duration of exercise and anaerobic energy share assesment ... of anaerobic capabilities... ·...

Post on 13-Mar-2019

214 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Assesment of anaerobic capabilities in elite athletes

Dušan Hamar

Dept. of Sports MedicineInst. of Sports SciencesBratislavaSlovakia

Duration of exercise and Duration of exercise and anaerobic energy shareanaerobic energy share

01020304050607080

0-30 30-60 60-90 90-120Exercise duration

Ener

gy s

hare

(%)

aerobic anaerobic

(Bangsbo, et. al. 1990)

0

1

2

3

4

0 60 120 180 240

Time (s)

VO

2 (l/

min

)

March May

100

150

200

250

300

0 60 120 180 240

Time(s)

Pow

er (W

)

March May

37,849

0

10

20

30

40

50

60

Mach May

Wor

k (k

J)

3,31 3,42

0

1

2

3

4

March May

VO

2 (l/

min

)

7,1

9,4

2

4

6

8

10

March May

Lac

tate

(mm

ol/l)

Evaluation of anaerobic capabilitiesEvaluation of anaerobic capabilities

Oxygen debtOxygen debt

Blood lactate after allBlood lactate after all--out exerciseout exercise

Mechanical powerMechanical power

Oxygen debtOxygen debt

Problem with setting the baseline oxygen Problem with setting the baseline oxygen uptakeuptake

Unreliable!Unreliable!

2

Blood lactate after allBlood lactate after all--out exerciseout exercise

ProblemsProblemswashwash--out, compartment distribution, out, compartment distribution, elimination complicate indirect assessment of elimination complicate indirect assessment of energy produced in anaerobic pathwaysenergy produced in anaerobic pathwaysIndividual differences in oxygen uptake Individual differences in oxygen uptake kineticskineticsalone does not provide any clue on efficiency alone does not provide any clue on efficiency of mechanical work performedof mechanical work performed

Unreliable!Unreliable!

Mechanical PowerMechanical Power

AP = ----------

t

F x sP = -------------

t

A = F x s

P = F x v

sv = ----------

t

An An ““AllAll--outout”” Exercise on the Cycle Exercise on the Cycle ErgometerErgometer

Widely usedmeans for the assessment of

anaerobic capabilities

Wingate Anaerobic TestWingate Anaerobic Test

Resistance:7.5 N/kg of BW

Power = Force x Velocity

(Velocity = Revolution Rate x 2 x 3.14 x Crank

Length)

Classic Wingate test Classic Wingate test -- constant constant braking forcebraking force

0 5 10 15 20 25 30ČAS (s)

0

300

600

900

1200

1500POWER (W)

0

40

80

120

160

200REVOLUTION RATE (1/min)

Pmax

Pmin

Pmean

Pmax-PminFatigue index = ------------------

Pmax

Isokinetic cycle ergometerIsokinetic cycle ergometer

Tensometer

Revolution rate sensor

Brake

3

““AllAll--outout”” Bouts on an Isokinetic Bouts on an Isokinetic Cycle ErgometerCycle Ergometer

Force and power at different

revolution rates

Mean throughout the cycle: 539 N

Mean throughout the cycle: 389 W

10-second „all out“ pedalling

Force and power at various Force and power at various revolution ratesrevolution rates

100

300

500

700

900

1100

40 60 80 100 120 140 160 180

Revolution rate (1/min)

Forc

e (N

)

500

600

700

800

900

1000

1100

Pow

er (W

)

Pmax

Optimumrevolution rate

VELOCITY

POW

ER

ST

FTO

FTG

4

20 40 60 80 100 120 140 160 180 200REVOLUTION RATE (1/m)

0

500

1000

1500

2000FORCE (N)

0

500

1000

1500

2000POWER (W)

UNTRAINED

TRACK CYCLISTSROAD CYCLISTS

Force-velocity and power-velocity curves of different groups of cyclists

20 40 60 80 100 120 140 160 180 200REVOLUTION RATE (1/min)

0

500

1000

1500

2000FORCE (N)

500

1000

1500

2000POWER (W)

JANMARAPR

Specific effect of training in track cyclists

Force and power at various Force and power at various revolution ratesrevolution rates

100

300

500

700

900

1100

40 60 80 100 120 140 160 180

Revolution rate (1/min)

Forc

e (N

)

500

600

700

800

900

1000

1100

Pow

er (W

)

Pmax

Optimumrevolution rate

Classic Wingate test Classic Wingate test -- constant constant braking forcebraking force

0 5 10 15 20 25 30ČAS (s)

0

300

600

900

1200

1500POWER (W)

0

40

80

120

160

200REVOLUTION RATE (1/min)

20 40 60 80 100 120 140 160 180 200CADENCE (rpm)

600

800

1000

1200

1400

1600POWER (W)

Wingate test in isokinetic mode at Wingate test in isokinetic mode at 100 rpm100 rpm

0 5 10 15 20 25 30CAS (s)

0

300

600

900

1200

1500POWER (W)

0

40

80

120

160

200REVOLUTION RATE (1/min)

20 40 60 80 100 120 140 160 180 200CADENCE (rpm)

600

800

1000

1200

1400

1600POWER (W)

0 5 10 15 20 25 30TIME (s)

020406080

100120140160

REVOLUTION RATE (1/min)

Modeisokinetic constant force

5

0 5 10 15 20 25 30ČAS (s)

0

400

800

1200

1600POWER (W)

MODECONSTANT FORCE ISOKINETIC

Parameters of Wingate test performed Parameters of Wingate test performed in different modesin different modes

