elec 351 notes set #15 - encstrueman/elec351/elec351...separation of variables (elec365) dispersion...

Post on 12-Oct-2020

1 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

ELEC 351 Notes Set #15Assignment #7

Problem 8.3 Normal incidenceProblem 8.16 Normal incidenceProblem 8.27 Oblique incidenceProblem 8.28 Oblique incidenceProblem 8.40 Waveguide modesProblem 8.41 Waveguide modes

Do this assignment by November 16.

The final exam in ELEC 351 is December 13, 2018 from 2:00 to 5:00.

2

Figures from: http://www.antenna-theory.com/tutorial/waveguides/waveguide.php

Rectangular Waveguide

Magic Tee = 3 dB Splitter

3 dB Splitter

Apply a signal to arm 3, and half the power emerges from arm 1 and half from arm 2.

Apply a signal to arm 4 and half the power emerges from arm 1 and half from arm 2.

Sums and Differences

Apply signal #1 to arm 1 and signal #2 to arm 2.

Arm 3: signal #1 plus signal #2 Arm 4: signal #1 minus signal #2.

Diplexer = separate signals at two frequencies

WikipediaA diplexer is a passive device that implements frequency-domain multiplexing. Two ports (e.g., L and H) are multiplexed onto a third port (e.g., S). The signals on ports L and H occupy disjoint frequency bands. Consequently, the signals on L and H can coexist on port S without interfering with each other.L port= the lower frequencyH port= the higher frequencyS port= the sum of the two frequencies

Television diplexer consisting of a high-pass filter (left) and a low-pass filter (right). The antenna cable is connected on the back to the screw terminals to the left of center.Designed and built by Arnold Reinhold

Waveguide diplexer: separate signals at two frequencies

โ€œWaveguide diplexer links point to point systemsโ€http://www.mwrf.com/passive-components/waveguide-diplexer-links-point-point-systems

Output channel 3:18.7 to 19.1 GHz

Output channel 2: 17.7 to 18.1 GHz

Input: both channelsChannel 2: 17.7 to 18.1 GHzChannel 3: 18.7 to 19.1 GHz

Waveguide Diplexer: 12.05 and 13.90 GHz

Irene Ortiz de Saracho Pantoja, , Ku Waveguide Diplexer Design For Satellite Communication, Universidad Politechnica de Madrid, 2015

12.05 GHz

13.9 GHzInput: both 12.05

GHz and 13.9 GHz

Orthomode Transducer (OMT) Combine two linearly polarized signals into one signal with

a horizontal and a vertical component. Two input ports in rectangular waveguideLinearly polarized signals of equal amplitude and 90 degrees out of phase.

One output port in circular waveguide which will feed a circular horn.The output port is circularly polarized by adding the signals at the two input ports with a 90 degree phase shift between them.

Source: Widipediahttps://en.wikipedia.org/wiki/Orthomode_transducer

OMT designed by PhD student Mohamed Abdelaal

Port 1: common portSquare waveguide,Circular polarization

Port 2Rectangular waveguideHorizontalpolarization

Port 3Rectangular waveguideVerticalpolarization

Mohamed Abdelaziz Mohamed Abdelaal,โ€œDesign and Analysis of Microwave Devices Based on Ridged Gap Waveguide Technology for 5G Applicationsโ€, ECE Departmet, Concordia University, April 2018.

9

11

Standard Waveguide SizesD.M. Pozar, Microwave Engineering, 3rd edition, Wiley, 2005.

13

Rectangular and Circular Waveguide

14

General Solution of Maxwellโ€™s Equations for Transmission Lines and Waveguide

Convention: ba >

( ) ( ) ( ) zjzz

zjyy

zjxx eyxeaeyxeaeyxeaE ฮฒฮฒฮฒ โˆ’โˆ’โˆ’ ++= ,ห†,ห†,ห†

( ) ( ) ( ) zjzz

zjyy

zjxx eyxhaeyxhaeyxhaH ฮฒฮฒฮฒ โˆ’โˆ’โˆ’ ++= ,ห†,ห†,ห†

( ) zjzz eyxeE ฮฒโˆ’= ,

Ulaby 7th edition Section 8.6

๐‘˜๐‘˜ = ๐œ”๐œ” ๐œ‡๐œ‡๐œ‡๐œ‡ is the phase constant in the dielectric filling the waveguide.๐›ฝ๐›ฝ is the phase constant for waves travelling in the waveguide.

