combinatorial interpretations for a class of algebraic equations and uniform partitions

Post on 06-Jan-2016

27 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

DESCRIPTION

Combinatorial interpretations for a class of algebraic equations and uniform partitions. Speaker: Yeong-Nan Yeh Institute of mathemetics, Academia sinica Aug. 21, 2012. Catalan paths. - PowerPoint PPT Presentation

TRANSCRIPT

Combinatorial interpretations for a class of algebraic equations and

uniform partitions

Speaker: Yeong-Nan Yeh

Institute of mathemetics, Academia sinica

Aug. 21, 2012

第 2页第 2页

Catalan paths• An n-Catalan path is a lattice path from (0,0)

to (2n,0) in the first quadrant consisting of up-step (1,1) and down-step (1,-1) .

第 3页第 3页

Catanlan number

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, … ,

第 4页第 4页

2)(1)(

:equation Algebaric

zzCzC

0

)(:function Generatingn

nn zczC

第 5页第 5页

Motzkin paths• An n-Motizkin path is a lattice path from (0,0)

to (n,0) in the first quadrant consisting of up-step (1,1), level-step (1,0) and down-step (1,-1).

Motzkin number:1, 1, 2, 4, 9, 21, 51, 127, 323, 835, … ,

第 6页第 6页

22 )()(1)(

:equation Algebaric

zMzzzMzM

0

)(:function Generatingn

nn zmzM

第 7页第 7页

Combinatorial structure Generating function f(z) Algebaric equation

Catalan path:(1,1),(1,-1) in the first quadrant

C(z) C(z)=1+z[C(z)]2

=1+zC(z)·C(z)

Motzkin path:(1,1),(1,-1),(1,0) in the first quadrant

M(z) M(z)=1+zM(z)+z2[M(z)]2

=1+zM(z)·[1+zM(z)]

??? ??f(z)

Given an algebaric equation for arbitrary polynomial F(z,y) , how to construct a combinatorial structure such that its generating function f(z) satisfies this equation?

),(1 yzFzyy

),(1 yzzyFy

))(,()(1)( zfzFzzfzf

第 8页

Lattice paths• A lattice path is a sequence

(x1,y1)(x2,y2)…(xk,yk) of vectors in the plane with (xi,yi)∈Z≥0×Z\{(0,0)}, where Z and Z≥0 are the sets of integers and nonnegative integers respectively.

第 9页

Weight of a lattice path• Let w be a function from Z≥0

×Z to R, where R is the set of real numbers.

• For any lattice path P=(x1,y1)(x2,y2)…(xk,yk) define the weight of P, denoted by w(P), as

k

iii yxwPw

1

),()(

第 10页

S-path and S-nonnegative path• Let S be a finite subset of Z≥0

×Z\{(0,0)}.

• An S-path is a lattice path (x1,y1)(x2,y2)…(xk,yk) with (xi,yi) S.∈

• An S-nonnegative path is an S-path in the first quadrant

第 11页第 11页

)).(,()(1

)]([1 Then

.)(function generating a Define .)( and

(n,0)endpoint with paths enonnegativ-S ofset thebe )(Let

.)1(1)10(

)},,2,1,,2,1)1,{()}1,0{(Let :Theorem

1 1

00

zfzFzzf

zfzaf(z)

zPwf(z)LSLL

SLL

aj,-i,w,w

mjriijS

ijr

i

m

jij

n LP

n

nn

nn

ij

n

第 12页第 12页

• A decomposition of a S-nonnegative path.

P=(0,1)P1(0,1)P2(0,1)P3…Pi-1(j,-i+1)Pi

w(0,1)=1,w(j,-i+1)=ai,j

第 13页

More general cases

• Let λ be a function from Z≥0 ×Z to Z≥0.

• For any lattice path P=(x1,y1)(x2,y2)…(xk,yk) define the λ-length of P, denoted by λ(P), as

k

iii yxP

1

),()(

第 14页第 14页

)).(,()(1

1

Then .function generating a Define

. and axis-on point a

at ending length - with paths enonnegativ-S ofset thebe )(Let

.1)1,( and,0)1,()1()1,()1(

Let .integers enonnegativ are and where

,)0,0( and )},,2,1,,2,1)1,{()}1,{(

Let :Theorem

1 1

0

1

zfzFzzf

[f(z)]zaf(z)

w(P)zf(z)

(S)LL(S)Lx

nSLL

a),-iw(wj, w,-ii-

SmjriiS

ijr

i

m

jij

LP

λ(P)

nn

nn

ijji

j

j

j

第 15页

Uniform partition• An n-Dyck path is a lattice path from (0,0) to (2n,0) in the

plane integer lattice Z×Z consisting of up-step (1,1) and down-step (1,-1).

The number of n-Dyck paths is

n

n2

第 16页第 16页

K.L. Chung, W. Feller, On fluctuations in-coin tossing, Proc. Natl. Acad. Sci. USA 35 (1949) 605-608

Chung-Feller theorem:The number of Dyck path of semi-length n with m up-steps under x-axis is the n-th Catalan number and independent on m.

