspreparedtablesthatshowtheimpactsofeachdegreeofwarming

Sample page from the Climate Collaboratorium

Thisplan,basedontheInternationalEnergyAgency’s450ppmscenario,showstheactions(leftcolumn)andprojectedimpacts(rightcolumn),ascalculatedbytheCollaboratorium’ssimulationmodels.Notethattheusercaneasilychangetheactionsandseehowtheimpactschange—ormakeupanentirelynewplan.

Imag

e: J

oshu

a In

trone

, MIT

24 | Energy Futures | MIT Energy Initiative | Autumn 2009

R E S E A R C H R E P O R T S

onwatersupply,agriculture,coralreefs,andotherfactorsindifferentregionsoftheworld.

“Withthosecapabilities,peopleareusingtheCollaboratoriumtoassesstheimpactsandtrade-offsoftheplansandproposalsbeingdiscussedattheUNclimatetalksinCopenhagen,”saysLaubacher.Moreover,notesMalone,withthousandsofpeopletryingoutdifferentcombinationsofassumptionsandpossibleactions,theCollaborato-riummayactuallyyieldbettersolutionsthanthosenowonthetable.

Discuss, debate, vote

Likemostonlineforums,theCollab-oratoriumhostsopen,informaldiscus-sionamongitsvisitors.Butitalsoprovidesa“debatesummary,”whichoffersaconciselookatkeyissuesanddifferentpositionsonthem.Thedesignisbasedon“argumentmapping,”anapproachdevelopedbyteammemberMarkKlein,CCIprincipalresearchassociate.Discussionisorganizedaroundissues,positions,andarguments.

Toillustrate,onekeyissueis,howshouldwedivideuptheemissionsreductiontaskamongthedifferentregionsoftheworld?Positionspostedbyusersmightincludemakingthesamepercentagereductioneverywhere,achievingthesamepercapitauseeverywhere,andhavingthedevelopedcountriescutemissionsbeforethedevelopingcountriesdo.Userscanthenpostargumentsforandagainstthosepositions,basedonscientificstudies,economicevidence,moralgrounds,andthelike.

Thesiteorganizesthediscussiontobeproductiveandsystematic.“Everypointorargumenthasalocation,andonceit’sthere,there’snopointinsaying

itagain,”saysMalone.“Thisapproachreducescounterproductivebehaviorslikerepeatingcommentsandchangingthesubject,whichmakemanyonlinediscussionforumsunhelpful.”

Thecombinationofaccessiblemodelsandconstructivedebatepermitsuserstoexploreissuesandpossibilitiesingreatdepth,butevenwiththesetoolsinplace,thereisstillariskthattheexercisewouldneverconvergeonaresult.TheCollaboratoriumthereforeletspeopleexpresstheirpreferencesbyvoting.

Theycanvotefororagainstspecificplansthatareposted,includingthosebeingdiscussedinCopenhagen.Andtheycanvotefororagainstcommentsmadebyothervisitors.Onscientificissues—forexample,whatfractionofcarbondioxideemissionsendsupintheupperatmosphere—participatingexpertsmaysometimesagreeonthe“right”answer.Whentheydon’t,otherparticipantscanlearnfromtheirdiscussionanddebate.

Permittingpeopletovoteprovidesapowerfulmeansoffocusinginonpossibilitiesthatarethemostplausibleormostpromising.“Werefertothisapproachas‘electronicdemocracyonsteroids’becauseitletsmany,manypeopleexpresstheiropinionsaboutevenfairlydetailedissuesiftheycareto,”saysMalone.

Iftheydonotcareto,theywillbeabletoappointotherstovoteontheirbehalf.Anindividualmight,forexample,givehisorherproxytotheNationalAcademyofSciencesforscientificissuesandtotheSierraClubforpoliticalissues—butretaintherighttovoteasanindividualonissuesrelatedtothedivisionofresponsibilitybetweenindustrialanddevelopingcountries.

Building the online community

Theresearchersspentconsiderabletimeandeffortrecruiting,motivating,andorganizingtheCollaboratorium’sfirstcontributorsandmoderators.Sincethewebsite’slaunchinNovember2009,thenumberofparticipantshasgrown.Butthepressureisontoengageaneverlargercommunityofbothexpertsandnon-experts—largeenoughtoachievethewisdomofcollectiveintelligence.

“Intheextremeform,”saysMalone,“youcanimaginetheClimateCollabo-ratoriumasakindofsocietalinstitutionwheremanytensorevenhundredsofthousandsofpeoplearoundtheworldareactivelyinvolved,contributinginformation,expressingtheiropinions,andhelpingtoformulatethebestpossibleplanfortheworldtodealwithclimatechange.”

• • •

By Nancy Stauffer, MITEI

This research was supported by a seed grant from the MIT Energy Initiative. Other sponsors included Sustainability@MIT and the Argosy Foundation. More information can be found at cci.mit.edu/research/climate.html and in the following publications:

T. Malone and M. Klein. “Harnessing collective intelligence to address global climate change.” Innovations, summer 2007, pp. 15–26 (www.mitpressjournals.org/doi/abs/10.1162/itgg.2007.2.3.15).

T. Malone, R. Laubacher, J. Introne, M. Klein, H. Abelson, J. Sterman, and G. Olson. The Climate Collaboratorium: Project Overview, MIT Center for Collective Intelligence Working Paper No. 2009-003 (cci.mit.edu/publications/CCIwp2009-03.pdf).

Autumn 2009 | MIT Energy Initiative | Energy Futures | 25

R E S E A R C H N E W S

DOE establishes two Energy Frontier Research Centers at MITMITishometotwoof46newmulti-million-dollarEnergyFrontierResearchCenters(EFRCs),theWhiteHouseannouncedonApril27,2009.Oftheuniversitiesselected,onlyMITwillbeleadingtwosuchcenters.

TheEFRCs,whichwillpursuebasicscientificresearchonenergy,arebeingestablishedbytheUSDepartmentofEnergy(DOE)OfficeofScienceatuniversities,nationallaboratories,nonprofitorganizations,andprivatefirmsacrossthenation.

TheEFRCprogramwillprovide$19milliontofundtheCenterforExcitonicsatMIT,whichisdirectedbyMarcA.Baldo,associateprofessorofelectricalengineeringandaprincipalinvestigatorintheResearchLaboratoryforElectronics.Thiscenteraimstounderstandexcitedstatesknownasexcitons,whichconsistofaboundelectronandapositivelychargedhole.Excitonsunderpintheoperationofanewgenerationofsolarcellsandsolidstatelightingtechnologies.Theresearcherswillinvestigatethefundamentalpropertiesofexcitonsincomplexnanostructures.ThisEFRCincludescollaborationswithscientistsatHarvardUniversityandBrookhavenNationalLaboratory.

TheEFRCprogramalsoplanstosupply$17.5milliontofundtheSolid-StateSolar-ThermalEnergyConversionCenteratMIT,whichisdirectedbyGangChen,theCarlRichardSoderbergProfessorofPowerEngineering,directorofthePappalardoMicroandNanoEngineeringLaboratories,andaprincipalinvestigatorintheMaterialsProcessingCenter.ThisEFRCaimstoadvancethefundamentalscientificunderstandingofthermoelectricandthermo-photovoltaicmaterialsandtodevelopnovelmaterialsanddevicesto

harvestenergyfromthesunandterrestrialheatsources.Researcherswillstudythefundamentalsofphoton,phonon,andchargecarrierinteractionsinthermoelectricmaterialsandwillalsousephotoniccrystalsandmeta-materialstomanipulatethesolarandthermalradiationspectruminanattempttoprovideanidealmatchtothebandgapofphotovoltaicmaterials.ThisEFRCincludescollaborationswithscientistsatBostonCollege,OakRidgeNationalLaboratory,andBrookhavenNationalLaboratory.

MITisalsoacollaboratoronfourotherEFRCs:theCenterforNanoscaleControlofGeologicCarbonDioxideatLawrenceBerkeleyNationalLaboratory;theEnergyFrontierResearchCenterforCombustionScienceatPrincetonUniversity;theCenteronExtremeEnvironment-TolerantMaterialsviaAtomicScaleDesignofInterfacesatLosAlamosNationalLaboratory;andtheNortheasternChemicalEnergyStorageCenterattheStateUniversityofNewYork,StonyBrook.

An unprecedented federal commitment

“Asglobalenergydemandgrowsoverthiscentury,thereisanurgentneedtoreduceourdependenceonfossilfuelsandimportedoilandcurtailgreenhousegasemissions,”saidUSSecretaryofEnergyStevenChu.“Meetingthischallengewillrequiresignificantscientificadvances.Thesecenterswillmobilizetheenormoustalentsandskillsofournation’sscien-tificworkforceinpursuitofthebreak-throughsthatareessentialtomakealternativeandrenewableenergytrulyviableaslarge-scalereplacementsforfossilfuels.”

The46EFRCs,eachtobefundedat$2millionto$5millionperyearforaplannedinitialfive-yearperiod,wereselectedfromapoolofsome260applicationsreceivedinresponsetoasolicitationfromtheDOEOfficeofSciencein2008.Selectionwasbasedonarigorousmeritreviewprocessusingoutsidepanelsofscientificexperts.

ProfessorErnestJ.Moniz,directoroftheMITEnergyInitiative(MITEI),noted,“WeatMITareextremelypleasedtohavebeenawardedleadershipoftwoEFRCsandtobenamedassub-awardeeforfourmore.TheEFRCprogramreflectsanunprecedentedfederalcommitmenttothebasicresearchneededforcontinu-ingenergytechnologyinnovationandwasbuiltuponanexemplaryprocessthatengagedthenationalscientificcommunitytosetpriorities.”

TheDOEsolicitationhadspecifiedthatanyinstitutioncouldsubmitnomorethanthreeproposals,soMITEIdevelopedandimplementedaninternalreviewprocessforMIT.MITEIinformedMITfacultyabouttheopportunity,solicitedconceptpapersfrominterestedfacultyteams,andworkedwithVicePresidentforResearchClaudeCanizaresandthedeansofscienceandengineeringtoselectandstrengthenthethreeMITsubmissions.

Ofthe46EFRCsselected,31areledbyuniversities,12byDOEnationallaboratories,twobynonprofitorganiza-tions,andonebyacorporateresearchlaboratory.SixteenEFRCs,includingBaldo’s,arefundedthroughtheAmericanRecoveryandReinvestmentAct,withtheobjectiveofcreatingjobsandpro-motingeconomicrecoveryinadditiontolayingthefoundationforfutureenergytechnologies.Numerouspostdoctoral,graduatestudent,andtechnicalstaffpositionswillbecreatedtosupporttheworkoftheEFRCs.

26 | Energy Futures | MIT Energy Initiative | Autumn 2009

R E S E A R C H N E W S

MIT: An engine of energy innovation

Question:Whatdoliquid-metalbatteries,water-splittingcatalysts,wafersfrommoltensilicon,nanotube-enhancedultracapacitors,andplantcellwall-degradingenzymeshaveincommon?