15

TEM, TE and TM Modes

TEM field = transverse electric and magnetic field, hence zero axial components: 0=zE 0=zHand

TE field = transverse electric field, hence zero axial component of the electric field:

TM field = transverse magnetic field, hence zero axial component of the magnetic field:

0=zE

0=zH

( ) ( ) ( ) zjzz

zjyy

zjxx eyxeaeyxeaeyxeaE ฮฒฮฒฮฒ โˆ’โˆ’โˆ’ ++= ,ห†,ห†,ห†

( ) ( ) ( ) zjzz

zjyy

zjxx eyxhaeyxhaeyxhaH ฮฒฮฒฮฒ โˆ’โˆ’โˆ’ ++= ,ห†,ห†,ห†

( ) zjyy eyxeE ฮฒโˆ’= ,( ) zj

xx eyxeE ฮฒโˆ’= , and

( ) zjyy eyxhH ฮฒโˆ’= ,( ) zj

xx eyxhH ฮฒโˆ’= , and

16

Rectangular Waveguides

( ) ( ) ( ) zjzz

zjyy

zjxx eyxhaeyxhaeyxhaH ฮฒฮฒฮฒ โˆ’โˆ’โˆ’ ++= ,ห†,ห†,ห†( ) ( ) ( ) zj

zzzj

yyzj

xx eyxeaeyxeaeyxeaE ฮฒฮฒฮฒ โˆ’โˆ’โˆ’ ++= ,ห†,ห†,ห†

โ€ขTE modes have , solve forโ€ขTM modes have , solve for

0=zE0=zH

( ) zjzz eyxhH ฮฒโˆ’= ,

zjzz eyxeE ฮฒโˆ’= ),(

We will show that if we know the axial components, we can find the transverse components from Maxwellโ€™s curl equations:

๐‘˜๐‘˜๐‘๐‘2 = ๐‘˜๐‘˜2 โˆ’ ๐›ฝ๐›ฝ2 where ๐‘˜๐‘˜ = ๐œ”๐œ” ๐œ‡๐œ‡๐œ‡๐œ‡ and ๐›ฝ๐›ฝ is the phase constant for waves travelling in the waveguide.

17

All the Field Components

ฮฒjzโ†’

โˆ‚โˆ‚

18

Relationship of the Transverse Components to the Axial Components

If we know the axial components, then we can find the transverse components.

If we know and , then we can find

We can prove this from the Maxwell curl equations: zE zH xE yE xH yH

HjE ฯ‰ยตโˆ’=ร—โˆ‡ ( )EjH ฯ‰ฮตฯƒ +=ร—โˆ‡and

zjyy eeE ฮฒโˆ’=

19

Maxwellโ€™s Curl EquationsWrite out all three components of

And all three components of

To show that:

HjE ฯ‰ยตโˆ’=ร—โˆ‡

( )EjH ฯ‰ฮตฯƒ +=ร—โˆ‡

20

Find the Transverse ComponentsAssume that we know the axial components, and , then

find the transverse components,zE zH

yHxHxE yE

Use k for the wave number in the material filling the waveguide:

Transverse in terms of axial:

Ulaby 7th edition page 384

Repeat the derivation for ๐ป๐ป๐‘ฅ๐‘ฅ on the previous page to get ๐ป๐ป๐‘ฆ๐‘ฆ, ๐ธ๐ธ๐‘ฅ๐‘ฅ and ๐ธ๐ธ๐‘ฆ๐‘ฆ:

๐ธ๐ธ๐‘ฅ๐‘ฅ =โˆ’๐‘—๐‘—๐‘˜๐‘˜๐‘๐‘2

๐›ฝ๐›ฝ๐œ•๐œ•๐ธ๐ธ๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•

+ ๐œ”๐œ”๐œ‡๐œ‡๐œ•๐œ•๐ป๐ป๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•

๐ธ๐ธ๐‘ฆ๐‘ฆ =๐‘—๐‘—๐‘˜๐‘˜๐‘๐‘2

โˆ’๐›ฝ๐›ฝ๐œ•๐œ•๐ธ๐ธ๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•

+ ๐œ”๐œ”๐œ‡๐œ‡๐œ•๐œ•๐ป๐ป๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•

๐ป๐ป๐‘ฅ๐‘ฅ =๐‘—๐‘—๐‘˜๐‘˜๐‘๐‘2

๐œ”๐œ”๐œ‡๐œ‡๐œ•๐œ•๐ธ๐ธ๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•

โˆ’ ๐›ฝ๐›ฝ๐œ•๐œ•๐ป๐ป๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•

๐ป๐ป๐‘ฆ๐‘ฆ =โˆ’๐‘—๐‘—๐‘˜๐‘˜๐‘๐‘2

๐œ”๐œ”๐œ‡๐œ‡๐œ•๐œ•๐ธ๐ธ๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•

+ ๐›ฝ๐›ฝ๐œ•๐œ•๐ป๐ป๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•

If we can find ๐ธ๐ธ๐‘ง๐‘ง and ๐ป๐ป๐‘ง๐‘ง, then we can find all the other field components.TE Modes: Assume ๐ธ๐ธ๐‘ง๐‘ง = 0 and find ๐ป๐ป๐‘ง๐‘งTM Modes: Assume ๐ป๐ป๐‘ง๐‘ง = 0 and find ๐ธ๐ธ๐‘ง๐‘ง