第 17页第 17页

Uniform partition (An uniform partition for Dyck paths)

The number of up-steps (1,1) lying below x-axis

第 18页

0 0

,

0 0,

1

)()()(

have We

orem,Feller theChungby with ngSubstituti

)(

Let

n

n

k

knn

nkn

n

n

k

knkn

y

zCyzyCyzcy,zC

cc

yzcy,zC

第 19页第 19页

Lifted Motzkin paths• A lifted n-Motizkin path is a lattice path from (0,0)

to (n+1,1) in the plane integer lattice Z×Z consisting of up-step (1,1), level-step (1,0) and down-step (1,-1), which never passes below the line y=1 except (0,0).

第 20页第 20页

Free Lifted Motzkin paths• A free lifted n-Motizkin path is a lattice path from (0,0) to

(n+1,1) in the plane integer lattice Z×Z consisting of up-step (1,1), level-step (1,0) and down-step (1,-1).

第 21页第 21页

• The number of free lifted n-Motzkin path with m steps at the left of the rightmost lowest point is the n-th Motzkin number and independent on m.

第 22页第 22页

An uniform partition for free lifted Motzkin paths• Shapiro found an uniform partition for Motzkin path.

L. Shapiro, Some open questions about random walks, involutions, limiting distributions, and generating functions, Advances in Applied Math. 27 (2001), 585-596.

The number of steps at the left of the rightmost lowest point of a lattice path

Eu, Liu and Yeh proved this proposition.Eu, S. P. Liu, S. C. and Yeh, Y. N. Taylor expansions for Catalan and Motzkin numbers, Adv. Appl. Math. 29 (2002) 345-357

第 23页

0 0

,

0 0,

1

)()()(

have We

,with ngSubstituti

)(

Let

n

n

k

knn

nkn

n

n

k

knkn

y

zMyzyMyzmy,zM

mm

yzmy,zM

第 24页

Function of uniform partition type

• For any generating function f(x),the form

is called the function of uniform partition type for f(x).

1

)()(

y

zfyzyf

第 25页第 25页

Combinatorial structure

Generating function Combinatorial structure

Function of uniform partition

Catalan path C(z)

C(z)=1+z[C(z)]2

n-Dyck path:

Motzkin path M(z)

M(z)=1+zM(z)+z2[M(z)]2

lifted n-Motizkin path

??? f(z)

f(z)=1+yzF(y,f(z))

???

1

)()(),(

y

zCyzyCzyC

1

)()(),(

y

zMyzyMzyM

1

)()(),(

y

zfyzyfzyCF

Function of uniform partition type

第 26页第 26页

.)11(1)11(

and

)},,1,,2,1)1,1{()}1,1{(

set stepFix

ija,-iij,w,w

mijriiijS

第 27页第 27页

)).(,()(1

)]([1 Then

.)(

function generating a Define .)( and

(n,0)endpoint with paths enonnegativ-S ofset thebe )(Let

.)11(1)11(

)},,1,,2,1)1,1{()}1,1{(Let

:Lemma

1 1

0

0

zfzFzzf

zfzaf(z)

zPwf(z)

LSLL

SLL

a,-iij,w,w

mijriiijS

ijr

i

m

jij

n LP

n

nn

nn

ij

n

第 28页第 28页

• A decomposition of a S-nonnegative path.

P=(1,1)P1(1,1)P2(1,1)P3…Pi-1(j-i+1,-i+1)Pi

w(1,1)=1, w(j-i+1,-i+1)=ai,j

(j-i+1,-i+1)

第 29页

Function of uniform partition type

r

i

m

ij

i

k

kikkjjji

r

i

m

ij

ij

k

ikjji

r

i

m

ij

ijji

nn

yzfzfyza

zfyza

zyCF

y

zfyzyfzyCF

zfzazf

zfzf

1 1

1

0

1,

1 1 0,

1 1,

0n

)()(1

)(1

),(

Then .1

)()(),(Let

.)(1)(

equation algebaric following thesatisfies )( Suppose

第 30页第 30页

r

i

m

ij

i

k

kkikjjij

r

i

m

ij

iij

k

kjij

zfyzfyzazyH

zfyzazyG

1 1

1

0

1

1 1 0

)]([)]([1

1),(

)]([1),(Let

r

i

m

ij

i

k

kikkjjij

r

i

m

ij

ij

k

ikjij

yzfzfyza

zfyza

zyCF

1 1

1

0

1

1 1 0

)()(1

)(1

),(

Combinatorial interpretations for H(y,z) and G(y,z)?

第 31页第 31页

Combinatorial interpretation for H(y,z)

• Recall that an S-path is a lattice path P=(x1,y1)(x2,y2)…(xk,yk) with (xi,yi) S.∈

• Define the nonpositive length of P, denoted by nl(P), as the sum of x-coordinate of steps touching or going below x-axis.