Answer: Thesenovelcleanenergytechnologieswererecentlydeemedtobepotentially“transformative”bytheUSDepartmentofEnergy(DOE).ThetechnologiesarethefocusofresearchawardsbyDOE’snewAdvancedResearchProjectsAgency-Energy(ARPA-E).Theseawards—whichsupportkeylinksintheenergyvaluechain—highlightthecriticalroleMITplaysasanengineofenergyinnovation.

TheselectedprojectswereforoneMITresearchlabandfourstartupswithstronglinkstoMIT.Thesuccessfulproposals—submittedbyMITProfessorDonaldSadowayofmaterialsscienceandengineering,SunCatalytix,1366Technologies,FastCAPSystems,andAgrivida—willreceivecombinedfundingof$24.8millionfromthenewprogram’sinauguralroundoffunding.AsixthMassachusettsawardee,FloDesignWindTurbineCorporation,wasanearlierrecipientofanMITprizeforenergyentrepreneurs.

Sadoway’s“LiquidMetalGrid-ScaleBatteries”projectwasdescribedbyDOEasatechnologythat“couldrevolutionizethewayelectricityisusedandproducedonthegrid,enablinground-the-clockpowerfromAmerica’swindandsolarpowerresources.”Sadoway’sproposal,fundedat$6.9million,woulduselow-cost,domesticallyavailableliquidmetalstostoreenergyatgrid-scale.Whenhelearnedoftheaward,Sadowaysaid,“Thisisfantasticnews.Thesenewfundswillallowustoacceleratetherateofdiscovery.”

Henotedthatthefundswill“enableustoenlargeourteamandtoexpandourcollaborationwithotherresearchersoncampus.Theadditionofnewandcomplementaryskillstotheprojectwillhelpusmovethisnovelenergy-storageconcepttoareality.”

Anothersuccessfulproject,submittedbySunCatalytixCorporation,astartupthatemergedfromMIT,hasthepoten-tialto“greatlyenhancetheefficiencyofsplittingwaterintohydrogenandoxygen,”accordingtoDOE.Thecompanywillreceive$4milliontocontinueitsgroundbreakingworkonthedevelopmentofacatalystthatmimicsaplant’sstoragesystem,withthepotentialtobeakeyenablerforliquidfuel-baseddistributedenergy-storagesystems.SunCatalytix,startedbyMITProfessorDanielNoceraofchemistryin2008,isfocusedoncommercializingcatalysttechnologyoriginallydevelopedinNocera’slaboratoryatMIT.

1366TechnologiesInc.—astartupinitiallylaunchedfromthelabofMITProfessorEmanuelSachsofmechanicalengineeringandtheonlyphotovoltaicscompanytoreceiveastampofapprovalfromARPA-E—wasselectedtoreceive$4milliontopursuethedevelopmentofhigh-efficiencymonocrystalline-equivalentsiliconwafersdirectlyfrommoltensilicon.Thesewafershavethe“potentialtohalvetheinstalledcostofsolarphotovoltaics.”ProfessorTonioBuonassisi’sLaboratoryforPhotovoltaicResearchwillteamwith1366tosupporttheproject.1366Technologieswasformedin2008,anditsboardofdirectorsconsistsentirelyofMITalumni.

ResearchthatunderpinstheproposalofFastCAPSystems—anotherstartupwhosegenesiswasinMIT-generatedresearch—beganattheLaboratoryforElectromagneticandElectronicSystems(LEES)in2003underthedirectionofProfessorJoelSchindallofelectrical

ProfessorDonaldSadoway(right),recipientofoneofDOE’sARPA-Eawards,andgraduatestudentDavidBradwell,bothoftheDepartmentofMaterialsScienceandEngineering,areworkingonliquidmetalbatteries,atechnologythatcouldmakepossiblegrid-scaleenergystorage.

Phot

o: S

alva

dor B

arrig

a G,

MIT

Autumn 2009 | MIT Energy Initiative | Energy Futures | 27

R E S E A R C H N E W S

engineeringandcomputerscience.Thenovelultracapacitorsbeingdevel-opedapproachtheenergydensityofconventionalbatteriesbutdonotsimilarlydegrade.AccordingtoSchindall,theyhaveanessentiallyindefinitecyclelife.DOE,initsselectionofthe$5.3millionproject,notedthatitcould“greatlyreducethecostofhybridandelectricvehiclesandofgrid-scalestorage.”FastCAPwasformedin2009byMITalumniRiccardoSignorelliandJohnCooley.SchindallandLEESwillpartnerontheproject.TheMITEnergyInitiativeprovidedaseedgrantforSchindall’sworkonultracapacitors.

Agrivida—yetanotherstartupwithstrongtiestoMIT—wasselectedtoreceivea$4.6milliongrantfromARPA-Etodeveloptheabilitytogrowcellwall-degradingenzymeswithinplantsthatareactivatedafterharvest.DOEselectedthisprojectbecause“thetechnologyhasthepotentialtodramaticallyreducethecostofcellu-losicbiofuelsandchemicals.”Agrividawasformedin2003byMITalumniMichaelRaabandJeremyJohnson.AtleastfiveotherMITalumniareinvolvedinthecompany,whichrou-tinelyhiresMITstudentsassummerinterns.Agrividaisanagriculturalbiotechnologycompanydevelopingenergycropsdesignedtoproducechemicals,fuels,andbioproductsfromnon-foodcellulosicbiomass.

Finally,FloDesignWindTurbineCorpo-rationofWilbraham,MA,receivedanawardofmorethan$8milliontodevelopanadvancedwindturbine,theMixerEjectorWindTurbine,orMEWT.WhilenotanMITspinoff,FloDesignreceivedtheMITCleanEnergyEntrepreneurshipPrizein2008,supportedbyN-STARandDOE.

ThefiveMIT-affiliatedawardsandFloDesignwereselectedfromatotalofmorethan3,600initialconceptpapers,ofwhichapproximately300wentontotheproposalstage.Ultimately,DOEselected37projectsforfundingfromARPA-E.Inahighlycompetitivefield,MITdemonstratedonceagainthatitisthe“go-to”placefordevelopingenergysolutionswithaneyetowardcommercializationandthepotentialtotransformhowweproduceandconsumeenergy.

MITPresidentSusanHockfieldsaid,“TheARPA-EawardsreflectMIT’strackrecordofinventinginspiredsolutionstoreal-worldproblems,andonlyreinforceourconfidenceintheCommonwealth’sgrowingenergytechnologyinnovationcluster.”

• • •

By Timothy Heidel G and Melanie Kenderdine, MITEI

28 | Energy Futures | MIT Energy Initiative | Autumn 2009

R E S E A R C H N E W S

MITEI awards fourth round of seed grants

InOctober2009,theMITEnergyInitia-tive(MITEI)announceditsfourthroundofseedgrantssupportinginnovative,early-stageresearchprojectsacrosstheInstitute.Thelistofawardsattherightdemonstratesthecreativityanddiversityofthefundedresearch.

Totalfundinginthisroundofseedgrantsexceeded$1.7million.Theawardsspanninedepartments,andhalfoftheprojectsinvolvecollabora-tionsacrossdepartments.Onceagain,manyoftheawardswenttojuniorfacultyandtofacultynewtoenergy-relatedresearch.

Theresponsetothecallforproposals—issuedinmid-July—wasasstrongasever,with55submissionscomingfromacrosstheInstitute.

FundingforthenewgrantscomeschieflyfromMITEI’sFoundingandSustainingmembers(seelistonpage48)supplementedbyfundingfromtheChesonisFamilyFoundation,DougandBarbaraSpreng,theSingapore-MITprograms,andMITEI.

Todate,MITEI’sseedgrantprogramhassupported54early-stageresearchproposals,withtotalfundingofmorethan$6.5million.Inaddition,eightindividualsorgroupshavereceivedignitiongrantsforjuniorfacultyorplanninggrantstohelpgeneratenewideas.

Foracompletelistingoftheseedgrantawards,gotoweb.mit.edu/mitei/research/seed-funds.html.Theresearchsectionofthisissue(startingonpage6)reportsonresultsfromfiveprojects—oneineachoftheMITschools—thatwerefundedinthefirstroundofawardsinJanuary2008.

• • •

Recipients of MITEI seed grants, October 2009

Theory of ultrafast Li-ion battery materialsMartin BazantChemical Engineering

Efficient solid-state lighting based on III-nitride nanowires and catalyst engineeringKarl BerggrenElectrical Engineering and Computer Science Silvija GradecakMaterials Science and Engineering

Designing new materials for sunlight—thermal energy storageJeffrey GrossmanMaterials Science and Engineering

Development of nanoparticle-laden molten salts for heat transfer in high-temperature solar and nuclear applicationsT. Alan HattonChemical EngineeringJacopo BuongiornoNuclear Science and Engineering

Genetic identification and expression of efficient cellulose degrading complexes from fungiChris KaiserBiology

Innovation policy, innovation prizes, and the energy economy: analyzing the role of prizes as a policy mechanism for energy innovationFiona Murray Management

Learning from nature: design principles for resilient bioenergy systemsMartin Polz Civil and Environmental Engineering

Integrated ribbons for solar cell applicationsMarin Soljacic PhysicsYoel Fink Materials Science and Engineering

Understanding and controlling the flow of thermal energy in nanostructured materials for energy conversionEdwin Thomas, Martin Maldovan Materials Science and Engineering

Processing of nanostructures for electrochemical energy storageCarl Thompson Materials Science and EngineeringYang Shao-Horn Mechanical Engineering, Materials Science and Engineering

Nanoscale hetero-interfaces for reversible solid oxide fuel cells in energy storageHarry Tuller Materials Science and EngineeringBilge Yildiz Nuclear Science and Engineering

Nanoengineered surfaces for subsea separation of fluid-fluid (oil-water) mixturesKripa Varanasi, Gareth McKinley Mechanical EngineeringRobert Cohen Chemical Engineering

Autumn 2009 | MIT Energy Initiative | Energy Futures | 29

E D U C A T I O N

MIT announces new energy minor

Startingthisyear,allMITundergraduatestudentshaveanewacademicoptionavailabletothem:aminorinenergy,whichcanbecombinedwithanymajor.ThenewEnergyStudiesMinor,unlikemostenergyconcentrationsavailableatotherinstitutions,andunlikeanyotherconcentrationatMIT,explicitlyintegratesscience,socialscience,andengineering,andencompassesallfiveschoolsatMIT.

TimothyGrejtak’11couldhardlywaittosignupforthenewminor,andbecamethefirststudenttodoso—literallyminutesaftertheregistrationformwasfinalizedinlateSeptember.Hehopesalsotobethefirstpersontograduatewiththeenergyminor,buthehasthreesemestersleftsoheknowsthatsomeoneelsecouldbeathimtothatfinishline.

“It’sgoingtobeverypopular,Ihaveafeeling,”saysGrejtak,whothreeyearsagostartedtheannualdormitoryenergycompetitionatMIT—atwo-monthcontesttoseewhichdormcanloweritselectricityusagethemost—andhasbeenrunningiteachyear.“Iknowofmanystudentswhoareveryinterested”intheenergyminor,hesays.