22

Convention: ba >

Rectangular Waveguide: TE Modes

โ€ข The axial component of the electric field is zero:โ€ข Find the axial component of the magnetic field

0=zEzH

( ) ( ) zjyy

zjxx eyxeaeyxeaE ฮฒฮฒ โˆ’โˆ’ += ,ห†,ห†

( ) ( ) ( ) zjzz

zjyy

zjxx eyxhaeyxhaeyxhaH ฮฒฮฒฮฒ โˆ’โˆ’โˆ’ ++= ,ห†,ห†,ห†

23

Wave Equation for the TE Modes

( )yxhz ,

( ) ( ) ( ) zjzz

zjyy

zjxx eyxhaeyxhaeyxhaH ฮฒฮฒฮฒ โˆ’โˆ’โˆ’ ++= ,ห†,ห†,ห†

Find

where

Look at the z component:

24

The field โ„Ž๐‘ง๐‘ง(๐œ•๐œ•, ๐œ•๐œ•) must satisfy this wave equation!

To find โ„Ž๐‘ง๐‘ง(๐œ•๐œ•,๐œ•๐œ•), we must satisfy the wave equation and satisfy the boundary condition that ๐ธ๐ธ๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก๐‘ก = 0 at the surfaces of the waveguide walls.

25

Separation of Variables (ELEC365)

Dispersion equation:where and ยตฮตฯ‰=k

andLet where ๐‘˜๐‘˜๐‘ฅ๐‘ฅ and ๐‘˜๐‘˜๐‘ฆ๐‘ฆ are constants.

26

Separation of Variables Solution

The field โ„Ž๐‘ง๐‘ง(๐œ•๐œ•, ๐œ•๐œ•) satisfies the wave equation.

What values of ๐‘˜๐‘˜๐‘ฅ๐‘ฅ and ๐‘˜๐‘˜๐‘ฆ๐‘ฆ satisfy the boundary conditions?

27

Boundary Conditions

For the TE solution, the axial component ๐ธ๐ธ๐‘ง๐‘ง is zero everywhere.

28

Find and in terms of : xE yE zH

( ) zjzz eyxhH ฮฒโˆ’= ,

leads to

where

โˆ‚โˆ‚โˆ’

=y

Hk

jE z

cx ฯ‰ยต2

29

Satisfy the Boundary Conditions

30

31

Waveguide Modes

Find the Phase Constant mnฮฒ

The value of the phase constant depends on the waveguide mode:

Dispersion equation:where and ยตฮตฯ‰=k

222ckk โˆ’=ฮฒ

2222yx kkk โˆ’โˆ’=ฮฒ

2222

,

โˆ’

โˆ’=

bn

amknm

ฯ€ฯ€ฮฒ 222

,

โˆ’

โˆ’=

bn

amknm

ฯ€ฯ€ฮฒ

34

Cutoff Frequency for Mode m,n

mnฮฒFor mode m,n to propagate, must be a real number:

22

,2

+

=

bn

amf mnc

ฯ€ฯ€ยตฮตฯ€

The limiting frequency is called the โ€œcutoff frequencyโ€ mncf ,

22

, 21

+

=

bn

amf mnc

ฯ€ฯ€ยตฮตฯ€

22

, 21

+

=

bn

amf mnc ยตฮต

If the frequency is greater than the โ€œcutoff frequencyโ€, then mode m,n propagates.

35

Below Cutoff Waveguide

If the frequency is less than the โ€œcutoff frequencyโ€, then mode m,n attenuates.

36

Propagation or Attenuation?22

, 21

+

=

bn

amf mnc ยตฮต

For frequency greater than the cutoff frequency :

โ€ข is real

โ€ขSo the waveguide mode propagates with phase factor

f mncf ,

nm,ฮฒzj nme ,ฮฒโˆ’

For frequency less than the cutoff frequency :

โ€ข is imaginary:

โ€ขSo the waveguide mode attenuates with attenuation constant ๐›ผ๐›ผ๐‘š๐‘š,๐‘ก๐‘ก

f mncf ,

nm,ฮฒ mnnm jฮฑฮฒ โˆ’=,

( ) zzjjzj nmnmnm eee ,,, ฮฑฮฑฮฒ โˆ’โˆ’โˆ’โˆ’ ==

37

Dominant Mode22

, 21

+

=

bn

amf mnc ยตฮต

2

10,1

21

=

afc ยตฮต

ba >

Lowest cutoff frequency: m=1,n=0

Convention:

Next higher cutoff frequency: m=0,n=1 or m=2,n=0?2

01,1

21

=

bfc ยตฮต

Below , no waveguide mode propagates and the waveguide is said to be โ€œcutoffโ€.

