dr. nagy gyÖrgy tamás · dr.ing.nagy‐györgy t. faculty of civil engineering 5 strengthening...

Post on 29-May-2020

7 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Faculty of Civil EngineeringDr.ing. Nagy‐György T.  

Dr. NAGY‐GYÖRGY TamásProfessor

E‐mail: tamas.nagy‐gyorgy@upt.ro

Tel:+40 256 403 935

Web:http://www.ct.upt.ro/users/TamasNagyGyorgy/index.htm 

Office:A219

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   2

1. Strengthening for flexure using EB‐FRP

2. RC beam strengthened for flexure ‐ Application

3. Shear strengthening using EB‐FRP

4. RC beam strengthened for shear ‐ Application

5. Confinement

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   3

Strengthening for flexure using EB‐FRP

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Initial situation

Initial load  Mo = service moment acting duringstrengthening

Mo is typically larger than the cracking moment Mcr

the calculation is based on a cracked section

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   4

Strengthening for flexure using EB‐FRP

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Constitutive material models

(Stijn Matthys, Ghent University)

For FRPServiceability Limit State (SLS)

‐ reversible, long term effect

Ultimate Limit State (ULS)1.35 1.5 1.5 , ,

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   5

Strengthening for flexure using EB‐FRP Failure modes – ULS

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Failure modes – Ultimate Limit States

1. Full composite action of concrete and FRP is maintaineduntil the concrete reaches crushing in compression or theFRP fails in tension (such failure modes may also be characterizedas “ideal”)

2. Composite action is lost prior to class 1 failure, e.g. dueto peeling‐off or by debonding of the FRP

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   6

Strengthening for flexure using EB‐FRP

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Failure modes – Full composite action

Steel yielding followed by concrete crushing

Steel yielding followed by FRP fracture

Concrete crushing or FRP failure without steel yielding

Rupture of steel, before concrete crushing or FRP failure

Failure modes – ULS

Allowed

To be avoided

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   7

Strengthening for flexure using EB‐FRP

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Failure modes – Loss of composite action

• Debonding and bond failure modes

Failure modes – ULS

fib

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   8

Strengthening for flexure using EB‐FRP

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Failure modes – Loss of composite action

Failure modes – ULS

fib

Bond behaviour of RC members strengthened with FRPMost failures observed  caused by peeling‐off of the EBR element. These depends on the starting point:

in an uncracked anchorage zone

caused at flexural cracks

caused at shear cracks

caused by the unevenness of the concrete surface fib

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   9

Strengthening for flexure using EB‐FRP

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Failure modes – Loss of composite action

Failure modes – ULS

Bond behaviour of RC members strengthened with FRPAlso was observed  FRP end shear failure (or concrete rip‐off)

fib

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   10

1. Strengthening for flexure using EB‐FRP

2. RC beam strengthened for flexure ‐ Application

3. Shear strengthening using EB‐FRP

4. RC beam strengthened for shear ‐ Application

5. Confinement

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   11

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

RC beam strengthened with CFRP composite for bending

1. SYSTEM

L = 4.1 m

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   12

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

2. CROSS SECTION AND MATERIALS

RC beam (indoor)h = 40 cmb = 20 cmd = 36.7 cmAs1 = 2φ16 = 4.02 cm2

Concrete:C30/37fck = 30 N/mm2

Ec = 33000 N/mm2

fctm = 2.9 N/mm2

Steel:fyk = 500 N/mm2

Es = 200000 N/mm2

20

40

CFRP compositebf = 80 mmtf = 1.2 mmEfk = 165000 N/mm2

εfk = 17 ‰

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   13

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

3. LOADS AND DESIGN VALUES

1. Self‐weight G = _____ kN/m

2. Live load before strengthening  q1 = 8.0 kN/m

3. Additional live load q2 = 18.0 kN/m

4. Live load after strengthening  q1 + q2 = 26.0 kN/m

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   14

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

3. LOADS AND DESIGN VALUES

Fundamental load combination 1.35∑ , 1.5 ,

Total load before strengthening _______ /

Bending moment before strengthening _____kNm

Total design load  _______ /

Total bending moment _______kNm

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   15

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

3. LOADS AND DESIGN VALUES

____

1.5

_____

1.15

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   16

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

3. LOADS AND DESIGN VALUES

Resisting moment of the unstrengthened member

Where  1 0,5

and

_____ ______ 0.8 1 0.4 _____

/_______

_______

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   17

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

4. INITIAL SITUATION

Service moment  self‐weight + q1

Calculation of the neutral axis depth  :