ThenewenergyminoristheproductoftwoyearsofworkbytheMITEnergyInitiative’sEnergyEducationTaskForce,co-chairedbyVladimirBulovic,theKDDAssociateProfessorofCommunicationsandTechnologyintheDepartmentofElectricalEngineeringandComputerScience,andDonaldLessard,theEpochFoundationProfessorofInternationalManagementattheMITSloanSchoolofManagement,whohadagreatdealofsupportfromnumerousfacultymembersandadministratorstogetthenewcurriculumapprovedandinplace.Bulovicnotesthat“therequiredcoreclassesandwidearrayofapproved

electivesfortheenergyminorreflectthemultidisciplinarynatureofenergyscience,technology,andpolicyandcovertherangeofenergychallenges,includingenergy-relatedclimatechange,pollution,andassociatedpovertyissues.Theyalsoincludesubjectsonenergyefficiencyandsustainablesourcesofenergy.”

Dr.AmandaGraham,whowilladmin-istertheminorasdirectoroftheEducationOfficefortheMITEnergyInitiative,hassupportedthetaskforce’sworkontheenergyminorsince2007.Fromthestart,shesays,itwasclearthatwhattheywantedwasabalancethatincludedthreeareas:energyscience,energytechnologyandengi-neering,andenergysocialsciences.

So,forexample,asolarenergyprojectmightrequiredetailedknowledgeoftheinherentphysicallimitstothesystem’spossibleefficiency(abasicsciencematter),thespecificengineeringchallengesassociatedwithbuilding

thesysteminaspecificdesignandlocation(amatteroftechnology),andtheissuesassociatedwithgainingthenecessaryfinancing,permitting,andpublicsupporttoallowtheprojecttogoforward(mattersofpolicyandeconomics).Thisrangeofdisciplineswasseenasessentialinordertopreparestudentstodealwiththefullrangeoftechnical,scientific,political,andeconomicissuesthatsurroundmostenergy-relateddecisions.“Inordertobeproficientinenergy,youhavetobeabletocrossoverthesethreeareas,”Grahamsays.Thosewhochoosecareersinenergypolicyneedtounderstandthescienceandtechnol-ogy,tounderstandwhat’spossibleandfeasible,shesays;andthoseworkingonenergytechnologyneedanunderstandingofthepoliticalandeconomicrealitiesthatdeterminewhatbecomesarealisticoptionforsociety.“Wewantedtomakesuretheenergyminorwassuitabletocomplementanymajor,inanyoftheschools.”

ThefacultytaskforcespecificallychosetodevelopaminorratherthanamajorinthebeliefthatanMITstudentfocus-ingonenergyshoulddevelopexpertiseindepthinaspecificdiscipline,andthencomplementthatwiththebreadthofunderstandingofferedbytheenergyminor.WhiletherearesomeotherinterdisciplinaryminorsatMIT,theyareallbasedinoneortwooftheschools.Incontrast,theenergyminorwasconceivedfromthestartasaprogramthatwouldbeaccountabletoallfiveschoolsinordertoensureamulti-disciplinarycurriculumandenrollment.

New academic structure

Theconceptwasunanimouslyapprovedlastyearbythefaculty,whichcreatedanexperimentalnewbody,

30 | Energy Futures | MIT Energy Initiative | Autumn 2009

E D U C A T I O N

theInter-schoolEducationalCouncil,towhichthenewminorreports.AnewEnergyMinorOversightCommittee,withrepresentationfromthefiveschools,wasformedtodirectlymanagetheprogram.Atthemoment,theenergyminoristheonlyprogramthathasthisnewreportingstructure.

ThisbroadstructuremakesMIT’sprogramunusual,ifnotunique,inhighereducation,saysGraham.Inotherschoolsthathaveenergymajorsorminors,shesays,“theprogramsthatI’mawareofareeitherscience-orpolicy-focused.Oursisdistinctiveinitsthree-domainstructure.”

MITDeanforUndergraduateEducationDanielHastingssaysthenewminor“canberegardedaspartoftheongoingtransformationoftheMITcurriculumforthe21stcentury,inthatitcreatesanoptionforourstudentswhichusesapproachesandknowledgefromallcornersofMIT.ThisshowsthepowerofMITworkingtogethertoharnessitsactivitiesinservicetotheworld.”Headdsthatthecreationofthisnewprogram“allowsanMITstudenttoobtainadegreeinamajordisciplinewhilealsolearningaboutandshowingcompetenceinoneofthepressingproblemsofourtime.”

AccordingtoRichardSchmalensee,theHowardW.JohnsonProfessorofEconomicsandManagementandamemberoftheEnergyMinorOversightCommittee,theEnergyStudiespro-gram“reflectsthehardfactthattheenergychallengeismulti-dimensional.Forstudents,theminorunitespeopleofdiversebackgroundsandinterestsinthisimportanteffort.Forfaculty,ithelpsuspreparethenextgenerationofleadersatMITandelsewhere.”

Aspartofthedevelopmentofthecurriculumforthenewminor,sevennewundergraduateclasseswerecreated,andthreeexistingclassesweresignificantlyrevised.Amongthenewofferingsareasocialsciencesclasscalled“EnergyDecisions,Markets,andPolicies,”andanewclassinEarth,Atmospheric,andPlanetarySciencescalled“EarthScience,Energy,andtheEnvironment.”

Thelistofelectivesavailableforstudentsintheenergyminoris“quitelong,andwe’dliketoseethatlistgrow,”Bulovicsays.

Asurveyofstudentsearlierthisyearfoundahighlevelofinterestintheenergyminor,with23%ofsophomoresand19%ofjuniorssayingtheyhadsomeinterestinit.

Grejtak,whoismajoringinmechanicalengineeringwithafocusonenergyconversionengineering,likesthefactthatthenewminorprovidesastructuretoenhancethatmajorwithcoursesdealingwiththeeconomicsandpolicyofenergy.“Itgoesthroughthewholegamut,andthat’soneofthereasonsIthinkit’ssuchagreatidea,”hesays.

Hehopestofindworkdevelopingcompleteenergysystems,includingworkingonthepoliticalaspectstomakethemsociallyfeasible,theeconomicstomakethempractical,andtheengineer-ingtomakethemsuccessful.“Therearemanywaysoftacklingproblemsinenergy,”hesays,“andthisisamulti-prongedapproach.”

“Energyissuchanimportanttopicnow—it’sthelargestcrisisthatmygenerationwillface,”hesays.“It’sgoingtobeamajorproblemforus,andthisenergyminoracknowledges

thatandgivesusawaytobequalifiedtoaddresstheseproblems.”

• • •

By David L. Chandler, MIT News Office, with reporting by Sarah Wright, MITEI correspondent

Autumn 2009 | MIT Energy Initiative | Energy Futures | 31

E D U C A T I O N

Summer UROPs cut across disciplines to address real-world energy issuesElizabethTurner’schildhoodinterestinrockscouldeasilyturnintoacareer.Aseniorinenvironmentalengineeringwithafocusongeology,Turner’10planstocontinueasummerresearchprojectontheuseofrareelementsinnewenergytechnologiesbywritingaseriesofarticlesfocusedonindivid-ualelements.

“Iaminterestedinpolicyandgeology,”saysTurner,whosefatherisageologist,andwholikestorockclimbandhike.“Ireallylikethisresearch.I’vewrittentwopapersandhopetowritethreeorfourmore.”

Studententhusiasmandcross-disciplin-aryresearchcharacterizethissummer’sUndergraduateResearchOpportunitiesProgram(UROP)projectssupportedbytheMITEnergyInitiative(MITEI),withfundscomingfromfourMITEIAffiliatemembers,aprivatedonor,andtheMITFutureofNaturalGasstudy.FifteenUROPstudentsandoneinternfromsevenMITdepartmentsworkedon12researchprojects(seeboxonpage33).Inmanycases,thestudentandhisorherfacultyadvisorwerefromdifferentMITschools,ensuringtheinterdisciplin-arynatureoftheexperience.Topicsaddressedincludedsolarenergy,electricvehicles,oilandnaturalgascosts,carbonsequestration,andtoolsforassessingclimatechangepolicies.

“Diversityisthemostimpressivefeatureofthissummer’sgroupofUROPs,whichinvolvedstudentsandfacultyfromacrossMIT,”saysRobertC.Armstrong,deputydirectorofMITEIandtheChevronProfessorofChemicalEngineering.“Thisreflectsthecomplexandinterdisciplinarycharacteroftheenergyfield.”TheUROPsalsocanhavefar-reachingimpactoutsidetheMITcommunity,hesays.

Forexample,Turner’spaperscouldbeusedtoeducatethegovernmentandothersaboutthecomplexityofusingrareelementsinnewenergytechnolo-gies,accordingtoRobertJaffe,herfacultyadvisorontheprojectandtheJaneandOttoMorningstarProfes-sorofPhysicsatMIT.“Shecoulddothisforaliving,”hesays.“MITstudentsaredynamite.”

Turner’sUROPprojectinvolvedcomb-ingthescientificliteratureandnews-papersforinformationonrareelementsthatarecriticaltoenergytechnologies,suchaslithiumforbatteriesandtelluriumforhigh-efficiencyphoto-voltaics.Turnercompiledalistofthosematerialsandthenstartedtoexaminethemintermsoftheiravailability,mineralogy,extraction,reserves,potentialforrecycling,economics,andscalability.Shealsobegandeveloping

aseriesofcasestudiesonthemostcriticalelementssuchastelluriumandneodymium(usedinmagnets),whichChinaisreportedlystockpiling.(Seethegraphabovefortrendsinglobalproductionofrareearthoxides.)

“Ifweareshortoncriticalmaterials,weneedtofindawaytoaddressthatavailability;otherwisewewon’tgettoofarindevelopingnewenergytech-nologies,”saysWilliamChao’78,whoholdsanSBinelectricalengineeringfromMITandwhosponsoredfivesummerUROPprojects,includingTurner’s.

Seeding the next generation

“ItisreallycooltobeabletofundmultipleUROPprojectsinparallel,”saysChao.“TheUROPshelpsowtheseedsforthenextgenerationofgraduatestudents.”

Global production of rare earth oxides, 1950–2000

80

70

60

50

40

30

20

10

01950 1960 1970 1980 1990 2000

Total

China

USA

Other

Year

Pro

du

ctio

n (

kilo

ton

s)

Therareearthelements,studiedalongwithotherenergy-criticalelementsbyUROPstudentElizabethTurner,arekeytoenergytechnologiesincludingbatteries,photovoltaics,andmagnets.Thegraphaboveshowstheglobalproductionofsuchelements(intheiroxideform)fromtheUnitedStates,China,andallothercountriescombined.WhiletheUSwasoncelargelyself-sufficient,ithasbecomeincreasinglydependentonimportsfromChina—asituationthatraisesconcernsastheUSworkstodevelopandcommercializenewenergytechnologies.(Source:USGS Fact Sheet 087-02.)

32 | Energy Futures | MIT Energy Initiative | Autumn 2009

E D U C A T I O N

GraduateschoolispartoftheplanforJuliaDay’10,aseniorinmechanicalengineering.HerUROPprojectfocusedontheapplicationofmicro-andnano-engineeredsurfacestoincreasetheefficiencyofexistingpowerplants.Expandingoutputfromthosefacilitieswillbecomeincreasinglyimportantwiththeexpectedrapidgrowthindemandforelectricityindevelopingcountries,whichmaylackthecapitaltobuildnewpowerplants.