10,cf

Between and the next higher cutoff frequency, only one waveguide mode propagates, which is the TE10 mode, and TE10 is said to be the โ€œdominant modeโ€.

Above the next higher cutoff frequency, more than one mode can propagate and the waveguide is โ€œovermodedโ€.

10,cf

2

20,2

21

=

afc ยตฮต

๐‘“๐‘“๐‘๐‘,10 =1

2๐‘Ž๐‘Ž ๐œ‡๐œ‡๐œ‡๐œ‡

38

Example

39

40

(seventh edition page 368)

41

For TE modes (๐ธ๐ธ๐‘ง๐‘ง=0) we have found ๐ป๐ป๐‘ง๐‘ง = ๐ด๐ด cos

๐‘š๐‘š๐œ‹๐œ‹๐œ•๐œ•๐‘Ž๐‘Ž

cos๐‘›๐‘›๐œ‹๐œ‹๐œ•๐œ•๐‘๐‘

๐‘’๐‘’โˆ’๐‘—๐‘—๐›ฝ๐›ฝ๐‘š๐‘š,๐‘›๐‘›๐‘ง๐‘ง

so

๐ธ๐ธ๐‘ฅ๐‘ฅ =โˆ’๐‘—๐‘—๐‘˜๐‘˜๐‘๐‘2

๐›ฝ๐›ฝ๐‘š๐‘š๐‘ก๐‘ก๐œ•๐œ•๐ธ๐ธ๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•

+ ๐œ”๐œ”๐œ‡๐œ‡๐œ•๐œ•๐ป๐ป๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•

=โˆ’๐‘—๐‘—๐‘˜๐‘˜๐‘๐‘2

๐œ”๐œ”๐œ‡๐œ‡๐œ•๐œ•๐ป๐ป๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•

๐ธ๐ธ๐‘ฆ๐‘ฆ =๐‘—๐‘—๐‘˜๐‘˜๐‘๐‘2

โˆ’๐›ฝ๐›ฝ๐‘š๐‘š๐‘ก๐‘ก๐œ•๐œ•๐ธ๐ธ๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•

+ ๐œ”๐œ”๐œ‡๐œ‡๐œ•๐œ•๐ป๐ป๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•

=๐‘—๐‘—๐‘˜๐‘˜๐‘๐‘2

๐œ”๐œ”๐œ‡๐œ‡๐œ•๐œ•๐ป๐ป๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•

๐ป๐ป๐‘ฅ๐‘ฅ =๐‘—๐‘—๐‘˜๐‘˜๐‘๐‘2

๐œ”๐œ”๐œ‡๐œ‡๐œ•๐œ•๐ธ๐ธ๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•

โˆ’ ๐›ฝ๐›ฝ๐‘š๐‘š๐‘ก๐‘ก๐œ•๐œ•๐ป๐ป๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•

=๐‘—๐‘—๐‘˜๐‘˜๐‘๐‘2

โˆ’๐›ฝ๐›ฝ๐‘š๐‘š๐‘ก๐‘ก๐œ•๐œ•๐ป๐ป๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•

๐ป๐ป๐‘ฆ๐‘ฆ =โˆ’๐‘—๐‘—๐‘˜๐‘˜๐‘๐‘2

๐œ”๐œ”๐œ‡๐œ‡๐œ•๐œ•๐ธ๐ธ๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•

+ ๐›ฝ๐›ฝ๐‘š๐‘š๐‘ก๐‘ก๐œ•๐œ•๐ป๐ป๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•

=โˆ’๐‘—๐‘—๐‘˜๐‘˜๐‘๐‘2

๐›ฝ๐›ฝ๐‘š๐‘š๐‘ก๐‘ก๐œ•๐œ•๐ป๐ป๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•

Find the transverse field components.Given ๐ป๐ป๐‘ง๐‘ง, find ๐ธ๐ธ๐‘ฅ๐‘ฅ, ๐ธ๐ธ๐‘ฆ๐‘ฆ, ๐ป๐ป๐‘ฅ๐‘ฅ, and ๐ป๐ป๐‘ฆ๐‘ฆ .