______

12 1

Where ‐ coefficient of equivalence

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   18

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

4. INITIAL SITUATION

0.5 0

0.5 · ______ · _____ · ______ · ______ 0

→ ____, __

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   19

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

4. INITIAL SITUATION

The concrete strain  at the top fibre can be expressed as:

0, _________

Where

3 1

________________

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   20

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

4. INITIAL SITUATION

Based on the strain compatibility, the strain  at the extreme tension fiber can be derived as

0. __________

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   21

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

5. ANALYSIS IN ULS 

General condition

It is assumed that flexural failure takes place when one of thefollowing conditions is met:

‐ The maximum concrete compressive strain (  ) is reached.

‐ The maximum FRP tensile strain (  ) is reached.

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   22

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

5. ANALYSIS IN ULS 

∑ 0 → 0.85

Where 

0.8

0.4

Additional safety factor

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   23

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

5. ANALYSIS IN ULS 

∑ 0 → 0.85 only iterative solving is possible

1st proposal  102

_______

0.85 dif? %_______ _______

2nd proposal _______

______________ _______ dif ? %

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   24

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

5. ANALYSIS IN ULS 

3rd proposal 

_______

______________ ______________[N]

difference  _______%

_______

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   25

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

5. ANALYSIS IN ULS 

It must be verified if

,

(Stijn Matthys, Ghent University)

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   26

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

5. ANALYSIS IN ULS 

It must be verified if

,

Deformability condition

(Stijn Matthys, Ghent University)

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   27

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

5. ANALYSIS IN ULS

It must be verified if

,

, 5.0 5.0 _______ _______‰

, _______‰ _______‰ _______

Deformability condition

(Stijn Matthys, Ghent University)

in ‰ !!! 

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   28

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

5. ANALYSIS IN ULS

It must be verified if

, FRP bond failure 

min ;

0.7517‰1.1

In conformity of CNR‐DT 200/2004

______‰

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   29

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

5. ANALYSIS IN ULS

It must be verified if

, FRP bond failure 

min ;

2 · Γ·

3.0 ‐ coefficient

Γ 0.03 · · ‐ the specific fracture energy of the FRP ‐ concrete interface

2 ⁄1 400⁄ 1

is a geometric coefficient depending on both width of thestrengthened beam and width of the FRP system. If /0.33, the value for corresponding to / 0.33 is adopted.

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   30

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

5. ANALYSIS IN ULS

It must be verified if

,

min ; ________

2 · Γ· ________

3.0

Γ 0.03 · · ______ ⁄ ______

2

1 400

______

If  / 0.33, the value for  corresponding to  / 0.33 is adopted

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   31

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

5. ANALYSIS IN ULS

Verification of the strain in reinforcement

0. ________ 0. ______

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   32

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

5. ANALYSIS IN ULS

The flexural capacity of the strengthened member:

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   33

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

5. ANALYSIS IN ULS

The flexural capacity of the strengthened member:

1

_______ ________

_________

______ ______

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   34

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

6. CHECKING FOR ANCHORAGE FAILURE

(Stijn Matthys, Ghent University)

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   35

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

6. CHECKING FOR ANCHORAGE FAILURE

ANCHORAGE FAILURE MODES

Type 1: at interface

Type 2: at internal steel reinforcement level

(Stijn Matthys, Ghent University)

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   36

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

6. CHECKING FOR ANCHORAGE FAILURE

lb

Af

As1

Nb

Ns1

Nf

z

Capacity of the unstrengthenedsection

Capacity of the strengthened section

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   37

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

6. CHECKING FOR ANCHORAGE FAILURE

The maximum FRP force which can be anchored:

, 2

1.0 0.9 influence of inclined cracks on bond strength1.0 influence of the concrete faces with low compaction