Dayresearchedsuper-hydrophobic(water-repelling)andsuper-hydrophilic(water-attracting)technologiesthatcanbetailoredtoimprovedifferentpartsofsteamturbines,condensers,andboilers.

“AUROPisagreatwaytogetinvolvedinresearch,”shesays.“MyprojectcoveredalotofsubjectsIaminterestedin,likemanufacturing,micro-andnano-technology,energy,andhowtobetteruseenergywealreadyhave.”ShealsowasexcitedtoworkwithKripaVaranasi,d’ArbeloffAssistantProfessorofMechanicalEngineering,helpingtosetuphisnewlab,developlabprocedures,anddeviseexperiments.

Daywasdrawntomicro-andnano-applicationswhenshewasyoung,includinganinterestinquantumphysicsinhighschool.“Theideaoftinyparticlesandreallylookingathowthingsinteractontinylevelsisreallycool,”shesays.“There’sagreatworldwidepotentialtohelppeopleandsavelives.MyUROPalsohadfar-reachingimplicationsfortheenviron-ment.Plus,IcoulddothegeekystuffthatIlove.Iwouldliketoworkonthistopicforalongtime.”

Inherpost-UROPreport,Daysays,“Oneofmyfavoritepartsofthelabisthatthereisalotoffocusoncollabo-

ration,whichmeansthatIhadtheopportunitytoformlotsofconnectionswithotherresearchgroupsandprofes-sors.”Sheaddsthatshelearnedhowtobemoreproactiveingettinghelpandnetworkingwithotherlabs.

Helping urban planners

GraftonDaniels’11andChristosSamolis’12,bothelectricalengineeringandcomputersciencemajors,wereabletohonetheirprogrammingskills—andtolearnfirsthandhowacademicresearchisconducted.Thetwocollaboratedonaprojectattempt-ingtoadapttheUrbanSimmodeltotheLisbonmetropolitanarea.UrbanSimformsacorecomponentofOpus,theOpenPlatformforUrbanSimulation—aninitiativeofaninterna-tionalgroupofresearchersworkingonintegratedsimulationsoflanduseandtraveldemand.UrbanSimaimstosimulatewherehouseholdsandbusinessesarelikelytomovewithinacityand,forexample,helpplannersensurethatadequatepublicutilitiesandotherservicesareavailableinthoseareas.

Thestudentsexaminedthesoftwareandaddedcommentstothecodetohelpeducatenewcomersusingtheprogram.Inaddition,theyexaminedwaystoimproveUrbanSimbyinclud-ingmorebehaviorallysophisticatedmodelsofpassengertravel.

“Onethingwetriedtodowastouseawidersample,tomodelawholecity,”saysSamolis.Theoriginalsoftwaresamples30possiblelocationswhensimulatinglocationchoices.Thestudentsexaminedthecomputationalimplicationsofexpandingthesamplesizetothousandsoflocationsoreliminatingthesamplingapproachaltogether.Thepurposewastoincrease

thetheoreticalrigoroftheapproachandimprovetheforecastingaccuracy.

“It’saworkinprogress,”saysChris-topherZegras,thestudents’facultyadvisorandtheFordCareerDevelop-mentAssistantProfessor,Transporta-tionandUrbanPlanning,abouttheeffortstoapplyUrbanSimandOpusinPortugal.“It’spartofalargeresearchprojectthatspansseveraldepartmentsatMITandanumberofPortuguesepartneruniversities.”TheprojectispartoftheMIT-PortugalProgram,andDanielsandSamolisworkedwithpartnersattheUniversityofCoimbrainPortugal.ThemodelsarenowbeingadaptedforpilotapplicationinLisbonstartinginJanuary.

Zegrasnotesthatthestudentsare“intheearlystagesoftheirintellectualformation.”TheirworkwithUrbanSimandtheOpusplatform“getsthemtothinkintrans-disciplinarywaysandseehowoneskillisvaluableinanotherarea,”hesays.Inaddition,inthefuturetheywillbeabletoseetheresultsoftheirworkhelpingreal-worlddecisionmakersdesigntransportationandland-developmentpoliciesandmakeinvestmentsforurbanrevitalization.

• • •

By Lori Fortig, MITEI correspondent

Autumn 2009 | MIT Energy Initiative | Energy Futures | 33

E D U C A T I O N

Student name Project title Sponsor Faculty supervisor(s) Department Department(s)

YieuChyan’11 Dibenzocyclooctatetraene- GreengEnergy TimothySwager Chemistry based electronic polymers Chemistry

GraftonDaniels’11 Computer programming for NthPower ChristopherZegras Electrical Engineering and OPUS/UrbanSim enhancements Urban Studies and Planning Computer ScienceChristosSamolis’12 Electrical Engineering and Computer Science JuliaDay’10 Application of micro- and MITEnergyInitiative KripaVaranasi Mechanical Engineering nano-engineered surfaces Mechanical Engineering to increase power plant efficiency

IanFischer‘12 Concentrated solar power for WilliamChao’78 AlexSlocum Aeronautics and Astronautics Experimental Study Group Mechanical Engineering

DanielKelly’12 MIT Electric Vehicle Team vehicle NatalieGivans’84 YangShao-Horn,JohnHeywood, Mechanical Engineering modeling and testing WaiChengKwadwoNyarko’12 Mechanical Engineering Mechanical Engineering Yet-MingChiang Materials Science and Engineering HaitaoMao’12 Climate Collaboratorium WilliamChao’78 RobertLaubacher Electrical Engineering and Center for Collective Intelligence Computer Science ThomasMalonePatrickYamane’11 Management Electrical Engineering and Computer ScienceNikhilPradhan’09 Climate Collaboratorium intern MITEnergyInitiative RobertLaubacher Chemical Engineering Center for Collective Intelligence ThomasMalone Management

AnyaShafiro’10 Natural Gas Study MITNaturalGasStudy ErnestMoniz,TonyMeggs,DanielCohn Economics MIT Energy Initiative

AnnaShcherbina’11 Biofilms and carbon sequestration WilliamChao’78 RomanStocker Electrical Engineering and Civil and Environmental Engineering Computer ScienceJoshSiegel’11 Fuel efficiency monitoring in WilliamChao’78 SanjaySarma Mechanical Engineering modern vehicles Mechanical Engineering

ElizabethTurner’10 Rare elements and scalability WilliamChao‘78 RobertJaffe Civil and Environmental of energy technology Physics Engineering

JulianaVelez’11 Data center cooling MillennialNet LeonGlicksman Mechanical Engineering Architecture

JoshuaVelson’10 Fermentation of used vegetable MITEnergyInitiative Jean-FrançoisHamel Chemical Engineering oil biodiesel-derived raw glycerin Chemical Engineering to 1,3-propanediol using clostridium butyricum

MITEI Undergraduate Energy Research Projects, Summer 2009

34 | Energy Futures | MIT Energy Initiative | Autumn 2009

E D U C A T I O N

MITEI helps pre-frosh get into the flow of energy at MIT

PeterCooper(right),managerofsustainabilityengineeringandutilityplanningintheMITDepartmentofFacilities,explainsMIT’selectricaldistributionsystemtostudentsinthebasementoftheStataCenterduringatourofhowenergyflowsatMIT—fromgenerationtoenduse.

MattAlvaradoSB’00,PhD’08leadsawalkingtourhighlightinghistoricallandmarksandpointingoutareasthatmaybeinundatedaccordingtosomeclimatechangescenarios.

JaclynWilson(left)andKalebAyalewestimatetheirpersonal“carbonfootprints.”

Todemonstratefundamentalprinciplesofenergyflow,ProfessorStevenLeebSB’87,SM’89,PhD’93ofelectricalengineeringandcomputerscienceshowsJuliaKimmerly(center)andCarlosGreaveshowtomakeasimplebattery-poweredmotor.

InAugust,theMITEnergyInitiativeEducationOfficeenrolled24studentsinitsfirstFreshmanPre-OrientationProgram.Theweek-longprogram—called“DiscoverEnergy:Learn,Think,Apply”—featuredactivitiestoacquaintnewstudentswiththerangeofenergy-relatedopportunitiesatMIT,introducethemtoimportanttopicswithintheenergyarena,andconnectthemwiththeMITenergyandenvironmentstudentcommunity.

Phot

o: A

man

da G

raha

m, M

ITEI

Phot

o: A

man

da G

raha

m, M

ITEI

Phot

o: J

enni

fer D

iMas

e ’0

1, M

ITEI

Phot

o: J

enni

fer D

iMas

e ’0

1, M

ITEI

Autumn 2009 | MIT Energy Initiative | Energy Futures | 35

E D U C A T I O N

Named MIT Energy Fellows, 2009–2010

ABB Matthias BahlkeElectricalEngineering

andComputerScienceDavid LiuPhysics

b_TECNan-Wei Gong MediaArtsandSciencesJae Jin Kim MaterialsScience

andEngineering

Bosch Sophie Ni Sisi MaterialsScience

andEngineeringAdam Paxson MechanicalEngineering

BP Andres Cubillos-Ruiz BiologyPearl DonohooEngineering

SystemsDivisionRoberto Guererro-CompeanUrban

StudiesandPlanningJonathon HardingChemicalEngineeringChristopher Love MechanicalEngineeringSigurdur MagnussonCiviland

EnvironmentalEngineeringKawika Pierson ManagementJoseph ShapiroEconomicsMark SmithBiologyJason Sussman MaterialsScience

andEngineeringLaken Top Chemistry

Chevron Phech Colatat ManagementAndrew Shroll MechanicalEngineering

Constellation Ibrahim Toukan Technologyand

PolicyProgram

EDF Saaransh Gulati

NuclearScienceandEngineering

EnelBhavya Daya ElectricalEngineeringand

ComputerSciencePaul LewisCivilandEnvironmental

Engineering

Eni Michael Bikard ManagementShamel Merchant ChemicalEngineeringDeepak Mishra BiologicalEngineeringSteven Shimizu ChemicalEngineeringMohit Singh NuclearScience

andEngineeringGeoffrey Supran MaterialsScience

andEngineeringNathaniel Towery Science,Technology,

andSocietyAndrew Ullman ChemistryDi Yang Earth,Atmospheric,and

PlanetarySciencesMetodi Zlatinov Aeronautics

andAstronautics

Entergy Maximilian Parness Technologyand

PolicyProgram

Hess Michael Kearney Technologyand

PolicyProgram

Lockheed Martin Tom Heaps-Nelson Engineering

SystemsDivisionMax Solar MaterialsScience

andEngineering

Ormat Michelle Vogl MechanicalEngineering

Saudi Aramco Kwabena Bediako ChemistryDavid Borrelli ChemicalEngineering

Schlumberger Samantha Gunter ElectricalEngineering

andComputerScienceRonan Lonergan MechanicalEngineering

Siemens Karen Welling ArchitectureBrandon Reizman ChemicalEngineering

Total Paul Murphy Engineering

SystemsDivisionSreeja Nag Earth,Atmospheric,and

PlanetarySciences/EngineeringSystemsDivision

Jonas Nahm PoliticalScience

TheSocietyofEnergyFellowsatMITwelcomed47newmembersinSeptember2009.TheEnergyFellowsnetworknowtotals87graduatestudentsandspans20MITdepartmentsanddivisions.Thenewgraduatefellowshipsaremadepossiblethroughthegeneroussupportof17MITEImembercompanies.