Substitute ๐ป๐ป๐‘ง๐‘ง = ๐ด๐ด๐‘š๐‘š๐‘ก๐‘ก cos

๐‘š๐‘š๐œ‹๐œ‹๐œ•๐œ•๐‘Ž๐‘Ž

cos๐‘›๐‘›๐œ‹๐œ‹๐œ•๐œ•๐‘๐‘

๐‘’๐‘’โˆ’๐‘—๐‘—๐›ฝ๐›ฝ๐‘š๐‘š๐‘›๐‘›๐‘ง๐‘ง

to find the transverse field components ๐ธ๐ธ๐‘ฅ๐‘ฅ, ๐ธ๐ธ๐‘ฆ๐‘ฆ, ๐ป๐ป๐‘ฅ๐‘ฅ, and ๐ป๐ป๐‘ฆ๐‘ฆ:

Homework: show that

๐ธ๐ธ๐‘ฅ๐‘ฅ = ๐ด๐ด๐‘š๐‘š๐‘ก๐‘ก๐‘—๐‘—๐œ”๐œ”๐œ‡๐œ‡๐‘˜๐‘˜๐‘๐‘2

๐‘›๐‘›๐œ‹๐œ‹๐‘๐‘

cos๐‘š๐‘š๐œ‹๐œ‹๐œ•๐œ•๐‘Ž๐‘Ž

sin๐‘›๐‘›๐œ‹๐œ‹๐œ•๐œ•๐‘๐‘

๐‘’๐‘’โˆ’๐‘—๐‘—๐›ฝ๐›ฝ๐‘š๐‘š๐‘›๐‘›๐‘ง๐‘ง

๐ธ๐ธ๐‘ฆ๐‘ฆ = ๐ด๐ด๐‘š๐‘š๐‘ก๐‘กโˆ’๐‘—๐‘—๐œ”๐œ”๐œ‡๐œ‡๐‘˜๐‘˜๐‘๐‘2

๐‘š๐‘š๐œ‹๐œ‹๐‘Ž๐‘Ž

sin๐‘š๐‘š๐œ‹๐œ‹๐œ•๐œ•๐‘Ž๐‘Ž

cos๐‘›๐‘›๐œ‹๐œ‹๐œ•๐œ•๐‘๐‘

๐‘’๐‘’โˆ’๐‘—๐‘—๐›ฝ๐›ฝ๐‘š๐‘š๐‘›๐‘›๐‘ง๐‘ง

๐ป๐ป๐‘ฅ๐‘ฅ = ๐ด๐ด๐‘š๐‘š๐‘ก๐‘ก๐‘—๐‘—๐›ฝ๐›ฝ๐‘š๐‘š๐‘ก๐‘ก

๐‘˜๐‘˜๐‘๐‘2๐‘š๐‘š๐œ‹๐œ‹๐‘Ž๐‘Ž

sin๐‘š๐‘š๐œ‹๐œ‹๐œ•๐œ•๐‘Ž๐‘Ž

cos๐‘›๐‘›๐œ‹๐œ‹๐œ•๐œ•๐‘๐‘

๐‘’๐‘’โˆ’๐‘—๐‘—๐›ฝ๐›ฝ๐‘š๐‘š๐‘›๐‘›๐‘ง๐‘ง

๐ป๐ป๐‘ฆ๐‘ฆ = ๐ด๐ด๐‘š๐‘š๐‘ก๐‘ก๐‘—๐‘—๐›ฝ๐›ฝ๐‘š๐‘š๐‘ก๐‘ก

๐‘˜๐‘˜๐‘๐‘2๐‘›๐‘›๐œ‹๐œ‹๐‘๐‘

cos๐‘š๐‘š๐œ‹๐œ‹๐œ•๐œ•๐‘Ž๐‘Ž

sin๐‘›๐‘›๐œ‹๐œ‹๐œ•๐œ•๐‘๐‘

๐‘’๐‘’โˆ’๐‘—๐‘—๐›ฝ๐›ฝ๐‘š๐‘š๐‘›๐‘›๐‘ง๐‘ง

Ulaby 7th edition page 388

Wave Impedance for TE Modes

Define the โ€œwave impedanceโ€ as

๐‘๐‘๐‘‡๐‘‡๐‘‡๐‘‡ =๐ธ๐ธ๐‘ฅ๐‘ฅ๐ป๐ป๐‘ฆ๐‘ฆ

=

โˆ’๐‘—๐‘—๐‘˜๐‘˜๐‘๐‘2

๐œ”๐œ”๐œ‡๐œ‡ ๐œ•๐œ•๐ป๐ป๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•โˆ’๐‘—๐‘—๐‘˜๐‘˜๐‘๐‘2

๐›ฝ๐›ฝ ๐œ•๐œ•๐ป๐ป๐‘ง๐‘ง๐œ•๐œ•๐œ•๐œ•

=๐œ”๐œ”๐œ‡๐œ‡๐›ฝ๐›ฝ

For mode m, n the phase constant is

๐›ฝ๐›ฝ๐‘š๐‘š๐‘ก๐‘ก = ๐‘˜๐‘˜2 โˆ’๐‘š๐‘š๐œ‹๐œ‹๐‘Ž๐‘Ž

2โˆ’