0

500

1000

1500

constant force isokinetic

MODE

POW

ER (w

)

maximum minimum mean

30-second “all out”

workloads at 40, 60, 80, 100

a 120 rpm. 200

400

600

800

1000

1200

40 60 80 100 120 140 160

REVOLUTION RATE (1/min)

POW

ER (w

)

0-5 s

25-30 s

Fatigue and optimum revolution rate

VELOCITY

POW

ER

ST

FTO

FTG

Theoretic optimum time course of revolution Theoretic optimum time course of revolution rate to achieve highest possible power in 30rate to achieve highest possible power in 30--

second second ““all outall out”” testtest

0 5 10 15 20 25 30TIME (s)

40

60

80

100

120

140REVOLUTION RATE (1/min)

6

before rehabilitation

after rehabilitation

7

For many sports cycling is not a specific form of For many sports cycling is not a specific form of exerciseexercise

An An ““AllAll--outout”” Exercise on the Exercise on the Cycle Cycle ErgometerErgometer

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75TIME (s)

VELO

CIT

Y (k

m/h

)

RUNNING at 22 km/h, 7.5 % slope

Time toexhaustion:

65.1 s

Constant Power “All-Out” Exercise

““TTetheredethered runningrunning““ on the treadmillon the treadmill

FORCE(F)

VELOCITY(v)

Energy demand of running itself +Power produced due to pulling work at given velocity

P = F x v

Anaerobic power and specificity of Anaerobic power and specificity of the test exercise?the test exercise?

Fit subjectsFit subjectsCyclistsCyclistsSprintersSprinters

400

500

600

700

800

900

40 60 80 100 120 140 160 180REVOLUTION RATE (RPM)

POW

ER (w

)

500

550

600

650

700

750

800

8 10 12 14 16 18 20 22

VELOCITY (km/h)

POW

ER (w

)

0200400600800

1000120014001600

FIT SUBJECTS CYCLISTS SPRINTERS

POW

ER (w

)

CYCLE ERGOMETER TETHERED RUNNING

Maximal Power In Different Forms Of Exercise

500

550

600

650

700

750

800

8 10 12 14 16 18 20 22

Velocity (km/h)

Pow

er (w

)

MaxiMaximalmal 55--sesecond cond ““drag powerdrag power”” at at different velocity of tethered runningdifferent velocity of tethered running

8

600650700750800850900950

8 10 12 14 16 18 20

Velocity (km/h)

Pow

er (

w)

Sprinte r Endurance runne r

MaxiMaximalmal 55--sesecond cond ““drag powerdrag power”” at different at different velocity of tethered runningvelocity of tethered running

Power and velocity of contraction in Power and velocity of contraction in muscles with predominace of ST and FT muscles with predominace of ST and FT

fibersfibers

0,0

2,0

4,0

6,0

8,0

0 5 10 15 20 25 30 35 40

Velocity (cm/s)

Pow

er (

W) gastrocnemius

soleus

Edgerton, 1989

Tihanyi, 1983

more than 50 % FT fibers

less than 50 % FT fibers 600

650

700

750

800

850

900

950

1000

1050

8 10 12 14 16 18 20

RÝCHLOSŤ (km/h)

KO

N (w

)

MaxiMaximalmal 55--sesecond cond ““drag powerdrag power””at different velocity of tethered at different velocity of tethered

runningrunning

0100200300400500600700

5 10 15 20 25 30TIME (s)

POW

ER (W

)

30-s “All-Out” Tethered Running at 18 km/h - Averaged Data Over 5-s Periods

9

0100200300400500600700

5 10 15 20 25 30TIME (s)

POW

ER (W

)

A B

Drag Power Produced In 30-s Test Of Tethered Running On The Treadmill

Pmax: 636 WPmean: 525 W

FI: 40 %

Pmax: 409 WPmean: 381 W

FI: 15 %

10

Assessment of explosive power of Assessment of explosive power of lower extremitieslower extremities

Dynamometric platformDynamometric platform Contact platformContact platform

Principles of parameter estimation Principles of parameter estimation from forcefrom force--time curvetime curve

F = (m x g) + (m x a)

F = m x (g + a)

Fa = ––– - g

mv = integral a (a . t)

h = integral v (v . t)

P = F x v

Principles of parameter estimation Principles of parameter estimation on contact platformon contact platform

Measurement of flight Measurement of flight and contact times and contact times during serial jumpsduring serial jumpsCalculation ofCalculation of

Height of the jumpHeight of the jumpPower in concentric Power in concentric phase of take offphase of take off

Formulae for calculations of Formulae for calculations of basic parametersbasic parameters

Height of the jumpHeight of the jump

g g . . TfTf22

h h = = ------------------88

Power in concentric phase of Power in concentric phase of take offtake off

gg2 2 . Tf . (. Tf . ( Tc +Tc +. . Tf)Tf)Pact = Pact = ------------------------------------------

4 . Tf4 . Tfh h –– (m)(m)Tf Tf –– (s)(s)Tc Tc –– (s)(s)Pact Pact –– (W.kg(W.kg--11))g g –– 9.81 m.s9.81 m.s--22

Screen during on line Screen during on line measurementmeasurement Pact in groups of athletesPact in groups of athletes

11

Pact before and after specific Pact before and after specific trainingtraining

Efect of counter movement on Efect of counter movement on height of the jump in two subjetcsheight of the jump in two subjetcs

0102030405060

A B

Hei

ght o

f the

jum

p (c

m)

without CM with CM

Height of the jump without and with Height of the jump without and with additional weight (50 % of body weight)additional weight (50 % of body weight)

top related