NamedEnergyFellowsfor2009–2010.

Phot

o: J

ustin

Kni

ght

Phot

o: J

enni

fer D

iMas

e ’0

1, M

ITEI

36 | Energy Futures | MIT Energy Initiative | Autumn 2009

E D U C A T I O N & C A M P U S E N E R G Y A C T I V I T I E S

Recycled frying oil to power MIT shuttles

IfyoucatchawhiffoffrenchfrieswhenanMITshuttlerollspast,itwon’tbeacoincidence.Partofthefuelinitstankmayhavecomeoutofakitchendeepfryerjustafewweeksearlier.

Thestudentgroupbiodiesel@MIT,formedthreeyearsago,hasbeenworkingdiligently—andofteninanuphilleffort—tosecurethespace,equipment,andsafetyapprovalstobeginturningleftovercookingoilintofuelthatcanbeblendedwithregulardieselfueltohelppowerMIT’sfleetofshuttles.ThatlongeffortfinallycametofruitioninAugustwhenthegroupsucceededinmakingitsfirstbatch:30gallonsofgolden-coloredfuel.InearlySeptember,theyfinishedasecondbatch.

Beforethefuelcanactuallybepouredintothetankofashuttlebus,though,ithastobetestedunderstandardssetbyASTMInternational(originallyknownastheAmericanSocietyforTestingandMaterials),anindependentsafetystandardsandtestingorganiza-tion,toassurethatit’sfreeofcontami-nantsandhasthecorrectflashpointforignition.“Ifitpassesthat,”saysbiodiesel@MITVicePresidentKyleGilpin,agraduatestudentinElectricalEngineeringandComputerScience,“thenwewillpassitofftoFacilitiestouseintheirequipment.”

Theinitialbatches,cookedupbyGilpinandNatashaJensen’12,mightgointolawn-mowingequipment,butafterthispilotphasethesystemshouldbereadytostartadding20%biodieseltothefuelsupplyforthecampusshuttles.ThefuelwillbemadefromusedoilcollectedinitiallyfromtheStudentCenterandeventuallyfromallofMIT’sdiningfacilities.Whenthesystemisinfullswing,producingaboutone55-gallondrumofbiodieselperweek,

itshouldbeawin-winfortheInstitute:Itwillsaveupto20%offuelcosts(theamountofbiodieselthat’sblendedin),sincetherawmaterialisfreeandthelaborisdonated.Atthesametime,itwillsaveonthedisposalcostandenvironmentalimpactofdumpingtheusedcookingoil.Anditwillevenmaketheexhaustfumessmellbetter.

Theequipmentusedtoprocesstheusedoil—whichinvolvesfirstfilteringitandthenmixingitwithmethanolandacatalyst—wasengineered,designed,andconstructedbyMBPBioenergy,abiodieselproductioncompanybasedinNorthConway,NH.PrincipalsAlLandanoandJimProulx,undercontractwiththestudent-ledgroup,haveworkedwiththestudentsandMIT’sEnvironment,Health,andSafetyOffice(EHS)toinstalltheprocessorthatproducesthebiodieselfuel.Aspartofthecontract,MBPwillensurethatthefuelfromMIT’scustomizedprocessorisASTMcertifiedtobeusedontheroad.

Asthestudentsactuallyoperatetheequipmentoverthecomingmonthsandyears,learningtoadjustthesystem

astheygoalong,theymaywellfigureoutsomemethodsthatcouldhelpimprovebiodieselmanufacturingingeneral,Gilpinsuggests.

Thebiodiesel@MITgroupwasformedin2006andhasbeenworkingeversincetodrawupdetailedplansandgetthesysteminstalledandrunning.Twostudentswhohavesincegradu-ated,MatthewZedler‘07andJosephRoy-Mayhew‘08,originatedtheproject,andthegroupiscurrentlyledbySaraBarnowski’10.

Finding a place

Thehardestpartturnedouttobefindinganappropriateplaceoncampustoinstallthefacility,giventhesafetyissuesassociatedwithproducingflammablefuelandusingsometoxicchemicals.NiamhKellyofEHShasbeenworkingcloselywiththegrouptohelpthemgetthesysteminstalledandrunninginBuildingNW14.

Gilpinhasbeenanavidadvocateforbiodiesel.Lastsummerhemadeacarefullyplannedcoast-to-coasttrip

Biodieselisproducedfromwastevegetableoil(left).Afterinitialprocessingwithalcoholandastrongbase,theoilistransformedintobiodieselfloatingonmuchdenserwasteglycerol(center).Afterremovingtheglycerol,thebiodieselisfilteredandwashedtoproducethelight,clearliquid(right)thatcanbeusedinplaceofdieselfuelinmanyengines.

Phot

os: K

yle

Gilp

in G

, MIT

Autumn 2009 | MIT Energy Initiative | Energy Futures | 37

E D U C A T I O N & C A M P U S E N E R G Y A C T I V I T I E S

inhisdieselengineVWsedan,using100%biodieselthewholeway.Becausesuppliersarehardtofindinsomepartsofthecountry,thatoftenmeanthavingtohaulalongcansofthestuffinhiscar.“Itwasachallenge,butwellworthit,”hesays.

Thestudentshopetostudy“howbesttogoaboutproducingthefuel,howtoproduceitmostefficiently,andhowbesttohandlethewaste,”whichcanincludesometoxicmaterials,hesays.“Therearealotofprocessvariationsthatcanbetried.”

Eventually,thebiodiesel@MITgroup,whichduringtheacademicyearhaseighttotenactivemembers,wouldliketoincreaseproductionbycollectingoilfromlocalrestaurants.There’snoreasonitcouldn’tbecollectedfromsuchsources,Gilpinsays,althoughthedrumsofusedoiltendtobe“big,heavy,andkindofmessy.”

Thecostsofbuyingandinstallingtheequipmentwerecoveredbya$25,000firstprizethegroupwonin2006inacompetitionrunbyGEandmtvU,calledtheEcomaginationChallenge.TheCampusSustainabilityFundhasalsoprovidedsupportbypayingstudentsthroughtheUndergraduateResearchOpportunitiesProgramtoworkontheproject.Theoperatingcostsofthesystemarerelativelysmall,Gilpinsays,mainlyforthepurchaseofthemethanoladditive.Thesystem“willdefinitelypayforitself,”hesays.

• • •

By David L. Chandler, MIT News Office

TheMITbiodieselreactoriscapableofprocessing70-gallonbatchesofwastevegetableoilintoalmostthesameamountofbiodiesel.Herethemainprocessortank(topcenter)containsabout20gallonsofbiodieselthatwasproducedfromoilcollectedina55-gallondrum(bottomright)attheStudentCenter.

38 | Energy Futures | MIT Energy Initiative | Autumn 2009

E D U C A T I O N & C A M P U S E N E R G Y A C T I V I T I E S

Flipping a switch for energy savings

Feelingresponsible?Altruistic?Howaboutguilty?MITstudentshopingtogetpeopletoturnofflightsbytellingthemhowmuchenergythey’reusingaren’ttooconcernedaboutexactlywhichemotiondoesthetrick—justaslongasthatswitchgetsflippedto“off.”

LightsOut16-56isapilotprojectexploringtheeffectivenessofcomputer-aidedfeedbackinchangingbehavior.InSeptemberandOctober2008,camerassetupintheStataCenterweretrainedonBuildings16and56—persquarefoot,thesecond-andthird-highestenergyconsumersoncampus—tomonitorhowoftenlightswereleftburningafterconventionalworkinghours.Acomputerprogramanalyzedtheimagesandsentweeklye-mailstolaboratorystaffandstudentsparticipatinginthestudywithasummaryoftheirrooms’energyuse.

Themessage,forexample,mightinformtheoccupantsthattheirlightingwason20outof49hours,equaling25kilowatt-hoursandproducing25poundsofcarbondioxide(CO2).

Sureenough,afterafewweeksofe-mails,all-nightlightingin16and56decreased.Ofthe56north-facingroomsmonitoredbycamera,fiveroomswithmorethantwooccupantswhovolun-teeredtoparticipateinthestudyshoweddeclinesofbetween1.4and2.4hourspernightbetweenearlySeptemberandlateOctober,whileroomswithoutstudyparticipantsshowednodecline.“Thisisverypreliminaryevidencegiventhesmallsample,butitprovidessomeencour-agement,”saysJialanWang,agradu-atestudentinfinancialeconomics,whohelpedspearheadtheprojectthroughthestudentorganizationClosingtheLoop.

Climatechangeandeconomicwoesbothpointtothenecessityofscalingbackenergyconsumption.Greenbuildingsoutfittedwithsustainablematerialsandenergy-efficientfixturesonlygosofar,becausethebuckstopswiththepeoplewhoactuallyturnthedevicesonandoff.Whytargetlighting?It’seasytotelliflightsareburningatnight,andrelativelyeasytomeasuretheenergysavingsfromcuttingbackontheiruse.

“Lightingaccountsforaboutone-thirdofallelectricityuseoncampus,accountingforapproximately$8millionayear,”saysStevenM.Lanou,deputydirectorforenvironmentalsustainabil-ity.“Thisisacompellingreasonforpeopletoturnofftheirlights.”

TheLightsOut16-56projectwassupportedbystafffromtheMITEnergyInitiative(MITEI);theEnvironment,Health,andSafetyHeadquartersOffice;theDepartmentofFacilities;andtheDepartmentofArchitecture.(TheprojectreceivedapprovalfromtheMITCommitteeontheUseofHumansasExperimentalSubjectstoensureappropriatepractices.)ItwasdevelopedbythestudentgroupClosingtheLoop,whichwasfoundedin2005toincreaseawarenessofMIT’sresourceusebyindividualsandthecommunity.Inadditiontolighting,ClosingtheLoopinitiativeshavetargetedrevolvingdoors,fumehoods,paperconservation,andgreenpurchasing.

ForLightsOut,WangandformerinternShyamShrinivasan,nowattheCaliforniaInstituteofTechnology,installedsmalldevicescalleddataloggerstorecordoccupancyandlightinguseinBuildings16and56.Theycanvassedthebuildingsforparticipantsandsetupwebcams.FundedbyMITEIandMIT’sEnviron-

mentalProgramsOffice,Shrinivasanworkedontheinitialalgorithmandcamerasetup.WiththehelpofStephenS.Intille,aDepartmentofArchitectureresearchscientist,theydevelopedsoftwarethatanalyzedthephotostomatchwindowstoroomsandsende-mailstoparticipants(seediagramtotheright).

“Researchshowsthattimely,highlytailoredmessagespresentedatso-calledteachablemomentsareoftenwell-receivedandcanmotivatepeopletochangetheirbehavior,”Intillesays.“Computersystemsmaybeabletodetecttheseteachablemomentsautomaticallyandrespondinrealtime.”

WhentheprojectwasturnedintoanUndergraduateResearchOpportunitiesProgram(UROP)studyinearly2009,JoshuaE.Hester,ajuniormajoringincivilandenvironmentalengineering,workedonanalyzingthedata.