๐‘›๐‘›๐œ‹๐œ‹๐‘๐‘

2

So the wave impedance can be calculated as ๐‘๐‘๐‘‡๐‘‡๐‘‡๐‘‡,๐‘š๐‘š๐‘ก๐‘ก =

๐œ”๐œ”๐œ‡๐œ‡๐›ฝ๐›ฝ

=๐œ”๐œ”๐œ‡๐œ‡

๐‘˜๐‘˜2 โˆ’ ๐‘š๐‘š๐œ‹๐œ‹๐‘Ž๐‘Ž

2โˆ’ ๐‘›๐‘›๐œ‹๐œ‹

๐‘๐‘2

In general: ๐ป๐ป๐‘ง๐‘ง = ๐ด๐ด๐‘š๐‘š๐‘ก๐‘ก cos

๐‘š๐‘š๐œ‹๐œ‹๐œ•๐œ•๐‘Ž๐‘Ž

cos๐‘›๐‘›๐œ‹๐œ‹๐œ•๐œ•๐‘๐‘

๐‘’๐‘’โˆ’๐‘—๐‘—๐›ฝ๐›ฝ๐‘š๐‘š๐‘›๐‘›๐‘ง๐‘ง

๐ธ๐ธ๐‘ฅ๐‘ฅ = ๐ด๐ด๐‘š๐‘š๐‘ก๐‘ก๐‘—๐‘—๐œ”๐œ”๐œ‡๐œ‡๐‘˜๐‘˜๐‘๐‘2

๐‘›๐‘›๐œ‹๐œ‹๐‘๐‘

cos๐‘š๐‘š๐œ‹๐œ‹๐œ•๐œ•๐‘Ž๐‘Ž

sin๐‘›๐‘›๐œ‹๐œ‹๐œ•๐œ•๐‘๐‘

๐‘’๐‘’โˆ’๐‘—๐‘—๐›ฝ๐›ฝ๐‘š๐‘š๐‘›๐‘›๐‘ง๐‘ง

๐ธ๐ธ๐‘ฆ๐‘ฆ = ๐ด๐ด๐‘š๐‘š๐‘ก๐‘กโˆ’๐‘—๐‘—๐œ”๐œ”๐œ‡๐œ‡๐‘˜๐‘˜๐‘๐‘2

๐‘š๐‘š๐œ‹๐œ‹๐‘Ž๐‘Ž

sin๐‘š๐‘š๐œ‹๐œ‹๐œ•๐œ•๐‘Ž๐‘Ž

cos๐‘›๐‘›๐œ‹๐œ‹๐œ•๐œ•๐‘๐‘

๐‘’๐‘’โˆ’๐‘—๐‘—๐›ฝ๐›ฝ๐‘š๐‘š๐‘›๐‘›๐‘ง๐‘ง

๐ป๐ป๐‘ฅ๐‘ฅ = ๐ด๐ด๐‘š๐‘š๐‘ก๐‘ก๐‘—๐‘—๐›ฝ๐›ฝ๐‘š๐‘š๐‘ก๐‘ก๐‘˜๐‘˜๐‘๐‘2

๐‘š๐‘š๐œ‹๐œ‹๐‘Ž๐‘Ž

sin๐‘š๐‘š๐œ‹๐œ‹๐œ•๐œ•๐‘Ž๐‘Ž

cos๐‘›๐‘›๐œ‹๐œ‹๐œ•๐œ•๐‘๐‘

๐‘’๐‘’โˆ’๐‘—๐‘—๐›ฝ๐›ฝ๐‘š๐‘š๐‘›๐‘›๐‘ง๐‘ง

๐ป๐ป๐‘ฆ๐‘ฆ = ๐ด๐ด๐‘š๐‘š๐‘ก๐‘ก๐‘—๐‘—๐›ฝ๐›ฝ๐‘š๐‘š๐‘ก๐‘ก๐‘˜๐‘˜๐‘๐‘2

๐‘›๐‘›๐œ‹๐œ‹๐‘๐‘

cos๐‘š๐‘š๐œ‹๐œ‹๐œ•๐œ•๐‘Ž๐‘Ž

sin๐‘›๐‘›๐œ‹๐œ‹๐œ•๐œ•๐‘๐‘

๐‘’๐‘’โˆ’๐‘—๐‘—๐›ฝ๐›ฝ๐‘š๐‘š๐‘›๐‘›๐‘ง๐‘ง

Field Configuration in the Dominant Mode

Dominant mode, m=1,n=0: ๐ป๐ป๐‘ง๐‘ง = ๐ด๐ด10 cos

๐œ‹๐œ‹๐œ•๐œ•๐‘Ž๐‘Ž๐‘’๐‘’โˆ’๐‘—๐‘—๐›ฝ๐›ฝ10๐‘ง๐‘ง

๐ธ๐ธ๐‘ฅ๐‘ฅ = 0

๐ธ๐ธ๐‘ฆ๐‘ฆ = ๐ด๐ด10โˆ’๐‘—๐‘—๐œ”๐œ”๐œ‡๐œ‡๐‘˜๐‘˜๐‘๐‘2

๐œ‹๐œ‹๐‘Ž๐‘Ž

sin๐œ‹๐œ‹๐œ•๐œ•๐‘Ž๐‘Ž๐‘’๐‘’โˆ’๐‘—๐‘—๐›ฝ๐›ฝ10๐‘ง๐‘ง

๐ป๐ป๐‘ฅ๐‘ฅ = ๐ด๐ด10๐‘—๐‘—๐›ฝ๐›ฝ10๐‘˜๐‘˜๐‘๐‘2

๐œ‹๐œ‹๐‘Ž๐‘Ž

sin๐œ‹๐œ‹๐œ•๐œ•๐‘Ž๐‘Ž๐‘’๐‘’โˆ’๐‘—๐‘—๐›ฝ๐›ฝ10๐‘ง๐‘ง

๐ป๐ป๐‘ฆ๐‘ฆ = 0

46

๐ธ๐ธ๐‘ฆ๐‘ฆ = ๐ด๐ด10โˆ’๐‘—๐‘—๐œ”๐œ”๐œ‡๐œ‡๐‘˜๐‘˜๐‘๐‘2

๐œ‹๐œ‹๐‘Ž๐‘Ž

sin๐œ‹๐œ‹๐œ•๐œ•๐‘Ž๐‘Ž๐‘’๐‘’โˆ’๐‘—๐‘—๐›ฝ๐›ฝ10๐‘ง๐‘ง

47

Power Flow in the Dominant Mode

byax โ‰คโ‰คโ‰คโ‰ค 0,0 dxdyasd zห†=

zjx e

axAajH 10cos10 ฮฒฯ€

ฯ€ฮฒ โˆ’=

zj

cy e

axA

akjE 10sin2

ฮฒฯ€ฯ‰ยตฯ€ โˆ’โˆ’=