第 32页第 32页

Combinatorial interpretation for H(y,z)• Define the nonpositive length of P, denoted

by nl(P), as the sum of x-coordinate of steps touching or going below x-axis,

nl(P)=1+1+1+2+1+1=7

第 33页第 33页

.)(,

Then .)( and

(n,0)endpoint with paths-S ofset thebe )(Let

.)11(1)11(

)},,1,,2,1)1,1{()}1,1{(Let

:Lemma

0

)(

0

n HP

nPnl

nn

nn

ij

n

zyPwz)H(y

HSHH

SHH

a,-iij,w,w

mijriiijS

Combinatorial interpretation for H(y,z)

第 34页第 34页

f(z)f(z)

f(z)

f(yz)

f(yz)f(yz)

H(y,z)

kkikjjij zfyzfyza )]([)]([ 1

r

i

m

ij

i

k

kkikjjij zfyzfyzazyHzyH

1 1

1

0

1 )]([)]([),(1),(

• A decomposition of a S-path.

第 35页

• A rooted S-nonnegative path is a pair [P;k] consisting of an S-nonnegative path P=(x1,y1)(x2,y2)…(xn,yn) with xn≥1 and a nonnegative integer k with 0≤ k≤ xn-1.

• For example, P=(1,1)(1,1)(1,-2)(1,0)(1,1)(1,1)(1,1)(1,-1)(2,-1).[P;0],[P;1] and [P;2] are rooted S-nonnegative path.

Combinatorial interpretation for G(y,z)

第 36页第 36页

.)(,

Then .)( and (n,0)endpoint with

paths enonnegativ-S rooted ofset thebe )(Let

.)11(1)11(

)},,1,,2,1)1,1{()}1,1{(Let

:Lemma

0 ];[

0

n GkP

nk

nn

nn

ij

n

zyPwz)G(y

GSGG

SGG

a,-iij,w,w

mijriiijS

Combinatorial interpretation for G(y,z)

第 37页第 37页

ikjij zfyza )]([

f(z)

f(z)f(z)

f(z)

k

• A decomposition of a rooted S-nonnegative path.

r

i

m

ij

iij

k

kjij zfyzazyG

1 1 0

)]([1),(

第 38页

• A lifted S-path is an S-path in the plane starting at (0,0) and ending at a point in the line y=1.

• A rooted lifted S-path is a pair [P;k] consisting of a lifted S-path P=(x1,y1)(x2,y2)…(xn,yn) with xn≥1 and a nonnegative integer k with 0≤ k≤ xn-1.

Combinatorial interpretation for CF(y,z)

第 39页

Combinatorial interpretation for CF(y,z)

.)(,F

Then .)( and 1,1)(nendpoint with

paths-S lifted rooted ofset thebe )(Let

.)11(1)11(

)},,1,,2,1)1,1{()}1,1{(Let

:Theorem

0 ];[

)(

0

n TkP

nkPnl

nn

nn

ij

n

zyPwz)(yC

TSTT

STT

a,-iij,w,w

mijriiijS

第 40页第 40页

The last step (1,1) from y=0 to y=1

(n+1-k,0)

A decomposition for an rooted lifted S-path

G(y,z)

H(y,z)

.)(

),(),(,F

0 ];[

)(

n TkP

nkPnl

n

zyPw

zyGzyHz)(yC

(n+1,1)

(0,0)

第 41页

More general cases

• Let λ be a function from Z≥0 ×Z to Z≥0.

• For any lattice path P=(x1,y1)(x2,y2)…(xk,yk) define the λ-length of P, denoted by λ(P), as

k

iii yxP

1

),()(

第 42页

• A λ-rooted lifted S-path is a pair [P;k] consisting of a lifted S-path P=(x1,y1)(x2,y2)…(xn,yn)

with λ(xn,yn)≥1 and a nonnegative integer k with 0≤

k≤ λ(xn,yn) -1.

第 43页

• For any S-path P=(x1,y1)(x2,y2)…(xn,yn), define the λ-nonpositive length of P, denoted by nlλ(P), as the sum of λ-length of steps touching or going below x-axis.

• For example, let λ(1,1)=0, λ(x,y)=x for any (x,y)≠ ( 1,1)

nlλ (P)=1+1+0+2+1+0=5

• For any rooted lifted S-path [P;k], define the rootedλ-nonpositive length of P as nlλ(P)+k.

第 44页n

,

];[

1)()(

1 10

j1

and 0any for on t independen

is Then .length enonpositiv rooted- and 1length -

with paths-S lifted rooted- of weightsof sum thebe Let (3)

.)(1

)()(,F

Then .paths-S lifted rooted ofset thebe (2)Let

)(1)(Then .)()(

function generating a Define axis.-on point aat ending

nlength - with paths enonnegativ-S ofset thebe Let (1)

.1)1(1,,1)(;)1()1(

)},,1,,2,1)1,{()}1,{(Let :Theorem

ffnkk

fkn

f

zyPwy

zfyzyfz)(yC

T

zfzazfzPwzf

x

L

j-i,-iαa,-iw,w

mijriiS

n,k

kn

n,k

TkP

PkPnl

r

i

m

ij

ijij

n

n LP

n

jiji-

j

n

第 45页

第 46页

第 47页

第 48页

第 49页

第 50页

第 51页

第 52页

第 53页

第 54页

第 55页

第 56页

第 57页

第 58页

第 59页

第 60页

第 61页

第 62页

第 63页第 63页

Thank you for your attention!

top related