Somethingassimpleasbeingmoreconscientiousaboutturningoffthelightscanleadtosignificantsavings,Hestersays.Basedonpreliminarymeasurementsfromthedataloggers,reducinglightinginunoccupiedlabsandofficesinBuildings16and56couldsaveabout$21,000and63tonsofCO2emissionsannually.Reducinglightingduringdaylighthourscouldsaveafurther160metrictonsannuallyforevery10%inlightingreduction,hesays.

“ThisstudyhasplayedakeysupportingroleinpromotingenergyefficiencyawarenessandInstitute-wideprogramsatMIT.LightsOut16-56hashelpedinformandinspirecomponentsoftherecentgreeningMITawarenesscam-paigns,whicharehighlightinglightinguseinacampus-wideefforttoimprove

Autumn 2009 | MIT Energy Initiative | Energy Futures | 39

E D U C A T I O N & C A M P U S E N E R G Y A C T I V I T I E S

environmentalsustainabilityatMIT,”Lanousays.“WestrivetouseMIT’scampusasatestinggroundandlearninglaboratoryforprinciplesandpracticesthatarewidelyapplicable,andthisstudent-ledprojecthasbeenaterrificdemonstrationofthisinaction.”

NextstepsincludeexploringthepossibilityofexpandingtheLightsOutapproachtoadditionalMITbuildings;developingamoresophisticatedandtailoredfeedbacksystemincorporatingmorevisuallycompellingmessages;selectivee-mailingtotargetheavyusers;andmakingweb-baseddataonlightinguseavailabletothepublic.Inthelongterm,thegoalistoinstallautomatedlightingoccupancysensorsinallcampusbuildingsthatshutofflightswhenroomsareunoccupied,eliminatingtheneedforcameras.

“Fromourtalkingtoourbuildingoccupantrecruitsin16and56andpresentingthisprojecttomanypeoplefromallovercampusandvisitorsfromaroundtheworld,itseemsthatalotofpeopledowanttosaveenergybydoingsimplethingsliketurningofflights,”Wangsays.“Buttheyneedtobeinformedaboutwhatbehaviorstoadoptandwhattheimpactofthesebehaviorsis.Theyalsoneedfeedbackonhowtoimprove.AddressingthesethreepointshasbecomeClosingtheLoop’sapproachtoencouragingsustainablebehavior.”

• • •

By Deborah Halber, MITEI correspondent

Camera software

Modified images Data files E-mail messages

Downloaded pictures

Custom-designedJava program

Scheduledtotakeandstorepicturesevery20minutes

Usedforadditionalnumericalanalysis

Usedtodeterminewhetherlightsareonoroffinroomsofstudyparticipants

Senttostudyparticipantswithsummaryoflightinguse

Storeduntiluserstartsanalysis

Programgenerates...

“Lights Out” system layout

40 | Energy Futures | MIT Energy Initiative | Autumn 2009

Gaining visibility into buildings’ real-time energy performance

C A M P U S E N E R G Y A C T I V I T I E S

Althoughenergyusecanaccountforupto70%ofanMITbuilding’soperat-ingcost,exactlywhereandwhythatconsumptionoccursisnotobvious.Andwhenablipinabuilding’sinternalworkingscanleadtoevenhighercosts,ithelpstoknowwhat’sgoingon,energy-wise,aroundtheclock.

AtMIT,Building68,thebiologybuild-ing,hasbeenthesubjectofclosescrutinysinceJanuary.Calledcontinu-ouscommissioning,ordata-basedcommissioning,thismonitoringisanongoingprocesstoresolvebuildingoperatingproblems,improvecomfort,andoptimizeenergyuse.

“Computeranalysisofbuildingdatapointsoutoperatingpatternsthatfalloutsideofadeterminedtolerancelevelandrecommendstheaffectedsystemcomponentsforstudybyanengineer,”saysPeterCooper,managerofsustainabilityengineeringandutilityplanning.“Inthismanner,largeamountsofdatacanbeevaluatedandsiftedtoallowustoidentifypotentialenergysavingsopportunities.”

IntheBuilding68pilotproject,thepay-offhasbeensignificant.Inthecurrentfiscalyear,morethan$3.1millionofthebuilding’s$4.5millionoperatingexpensehasbeenforsteam,chilledwater,andelectricity.Basedonthefirstthreemonthsofmonitoring,annualsavingsfromchangesinBuilding68aloneareprojectedtotop$360,000.

“Thisispartofalarger-scaleeffortcoordinatedbytheMITEnergyInitiativeCampusEnergyTaskForceofgreen-ingtheMITcampus.Theprojectencom-passesfacilityimprovements,studentprojects,andindividualmeasuresbytheentireMITcommunitytoincreaseenergyefficiency,”saysLeonR.Glicksman,professorofbuilding

technologyandmechanicalengineeringandco-chairoftheCampusEnergyTaskForce.

“Weplantocarefullymonitortheenergysavingsaswellaseconomicpaybacktoinformfuturemeasuresoncampusandprovideguidanceforotherorganizationsfacingthesamechallenges,”hesays.

Running hot and cold

Building68keepsitslaboratoriesupandrunninganditsoccupantscomfortablewiththehelpofsevenairhandlers,twoheatexchangers,chilledandhotwaterpumps,fancoilunits,andvariableairvolumeboxes,whichhelpmakeair-conditioningsystemsmoreefficientbyregulatingtheamountofcoolingtargetedtowardspecific

roomsorareas.Allthesecomponentsrepresentalotofcomplexity,whichtranslatesintoopportunitiesforthingstogowrong—whichiswhathappenedsometimebeforeMarch5.

MIThadenlistedthehelpofCimetrics,aBoston-basedpioneerinbuildingoptimization,toinstallasystemthatdeliversbuildingdataovertheInternet.ThankstoCimetrics’monitoringofkeyoperatingparameters—541datapointsinthebuilding’sautomationsystemarereadandanalyzedevery15minutes—buildingoperatorscouldseethatheatingandcoolingwereoccurringsimultaneouslyinthreeofthelargeair-handlingunits.

Programmingchangestothebuilding’sautomationsystemfixedthesimultane-ousheatingandcoolingproblem,

Hourly average data

Ste

am f

low

(p

ou

nd

s p

er h

ou

r)

2009February March

DetailedmonitoringoftheautomationsysteminMIT’sBuilding68showedthatheatingandcoolingwereoccurringsimultaneouslyinthreeofthelargeair-handlingunits.Programmingchangestothebuilding’sautomationsystemonMarch5reducedbothsteamandchilledwaterconsumptionimmediately.Thereductioninsteamuseisevidentinthechartabove.Basedondatafromthefirstthreemonths,theannualsavingsfromthereductioninbothsteamandchilledwateruseisprojectedtobemorethan$360,000.

Char

t: co

urte

sy o

f MIT

Dep

artm

ent o

f Fac

ilitie

s

Steam consumption in MIT’s Building 68

Autumn 2009 | MIT Energy Initiative | Energy Futures | 41

C A M P U S E N E R G Y A C T I V I T I E S

leadingtoanimmediate,dramaticdropinbothsteamandchilledwateruse.Repairstovalvesandvalveoperatorsboostedthepoorperformanceofaheatrecoverysystem—alsoidentifiedbythedatamonitoring—andCooperpredictsthatsettingbackheatingandcoolingtemperatureswhenthebuildingisunoccupiedwillresultinadditionalsavings.

“Asenergygetsmoreexpensiveandretrofitsgetmorecomplicated,buildingownerswanttoknowjusthowtheirinvestmentinHVACorlightingcontrolsispayingoffintermsofloweroperatingcostsandhigherenergysavings,”saysWalterE.Henry,MITDepartmentofFacilities’directorofengineering.“Sofar,wehaveappliedmonitoringtechnologytoBuildings18,W35,E25,andmostrecently,16and56.Weplantoworkourwaythroughotherlabbuildings,whicharethehighestenergyintensityandmostcomplexoftheInstitute’sbuildings.

“Wearealsoincorporatingthiscapa-bilityintonewconstruction—thenewgraduateresidenceNW35,thenewMediaLabandSloanbuildings,theDavidH.KochInstituteforIntegratedCancerResearch—asaperformanceverificationtoolduringthewarrantyperiodandbeyond,”hesays.

AssessingthreemonthsofBuilding68’sutilitybillingdataledtoareductionof5,047poundsperhourofsteamand275,910tonsperhourofchilledwaterfromApriltoJune2009overthesameperiodin2008.“Wewillsavemorethan$360,000over12monthsifgaspricesremainatthecurrentlevel,”Coopersays.“Building68wasacontinuouscommissioningsuccess,andwe’relookingforwardtorepeatingthiskindofsuccessstoryaroundcampus.”

• • •

By Deborah Halber, MITEI correspondent

Left:MIT’sBuilding68,thebiologybuilding,wherecontinuouscommissioningledtoadjustmentsinthebuilding’sautomationsystemyieldingsignificantenergyandcostsavings.Right:Typicallargeheating,ventilating,andair-conditioningequipmentthatismonitored,analyzed,andoptimizedbycontinuouscommissioning.

Phot

o: A

man

da G

raha

m, M

ITEI

Phot

o: D

avid

J. C

onlo

n, M

IT

42 | Energy Futures | MIT Energy Initiative | Autumn 2009

O U T R E A C H

MIT releases report on retrofitting coal-fired power plants for CO2 captureOnJune23,2009,inWashington,DC,ProfessorErnestMoniz,directoroftheMITEnergyInitiative(MITEI)andformerundersecretaryoftheUSDepartmentofEnergy,unveiledareportonreducingcarbondioxide(CO2)emissionsfromexistingcoalplants.Thereport,basedonthefindingsofanMITsymposiumonretrofittingcoal-firedpowerplants,identifiespossiblenextstepsfortheconsiderationofpolicymakers,industry,andothersengagedinCO2emissionsmitigation.

“ThereisnocrediblepathwaytowardprudentgreenhousegasstabilizationtargetswithoutCO2emissionsreductionfromexistingcoalpowerplants.Weurgentlyneedtechnologyoptionsfortheseplantsandpoliciesthatincentivizeimplementation,”Monizsaid.“WemaynotseeastrongCO2pricesignalformanyyears.Intheinterim,weneedalarge,focusedfederalprogramtodevelopanddemonstratecommercial-scaletechnologies.”

TheMarch2009symposiumdealtwithretrofittingofexistingpulverizedcoalpowerplantsforCO2emissionsreduc-tion,withafocusonpost-combustioncapture.Thesymposiumincluded54subjectmatterexpertsfromarangeofstakeholdergroups,includingacademia,government,publicinterestgroups,andindustry.ChathamHouserulesapplied.Participantswerepro-videdthreecommissionedwhitepapersonkeyissuesinadvance,andtheyalsobenefitedfrom14additionalpaperssubmittedbysymposiumparticipants.TheyaddressedarangeofadditionaltechnologyoptionsforcuttingCO2emissions,including:

• efficiencyretrofits

• co-firingofcoalplantswithlow-carbonfuels

• rebuildingexistingsubcriticalunitstoultra-supercriticalunitswithcapture

• moreextensiverebuildssuchasoxy-combustionorintegratedgasificationcombinedcyclewithCO2capture

• poly-generation

• repoweringofexistingboilerswithalternativefuelssuchasbiomassornaturalgas

MonizwasjoinedattheannouncementbyWayneLeonard,chairmanandCEOofEntergyCorporation,whoco-chairedthesymposium.Leonardspokeaboutthecoreissueforexistingplants,notingthattheywillcontinuetooperatefordecades,evenasindustryturnstocarbon-freeelectricpower-generatingtechnologies.“Oncebuilt,coalplantsare,inmostcases,thecheapestsourceofbaseloadpowergenerationandwillnotbephasedoutabsentveryhighCO2prices,”Leonardsaid.“It’sbasiceconomics.”