( )โˆซโˆซ โ‹…ร—= dxdyaaHaEP zxxyy ห†ห†ห†21 *

10

( )โˆซโˆซ โ‹…โˆ’= dxdyaaHEP zzxy ห†ห†21 *

10

( )โˆซโˆซ โˆ’

โˆ’= โˆ’ dxdye

axAaje

axA

akjP zjzj

c

1cossin21

1010 10210

ฮฒฮฒ ฯ€ฯ€ฮฒฯ€ฯ‰ยตฯ€

๐‘ƒ๐‘ƒ10 = ๐ด๐ด 2 ๐œ”๐œ”๐œ”๐œ”๐‘ก๐‘ก3๐‘๐‘

4๐œ‹๐œ‹2๐›ฝ๐›ฝ10 watts Homework: do

the integration!

48

7. Design a rectangular waveguide such that the operating frequency of 10.4 GHz is 20% above the cutoff frequency for the dominant mode. Also, the cutoff frequency of the next higher waveguide mode must be 10% above the operating frequency. The waveguide is filled with air.

7.1) What is the cutoff frequency for the TE10 mode?

7.2) What is the โ€œaโ€ dimension?

7.3) What is the โ€œbโ€ dimension?

7.4) Find the phase constant for the dominant mode at the operating frequency.

7.5) Find the wave impedance for the dominant mode at the operating frequency.

7.6) How many modes can propagate in the waveguide at 20 GHz?

Question from an old final exam:

49

7.1) What is the cutoff frequency for the TE10 mode?We are told that the โ€œoperating frequency of 10.4 GHz is 20% above the cutoff frequency for the dominant modeโ€, so 10.4 = 1.2๐‘“๐‘“๐‘๐‘,10, where the cutoff frequency is๐‘“๐‘“๐‘๐‘,10 = 10.4

1.2= 8.667 GHz.

7.2) What is the โ€œaโ€ dimension?

๐‘“๐‘“๐‘๐‘,๐‘š๐‘š๐‘ก๐‘ก = 12๐œ‹๐œ‹ ๐œ”๐œ”๐œ‡๐œ‡

๐‘š๐‘š๐œ‹๐œ‹๐‘ก๐‘ก

2+ ๐‘ก๐‘ก๐œ‹๐œ‹

๐‘๐‘

2and for air-filled waveguide c = 1

๐œ”๐œ”0๐œ‡๐œ‡0= 30 cm/ns

๐‘“๐‘“๐‘๐‘,10 =302๐œ‹๐œ‹

1๐œ‹๐œ‹๐‘Ž๐‘Ž

2

+0๐œ‹๐œ‹๐‘๐‘

2

=302๐œ‹๐œ‹

๐œ‹๐œ‹๐‘Ž๐‘Ž

=15๐‘Ž๐‘Ž

15๐‘ก๐‘ก

= 8.667

๐‘Ž๐‘Ž = 158.667

= 1.731 cm

7.3) What is the โ€œbโ€ dimension? โ€œThe cutoff frequency of the next higher waveguide mode must be 10% above the operating frequency.โ€So the next higher cutoff frequency is 1.1x10.4=11.44 GHz.