⁄⁄ 1 geometric coefficient, in function of  ⁄

0.205 for CFRP laminate

The optimal bond length:

2 ·

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   38

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

6. CHECKING FOR ANCHORAGE FAILURE ‐ DEBONDING

The maximum FRP force which can be anchored:

, 2 ______

The optimal bond length:

2 · _______

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   39

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

6. CHECKING FOR ANCHORAGE FAILURE ‐ DEBONDING

0.9 330200190 185

720

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   40

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

6. CHECKING FOR ANCHORAGE FAILURE ‐ DEBONDING

20 cm 18.5 cm

L=4.1 m

shifting

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   41

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

6. CHECKING FOR ANCHORAGE FAILURE ‐ DEBONDING

CHECKING THE ANCHORAGE FORCE AT THE DISTANCE OF  :

1. Computation of  and 

2. Computation of

from ∑ 0 → 0.85

by several iteration the values for  ,  and  will be obtained

3. Whith obtained, computation of the effective force in the composite  and compare

,

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   42

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

6. CHECKING ANCHORAGE FAILURE – CONCRETE RIP‐OFF(end shear failure)

a > L + d    

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   43

RC beam strengthened for flexure

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

6. CHECKING ANCHORAGE FAILURE – CONCRETE RIP‐OFF

_______

where

0.15 · 3 1 100 design value of resisting shear strength of concrete

1

(end shear failure)

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   44

1. Strengthening for flexure using EB‐FRP

2. RC beam strengthened for flexure ‐ Application

3. Shear strengthening using EB‐FRP

4. RC beam strengthened for shear ‐ Application

5. Confinement

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   45

Shear strengthening

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

fib

SHEAR STRENGTHENING

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   46

Shear strengthening

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

(Barros Joaquim , University of Minho)

SHEAR STRENGTHENING

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   47

Shear strengthening

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

SHEAR CAPACITY OF THE STRENGTHENED MEMBERS

, , , ,

, concrete contribution to the shear capacity

, steel contribution to the shear capacity

, FRP contribution to the shear capacity

, the ultimate strength of the concretet strut

EC2 or ACI318

fibCNR‐DT200ACI4408

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   48

Shear strengthening

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

SHEAR CAPACITY OF THE STRENGTHENED MEMBERS

For RC member with rectangular cross‐section with U‐wrapped orcompletely wrapped configurations, the FRP contribution to the shearcapacity shall be calculated as:

fib ,

CNR  ,

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   49

1. Strengthening for flexure using EB‐FRP

2. RC beam strengthened for flexure ‐ Application

3. Shear strengthening using EB‐FRP

4. RC beam strengthened for shear ‐ Application

5. Confinement

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   50

RC beam strengthened for shear

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

RC beam strengthened with CFRP composite for bending

1. SYSTEM

L = 4.1 m

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   51

RC beam strengthened for shear

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

2. CROSS SECTION AND MATERIALS

RC beam (indoor)h = 40 cmb = 20 cmd = 36.7 cmAs1 = 2φ16 = 4.02 cm2

φw = φ6 sw = 150 mm

Concrete:C30/37fck = 30 N/mm2

Ec = 33000 N/mm2

fctm = 2.9 N/mm2

CFRP compositewf = 200 mmsf = 200 mmtf = 0.131 mmEfk = 238000 N/mm2

εfk = 18 ‰

Steel:fywk = 500 N/mm2

Es = 200000 N/mm2

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   52

RC beam strengthened for shear

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

3. LOADS AND DESIGN VALUES

1. Self‐weight G = 2.0 kN/m

2. Live load before strengthening  q1 = 8.0 kN/m

3. Additional live load q2 = 18.0 kN/m

4. Live load after strengthening q1 + q2 = 26.0 kN/m

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   53

RC beam strengthened for shear

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

3. LOADS AND DESIGN VALUES

1. Self‐weight G = 2.0 kN/m

2. Live load before strengthening  q1 = 8.0 kN/m

3. Additional live load q2 = 18.0 kN/m

4. Live load after strengthening q1 + q2 = 26.0 kN/m

1.35 , 1.5 ,Fundamental load combination

→ · 2 _______kN

41.7 /

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   54

RC beam strengthened for shear

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

3. LOADS AND DESIGN VALUES

20

1.5

435

1.15

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   55

RC beam strengthened for shear

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

3. LOADS AND DESIGN VALUES

Resisting shear force of the unstrengthened member

min , , ,Where 

, · · ·

, · · ·

0,6 1 250strength reduction factor for concrete cracked in shear

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   56

RC beam strengthened for shear

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

3. LOADS AND DESIGN VALUES

Resisting shear force of the unstrengthened member

min , , , _________Where 

, · · ·

, _______

, · · ·

, _________

0,6 1 ____strength reduction factor for concrete cracked in shear

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   57

RC beam strengthened for shear

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

3. LOADS AND DESIGN VALUES

Shear force difference:

, ______

L = 4.1 m

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   58

RC beam strengthened for shear

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

4. FRP CONTRIBUTION TO THE SHEAR CAPACITY

,10.9 · 2 · ·

(formula for U‐wrapped configurations – CNR DT200)

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   59

RC beam strengthened for shear

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

4. FRP CONTRIBUTION TO THE SHEAR CAPACITY

,10.9 · 2 · ·

Where, for a U‐wrappwed configuration

113 ·

·min 0.9 ,

2 ·

2 · · Γ

the optimal bond length

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   60

RC beam strengthened for shear

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

4. FRP CONTRIBUTION TO THE SHEAR CAPACITY

,10.9 · 2 · ·

Where, for a U‐wrapped configuration

2 · · Γ

Γ 0.03 · · ‐ the specific fracture energy of the FRP ‐ concrete interface

2 ⁄1 400⁄ 1

When calculating , the coefficient shall be considered asfollows: for discrete FRP strips application, and ;for FRP systems installed continuously along the span length of themember it shall be permitted to considermin 0.9 , · sin /sin

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   61

RC beam strengthened for shear

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

4. FRP CONTRIBUTION TO THE SHEAR CAPACITY

,10.9 · 2 · ·

Where, for a U‐wrappwed configuration

1 for a continues fiber application 

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   62

RC beam strengthened for shear

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

4. FRP CONTRIBUTION TO THE SHEAR CAPACITY

⁄⁄ _______

min 0.9 , ·sin

sin _______

Γ 0.03 · · _______

2 · · Γ686.09

2 · ____

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   63

RC beam strengthened for shear

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Application

4. FRP CONTRIBUTION TO THE SHEAR CAPACITY

113 ·

·min 0.9 , _______

,10.9 · 2 · ·

, ________

, ,

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   64

1. Strengthening for flexure using EB‐FRP

2. RC beam strengthened for flexure ‐ Application

3. Shear strengthening using EB‐FRP

4. RC beam strengthened for shear ‐ Application

5. Confinement

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   65

Confinement

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

CONFINEMENT EFFECTS

(Τhanasis Triantafillou, University of Patras)

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   66

Confinement

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

CONFINEMENT EFFECTS

Comparison of the axial compressive stress as a function of the axial strain for an unreinforced,reinforced with steel stirrups and FRP‐wrapped column (Holloway and Head, 2001).

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   67

Confinement

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

CONFINEMENT EFFECTS higher strength

higher deformation

(fib)

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   68

Confinement

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

CONFINEMENT JACKETS SHOULD BE DESIGNED

To increase deformation capacity (chord rotation or ductility factor)

To increase shear resistance in such way, that flexural failure precedes shear failure.

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   69

Confinement

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

CONFINEMENT JACKETS SHOULDN'T BE USED TO INCREASE FLEXURAL RESISTANCE

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   70

Confinement

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

CONFINEMENT DESIGN

Circular column

fib

!f = fu

Rectangular column

!

Teng et. al.

Faculty of Civil EngineeringDr.ing. Nagy‐György T.   71

Dr. NAGY‐GYÖRGY TamásProfessor

E‐mail:  tamas.nagy‐gyorgy@upt.roTel: +40 256 403 935Web: http://www.ct.upt.ro/users/TamasNagyGyorgy/index.htm Office: A219

STRENGTHENING OF STRUCTURES USING FRP TECHNIQUES

top related