Keyfindingsofthereportarethefollowing.

• Relativelylarge,high-efficiencycoalplantsalreadyequippedwithdesulfurizationandnitrogenoxideemissionscontrolsarethebestcandidatesforpost-combustioncaptureretrofit.Suchplantsmakeuplessthanhalfoftheexistingfleet.However,specificretrofitprojectsmustpassvarioussite-specificscreens,suchasavailablespace,increasedwatersupply,andCO2off-takeoptions.Afleet-wide,detailedinventoryofplantsandsitesisurgentlyneededtodeterminewhichplantsaresuitableforretrofit-ting,rebuilding,orrepoweringorforpartialCO2capturesolutionstailoredtothecurrentplantconfiguration.ThisinventoryshouldinformpolicymakersabouttherangeofoptionsforsignificantreductionofCO2emissionsfromoperatingcoalplantsindifferentclimatepolicyscenarios.

Parasitic energy losses for CO2 capture from typical coal power plant

Therelativeefficiencylossesassociatedwithpost-combustionCO2capturefromatypicalcoalpowerplantcanbeashighas26%.Amorespecificbreakdownofthoselosses—shownabove—helpsfocusresearchtoimproveCO2captureefficiency.

8% Power for pumps, fans for capture process

38% Power for CO2 compressors

54% Power loss from steam extraction

10% Power for pumps, fans for capture process

31% Power for CO2 compressors

59% Power loss from steam extraction

8% Power for pumps, fans for capture process

38% Power for CO2 compressors

54% Power loss from steam extraction for capture process

10% Power for pumps, fans, etc.

31% Power for CO2 compressors

59% Power for air separation plant

Autumn 2009 | MIT Energy Initiative | Energy Futures | 43

O U T R E A C H

Major MIT study examines the future of the electric grid

• Researchanddevelopmentforexistingcoalplantsshouldfocusoncostreductionofpost-combustioncapture.Thisisessentialifretrofitsaretobeaffordableindevelopingcountries.AnexpandedR&Dpro-gramshouldalsoincludeefficiencyupgrades,rebuilds,repowering,poly-generation,andco-firingwithbiomass.AcomponentforresearchonCO2capturefromnaturalgaspowerplantsshouldbeincluded.ArobustUSR&Deffortwiththisscoperequiresabout$1billionperyearforthenextdecade(notincludingsupportforcommercial-scaledemonstration).

• Thefederalgovernmentshoulddramaticallyexpandthescaleandscopeforutility-scalecommercialdemonstrationofcoalplantswithCO2capture,includingdemonstrationofretrofitandrebuildoptionsforexistingcoalpowerplants.Newgovernmentmanagementapproach-eswithgreaterflexibilityandnewgovernmentfundingapproacheswithgreatercertaintyareaprerequi-siteforaneffectiveprogram.

• TheworldcannotachievesignificantreductionsinCO2emissions,avoid-ingthemostdisruptiveimpactsofclimatechange,withoutcommit-mentstoreduceemissionsfromexistingcoal-firedpowerplantsintheUSandChina.Bilateralapproachesonclimatechangeshouldbeencour-agedandsupportedasamatterofUSpolicy.JointRD&DprogramsbetweentheUSandChinashouldbesupportedandfunded.

Todownloadcopiesofthesummary,thefullreport,andrelatedpapersandpresentations,pleasegotoweb.mit.edu/mitei/research/reports.html.

• • •

The Future of the Electric Grid study described below is one in a series of interdisciplinary studies undertaken by MIT faculty to explore the contribution that different energy technologies could make to meet future US and global energy needs in a carbon-constrained world. Final reports are available for the 2003 MITFutureofNuclearPower study (web.mit.edu/nuclearpower/) and the 2007 MITFutureofCoal study (web.mit.edu/coal/). Ongoing studies focus on solar energy, natural gas, and nuclear fuel cycles (see EnergyFutures, autumn 2008, for more information).

MostprojectionsofdesirablefutureenergysystemsintheUnitedStatesandotherdevelopednationsinvolveanexpandedroleforelectricityandthereforeforthetransmissionanddistributionfunctionsoftheelectricgrid.IntheUS,thecapacityoftoday’sgridwillneedtobedramaticallyexpanded,notjusttocarrymoreelectricityproducedbyconventionalpowerplantsbutalsotoexploitwindandsolargenerationopportunities,somelocatedfarfromloadcenters.

Newtransmissionfacilitiesmustbebuilt,andcurrentlegalandregulatoryregimeswillalmostcertainlyneedtobechangedtoremoveexistingbarrierstosuchconstruction.

Associetyreliesmoreandmoreonelectricpower,ensuringgridreliabilityandsecuritywillbecomemoreimpor-tant—butalsomoredifficult,inpartbecauseofthegrowingroleofwindandsolargeneratingsystems,theoutputofwhichcannotbepreciselycontrolledorforecasttosufficientlyinformgridmanagers.Inaddition,demandonthegridwillchangeasenergy-relatedtechnologiesadvance.Electrificationofthetransportationsector,forinstance,wouldalterthecharacteristicsofsystemloadsandimposenewrequirementsonthegrid.

Simplyexpandingthecapacityofthecurrentgridwillnotbeadequate.Deploymentofamoresophisticatedandpowerfulcommunicationandcontrolsystem—bothwithinthegridandbetweenthegridandkeyenduserssuchasfirms,households,andeven

44 | Energy Futures | MIT Energy Initiative | Autumn 2009

O U T R E A C H

individualappliances—willbecriticalifwearetomaintainhighreliabilityandsecuritywhilemakingmoreintensiveuseofrenewablegeneration.

InSeptember2009,MITlaunchedafaculty-led,interdisciplinarystudythatwillexaminethesubstantialissuessurroundingthenationalinitiativetoenhancethefunctionalityandreliabilityoftheelectricgrid.TheFutureoftheElectricGridstudywillalsoexplorethecontributionthatanenhancedelectricgridcanmaketomeetthegrowingandchangingenergyneedsofthenationinanefficientandenvironmentallyresponsiblemanner.

Thestudywillprovideanobjectiveassessmentofthepotentialbenefitsofgridexpansionaswellasofextensivedeploymentofnewandemergingtechnologiesandstandardsrelatingtoa“smartgrid”—amodernized,efficientgridcontrolledbyInformationAgetechnologies.Indeed,aprincipalgoalistoclarifythetechnical,administrative,regulatory,financial,andsocietalopportunitiesandchallengesthatarepresentedbythemanyinnovationsbeingproposedunderthesmartgridbannertooptimizeourfutureelectricalnetworkanditsoperation.

Thestudywillalsoexamineregulatoryandotherpoliciesthatcouldhelpimprovevariousdimensionsofgridperformanceandacceleratedeploy-mentofnewandemergingtechnolo-gies.Theroleofregionaltransmissionoperatorsandwholesaleelectricitymarketswillbeaddressed.WhilethestudywillfocusontheUnitedStates,itwillalsoexamineissuesfacedbyothernationsandthelessonstheirexperiencescanoffer.

Basedonitsfindings,thestudywillmakerecommendationsaboutresearch,

development,anddemonstrationstrategies,governmentpolicies,andindustryactions.

TheFutureoftheElectricGrid studyisco-chairedbyJohnKassakian,professorofelectricalengineeringandcomputerscience,andRichardSchmalensee,theHowardW.JohnsonProfessorofEconomicsandManage-mentanddirectoroftheMITCenterforEnergyandEnvironmentalPolicyResearch.Thestudyteamincludesfacultywithexpertiseinpowersystems,powerelectronics,informationtechnol-ogy,economics,andenergyandenvironmentalpolicy.Ateamofstudentresearchassistants—someofthemuncompensatedvolunteers—isalreadyhardatwork.

Theelectricgridstudyhasadistin-guishedoutsideadvisorycommitteechairedbytheHon.J.BennettJohnston,formerchairmanoftheSenateEnergyandNaturalResourcesCommittee.Itisanticipatedthatthisstudy,liketheMITnuclearandcoalstudies,willhaveasignificantimpactonpublicpoliciesandprivatedecisions.

• • •

Future of the Electric Grid study team

Khurram Afridi,ElectricalEngineeringandComputerScience(visiting) Jerrold M. Grochow,consultantand(retired)MITvicepresidentforInformationServicesandTechnology

William Hogan,HarvardKennedySchoolofGovernment

Henry Jacoby,SloanSchoolofManagement

John Kassakian,ElectricalEngineeringandComputerScience,co-chair

James Kirtley,ElectricalEngineeringandComputerScience

Ignacio Pérez-Arriaga,EngineeringSystemsDivisionandCenterforEnergyandEnvironmentalPolicyResearch(visiting)

David Perreault,ElectricalEngineeringandComputerScience Nancy Rose,Economics

Richard Schmalensee,SloanSchoolofManagementandDepartmentofEconomics,co-chair

Gerald Wilson,ElectricalEngineeringandComputerScienceandMechanicalEngineering

Autumn 2009 | MIT Energy Initiative | Energy Futures | 45

L F E E • LaboratoryforEnergyandtheEnvironment

Martin Fellows wade into salt marsh ecologyPastandpresentMartinFellowsvisitedThompsonIslandaspartofaSeptemberretreat.Studentspursuingawiderangeofenvironmental,energy,andsustainabilityresearchtopicscametogethertolearnabout(andgetkneedeepin!)theBostonHarborIsland’spristineandrestoredsaltmarshes.Theannualeventprovidesanopportunityforthefellowstoshareideasandmeetcolleaguesacrossdisciplinarylines.

Phot

os: J

ustin

Kni

ght

EliseLi,a2008MartinFellowinchemistry,preparestotakeapictureoftheBostonskylineastheOutwardBoundFerrytakesretreatattendeestoThompsonIsland.

JosephShapiro,a2009MartinFellowineconomics,checkshisnetfortheAsianshorecrab,aninvasivespeciesinthesaltmarsh.

AlejandraMenchaca(left),a2009MartinFellowinmechanicalengineering,andKatherinePotter,a2008MartinFellowinearth,atmospheric,andplanetarysciences,pullanetthroughThompsonIsland’spristinesaltmarshtocollectsamplesofaquaticlife,includingcrabs,shrimp,andseveralspeciesoffish.

SaraLincoln,a2009MartinFellowinearth,atmospheric,andplanetarysciences,andCasperMartinoftheMartinFamilyFoundationcrossoverthesaltmarshonamonkeybridgeinordertoprotectthelandatthewater’sedge.