The next higher cutoff frequency might be ๐‘“๐‘“๐‘๐‘,01 or might be ๐‘“๐‘“๐‘๐‘,20

50

๐‘“๐‘“๐‘๐‘,๐‘š๐‘š๐‘ก๐‘ก =302๐œ‹๐œ‹

๐‘š๐‘š๐œ‹๐œ‹1.731

2+

๐‘›๐‘›๐œ‹๐œ‹๐‘๐‘

2

๐‘“๐‘“๐‘๐‘,01 =302๐œ‹๐œ‹

0๐œ‹๐œ‹1.731

2

+1๐œ‹๐œ‹๐‘๐‘

2

=302๐œ‹๐œ‹

๐œ‹๐œ‹๐‘๐‘

=15๐‘๐‘

= 11.44

๐‘๐‘ = 1511.44

= 1.311 cmCheck: what is ๐‘“๐‘“๐‘๐‘,20?

๐‘“๐‘“๐‘๐‘,20 = 302๐œ‹๐œ‹

2๐œ‹๐œ‹1.731

2+ 0๐œ‹๐œ‹

๐‘๐‘

2= 30

2๐œ‹๐œ‹2๐œ‹๐œ‹

1.731= 30

22

1.731= 30

1.731= 17.33 GHz

Since this is higher than 11.44 GHz, choose ๐‘๐‘ = 1.311 cm

51

7.4) Find the phase constant for the dominant mode at the operating frequency.

๐›ฝ๐›ฝ,๐‘š๐‘š๐‘ก๐‘ก = ๐‘˜๐‘˜2 โˆ’ ๐‘š๐‘š๐œ‹๐œ‹๐‘ก๐‘ก

2โˆ’ ๐‘ก๐‘ก๐œ‹๐œ‹

๐‘๐‘

2

Where ๐‘˜๐‘˜ = ๐œ”๐œ” ๐œ‡๐œ‡๐œ‡๐œ‡ = 2๐œ‹๐œ‹๐œ‹๐œ‹๐‘๐‘

= 2๐œ‹๐œ‹๐‘ฅ๐‘ฅ10.430

= 2.178 rad/cm (with ๐‘๐‘ = 1๐œ”๐œ”๐œ‡๐œ‡

= 30 cm/ns)

๐›ฝ๐›ฝ,10 = ๐‘˜๐‘˜2 โˆ’ 1๐œ‹๐œ‹๐‘ก๐‘ก

2โˆ’ 0๐œ‹๐œ‹

๐‘๐‘

2= ๐‘˜๐‘˜2 โˆ’ ๐œ‹๐œ‹

๐‘ก๐‘ก

2= 2.1782 โˆ’ ๐œ‹๐œ‹

1.731

2= 1.024 rad/cm

7.5) Find the wave impedance for the dominant mode at the operating frequency. ๐‘๐‘๐‘‡๐‘‡๐‘‡๐‘‡ = ๐œ”๐œ”๐œ”๐œ”

๐›ฝ๐›ฝ= 2๐œ‹๐œ‹๐‘ฅ๐‘ฅ10.4๐‘ฅ๐‘ฅ109๐‘ฅ๐‘ฅ4๐œ‹๐œ‹๐‘ฅ๐‘ฅ10โˆ’7

102.4= 682.0 ohms

7.6) How many modes can propagate in the waveguide at 20 GHz?

๐‘“๐‘“๐‘๐‘,๐‘š๐‘š๐‘ก๐‘ก =302๐œ‹๐œ‹

๐‘š๐‘š๐œ‹๐œ‹1.731

2+

๐‘›๐‘›๐œ‹๐œ‹1.311

2= 15

๐‘š๐‘š1.731

2+

๐‘›๐‘›1.311

2

๐‘“๐‘“๐‘๐‘,01 = 11.44 GHz, propagates at 20 GHz๐‘“๐‘“๐‘๐‘,20 = 17.33 GHz, propagates at 20 GHz

๐‘“๐‘“๐‘๐‘,02 = 15 01.731

2+ 2

1.311

2= 22.88 GHz, does NOT propagate

๐‘“๐‘“๐‘๐‘,11 = 15 11.731

2+ 1

1.311

2= 14.35 GHz propagates

52

7.5) Find the wave impedance for the dominant mode at the operating frequency.Continued:

๐‘“๐‘“๐‘๐‘,21 = 15 21.731

2+ 1

1.311

2= 20.76 GHz does NOT propagate

๐‘“๐‘“๐‘๐‘,12 = 15 11.731

2+ 2

1.311

2= 24.47 GHz does NOT propagate

top related