RangerJenniferBourque(right)examinesasampleoftinyshrimpwithMalimaWolf(left),a2008MartinFellowinmechanicalengineering,andCarlijnMulder,a2009MartinFellowinelectricalengineeringandcomputerscience.

CyChan(left),a2009 MartinFellowinelectricalengineeringandcomputerscience,andJenniferHsiaw(center),agraduatestudentincivilandenvironmentalengineering,inspectnativehermitcrabswithRangerAnnaHines.

46 | Energy Futures | MIT Energy Initiative | Autumn 2009

L F E E • LaboratoryforEnergyandtheEnvironment

UROP shines light on energy in rural Africa

MITjuniorPeterLugotmorethanhebargainedforduringhissummerresearchprojectinLesotho,amoun-tainouscountrysurroundedbySouthAfrica.Installinganewsolar-thermalsystemforaruralmedicalclinicinvolvednotonlyhisengineeringskillsbutalsosomeverylow-techwork:diggingholesandpouringcementtobuildthesystem’sinfrastructure.Andthatwasafterspending36hoursenroutebyplaneandanotherhalfdaydrivingintothemountainstogetthere.

“Therewasalotofphysicalwork.ButI’magymnut,”saysLu,amechanicalengineeringmajor.“Andthemountainswerebeautiful.”LuspentthefirstsixweeksofhisUndergraduateResearchOpportunitiesProgram(UROP)projectatMITperformingdesignreviewsofthesystem’ssolarpowercollectorandidentifyingareaswherethemechanicalruggednesscouldbeimproved.Then,inmid-JulyhetraveledtoLesotho,wherehespentanothersixweekshelp-ingimplementthesystemandtraininglocalpeopleontechniquestomakethesystemindependently.

OverseeinghisworkwasMatthewOrosz,aPhDcandidateincivilandenvironmentalengineeringandarecentMartinFamilySocietyofFellowsforSustainabilityawardee.Aspartofthatfellowship,OroszwasallowedaUROPstudent.

“He’soutgoingandenthusiastic,”OroszsaysofLu.“Hedidalltheworkthatneededtogetdone.Weworkedonvariouspartsofthemachine,cutsteel,welded,figuredoutdimensionsfromacomputer-aideddesigndrawing,setupjigs,workedonmachinetools,anddugholesforfoundations.Itwasamultidisciplinaryproject.”

LufirstheardabouttheLesothoprojectacoupleyearsagowhenhereadaboutitontheMITEnergyInitiative(MITEI)website(web.mit.edu/mitei),andthencontactedOrosz.Lu’spreviousUROP,duringhissophomoreyear,focusedonimprovingthethermodynamicefficiencyofthesolar-thermalsystem’spower-generatingheatengines.HecontinuedworkonthesystemthroughthesummerUROP,whichwasspon-soredbytheMartinfellowship.

“MITisridinganewwaveofenergyresearch,”saysLu.“Thisprojectisinterestingtomebecausethesystemsaremechanical,whichhastodowithclassesIamtakingnow.Anditinvolvestheinteractionofenergyandthedevelopingworld.”AccordingtotheCIA World Factbook,almost49%ofLesotho’spopulationlivesbelowthepovertylevel.Thecountryisatahigh

altitudeandgetsmorethan300daysofsunperyear,makingitanidealsettingforsolar-thermaltechnology.

AmandaGraham,directoroftheMITEIEducationOffice,notesthatLuandOrosz’sworkinLesothodemon-stratesthepotentialimpactofcross-disciplinary,appliedresearchinenergyandtheenvironment.“ThisMartinFamilyUROPisapowerfulexampleofhowteaminganundergradwithaPhDstudentinthefieldcanenrichtheeducationalexperiencewhileimprovingthequalityoflifeforothers,”saysGraham,whoadministerstheMartinFellowshipProgramforMITEI’sLabora-toryforEnergyandtheEnvironment.

Luworkedside-by-sidewithOrosz,aswellaslocalandvisitingengineers.“Matthasbeenworkingontheprojectforsixyears.Hehasanimmensetechnicalrepertoireandwasafantasticguide,”saysLu.“Andthelocalengi-neerswereveryskilled.Iwasthrilledtohavesuchaninspiringcrewofindividualstoworkwith.”TheprojectinvolvedalocalschoolandengineersinthePharmongregionofLesotho.

Manyofthepartsforthesystemaremakeshift.AformerPeaceCorpsvolunteerinLesotho,Oroszgottheideatouseaparabolictroughforthesolar-thermalsystemafterseeinghowitcouldsimultaneouslybake10loavesofbreadforalocalcommunity.Theparabolictroughfocusessunlightontoapipecontainingathermalabsorptionfluidthatcirculatesthroughaheat-transferenginewhereitturnsarefriger-antintovapor.Thevapordrivesapositivedisplacementexpander,whichinturncausesageneratortoproducethermalandelectricalenergy.Thesolarcollectorarrayforthemedicalclinicmeasures70squaremeters.Oroszsaid

UROPstudentPeterLu’11pourscementwithmechanicalengineersMotlatsiSekhesa(center)andTumeloMakhetha,bothofwhomarewithSTGInternational,anonprofitcompanyformedbyMITPhDstudentMatthewOrosz.

Autumn 2009 | MIT Energy Initiative | Energy Futures | 47

L F E E • LaboratoryforEnergyandtheEnvironment

thecogenerationdesigncanrecoversomeofthewasteheat,somoreofthesun’senergyiscaptured.

Oroszstartedengineeringanddesignworkonthesystemin2004duringaD-LabclasswithAmySmith,aseniorlecturerinmechanicalengineering.“Itwasthefirstopportunitytoapplymyideastoaprototype,”hesaid.HewenttoLesothoduringIndependentActivi-tiesPeriod(IAP)inJanuary2005,andreturnedthenextyearaswell.In2006hewona$129,500WorldBankgrantfortheproject.Muchofthesystemwasbuiltusingordinaryautopartsandplumbingsuppliesthatareavailablelocallyandareeasytomaintain.

“Wedevelopedsomecomponentsandrepurposedothers,suchasrunninganairconditionerorcompressorback-wards,”saysOrosz.Headdsthatthesystemisnotacompleteprototypeand

thatitstillisbeingtestedatMIT.HehopestoreturntoLesothowithcolleaguesduringIAPin2010tofinishtheinstallation.Thesystemwillpro-ducearound3kilowattsofelectricityfortheruralclinic.

“Igainedvaluableexperienceperform-ingengineeringworkintheabsenceofmechanizedtoolsanddiscoveredanewappreciationforfirst-worldpublicinfrastructure,”Luwroteinhispost-UROPreport.“Ilearnedtoplanforextendedsupplyshortagesanddeliverydelays,andtosynchronizemydailyschedulewiththesun.”

Lusayshegoteverythinghewantedfromthetrip.“Thisplaysintomyinterestsinmechanicalapplicationsfortheenergysector.I’dlovetocon-tinueworkingwithsolar-thermaltechnology,especiallyonanindustrialscale,”hesays.Luhopestoworkwith

multi-megawattsolarfarmsinthefuture.Buthe’salsoleavingthedooropentograduatestudies.“HavingseenwhatMattcando—managingbothadoctoratedegreeandaprojectlikethis—isinspiring.”

• • •

By Lori Fortig, MITEI correspondent

MechanicalengineerTumeloMaketha(left)andMITgraduatestudentMatthewOroszinfrontofthesolarcollector.Oroszgottheideatouseaparabolictrough—whichalsoisidealforbaking10loavesofbreadsimultaneously—duringhisworkinthePeaceCorps.

Phot

os: c

ourte

sy o

f Pet

er L

u ’1

1, M

IT

48 | Energy Futures | MIT Energy Initiative | Autumn 2009

M I T E I M E M B E R S

MITEI Founding and Sustaining members

F O U N D I N G M E M B E R S

BPEni S.p.A.

F O U N D I N G P U B L I C M E M B E R

Masdar Institute of Science and Technology

S U S T A I N I N G M E M B E R S

ABB Research Ltd.Robert Bosch GmbHChevron U.S.A. Inc.Enel Produzione SpAFundació Barcelona Tecnológica (b_TEC)Lockheed MartinSaudi Aramco SchlumbergerSiemensTotal

S U S T A I N I N G P U B L I C M E M B E R

Portuguese Science and Technology Foundation

MembersasofNovember15,2009

MITEI’sFoundingandSustainingmemberssupport“flagship”energyresearchprogramsorindividualresearchprojectsthathelpthemmeettheirstrategicenergyobjectives.Theyalsoprovideseedfundingforearly-stageinnovativeresearchprojectsandsupportnamedEnergyFellowsatMIT.Todate,membershavemadepossible54seedgrantprojectsacrossthecampusaswellasfellowshipsfor87graduatestudentsin20MITdepartmentsanddivisions.

MITEI Associate and Affiliate members

MITEI’sAssociateandAffiliatememberssupportarangeofMITenergyresearch,education,andcampusactivitiesthatareofinteresttothem.Currentmembersarenowsupportingvariousenergy-relatedMITcenters,laboratories,andinitiatives;fellowshipsforgraduatestudents;researchopportunitiesforundergrads;campusenergymanagementprojects;outreachactivitiesincludingseminarsandcolloquia;andmore.

Associate membersCumminsElectricitédeFranceDevelopment,Inc.EntergyHessOrmatTechnologies,Inc.

Affiliate membersAMSOCorporationAngelenoGroupBerkeleyInvestments,Inc.MarilyneG.BreslowBrownsteinHyattFarberSchreck,LLPCambridgeEnergyResearch

Associates(CERA)CIDS–DCSEnergySavingsConstellationEnergyEnerNOC,Inc.ForgePartners,LLCGabelliCapitalPartnersNatalieM.GivansGlobespanCapitalPartnersGravitas&CieInt.SAGreengEnergyICFInternationalInGRIDEnergy,LLCMillennialNet,Inc.MooreandVanAllenNewEnergyFinanceNexant,Inc.NthPower,LLCNGPEnergyTechnologyPartners,LPPalmerLabs,LLCPatriotRenewablesPhilipRettger(OptiSolar)RockportCapitalPartnersSteptoe&Johnson,LLPGeorgeR.Thompson,Jr.TheTremontGroup,LLC

INSTITUTE OF SCIENCE AND TECHNOLOGY

Autumn 2009 | MIT Energy Initiative | Energy Futures | 49

O U T R E A C H

MITEI Associate and Affiliate members

OnOctober23,PresidentBarackObamadeliveredamajoraddressoncleanenergyatMIT.ButfirsthetouredseveralresearchlaboratorieswhereMITfacultybriefedhimonpromisingresearchprojectsinrenewableenergy,storage,andefficiency.WhileinProfessorVladimirBulovic’slab,hesignedapieceofequipmentalongwithhisassessmentofMIT’senergyresearch:“Greatwork!”Seepage4formoreabouthisvisit.

MIT Energy Initiative

Massachusetts Institute of Technology77 Massachusetts Avenue, E19-307Cambridge, MA 02139 -4307

Return service requested

Nonprofit OrganizationU.S. Postage

PAIDCambridge, MAPermit No. 54016

Phot

o: G

eoffr

ey S

upra

n G,

MIT

top related