buck converter modeling, control, and compensator...

Post on 18-Mar-2020

8 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Buck Converter Modeling, Control,

and Compensator Design

2

OUTLINE

• Three terminal PWM switch modeling

• Open loop transfer function

• Voltage Mode Control and Peak Current Mode Control

• Closed loop transfer functions

• Closed loop gain

• Compensator Design

• Pspice and Mathcad Simulation

• Experimental verification

3

Voltage Mode Switching Regulator

Feedback Control To Achieve

• Accuracy: Steady-State Error

• Speed: Transient Response

• Stability Gain and Phase Margin

VIN +

PWM

Comparator

-

+Fm

Converter

Power Stage

-

+A(S)

VREF

R

VO

dLoop

Compensator

K

4

Average Small Signal PWM Switch Modeling

5

Average Model

Co

Q1

D

L

Vin +

RL

Rc Ro

Nonlinear Characteristics for Switching Elements Q1 and Q2

Modeling Method:

1. Space Average Model-----Middlebrook (CIT)

2. Three Terminal Switch --- Vorperian (VPEC)

3. DC Transformer Based

?

6

Co

Q1

D

L

Vin + Ro?+

L

D

CoR

VIN

Q1

P

A CP

A

CBuck

Boost

Co

Q1

L

D

Vin + Ro

?

PA C

Buck-Boost

• A: Active Switch Node

• C: Common Node

• P: Passive switch (Diode)

PWM Switch in Basic DC-DC Converters

?

7

Q1

D

P

CA

D

P

CA

D’

DC Model

d

P

CA

d’

AC Model

Where D’ = 1 - D

Non-Linear PWM Switch

8

Average Model for Buck Regulator (Cont.)

Co

Q1 L

Vin+

RL

Rc

iL

+

-

vPH

iin

dvv

dii

inPH

Lin

=

=

iin

iL

VinvQ2

Ip

Iv

d

Transformer Characteristics

DC Average ModelL

vpin i d d

2

IIi =•

+=

?

A C

P

iL

+

-

vPH

iin 1:dA C

PModel valid only at CCM

9

What is Small Signal Model?

PHPHPH

LLL

ininin

ininin

vVv

iIi

dDd

iIi

vVv

+=

+=

+=

+=

+=

Co

Q1 L

Vin+

RL

Rc

iL

+

-

vPH

iin

?

A C

P

• Adding a small signal near the operating point

10

Small Signal Average Model of three Terminal PWM Switch

dvv

dii

inPH

Lin

=

=

Linearization

PHPHPH

LLL

ininin

ininin

vVv

iIi

dDd

iIi

vVv

+=

+=

+=

+=

+=

ininPH

LLin

v DdVv

i DdIi

+=

+=

Small Signal Average Model

iL

+

-

vPH

iin 1:dA C

P

Q1

?P

A C

dVindIL

ini

1:D

+A C

P

11

dVindIL1:D

+A C

P

+

L

Co

R

dVindIL1:D

+A C

P

+

L

Co

RVIN

A C

P

Small Signal Average Model Buck Converter

inV

12

DV

VG

1

1D

v

vG

0Sin

ov

2oω

2S

oωQS

zωS

0din

ov

==

++

+==

=

=

CL

LzL

czo

RQ ,

L

Rω ,

CR

1ω ,

LC

1ω ≈≈ ==

Open Loop Line to Output Transfer Function (Buck)

dVindIL1:D

+A C

P

+

L

C

RRC

RL ov

inV

1:D

A C

P

+

L

C

RRC

RL ov

inV

13

CL

LzL

czo

RQ ,

L

Rω ,

CR

1ω ,

LC

1ω ≈≈ ==

DGv

ESR Zero

Q factor

-40db/dec

-20db/dec

Open Loop Line to Output Transfer Function (buck)

DV

VG

1

1D

v

vG

0Sin

ov

2oω

2S

oωQS

zωS

0din

ov

==

++

+==

=

=

14

2oω

2S

oωQS

zωS

IN0inv

od

1

1V

d

vG

++

+==

=

CL

LzL

czo

RQ ,

L

Rω ,

CR

1ω ,

LC

1ω ≈≈ ==

Open Loop Control to Output Transfer Function (Buck)

dVindIL1:D

+A C

P

+

L

C

RRC

RL ov

inV

dVin+

C

P

L

C

RRC

RL ov

IN

0S2oω

2S

oωQS

zωS

INo

d V

1

1V

D

V)DC(G =

++

+==

=

15

2oω

2S

oωQS

zωS

IN0inv

od

1

1V

d

vG

++

+==

=

CL

LzL

czo

RQ ,

L

Rω ,

CR

1ω ,

LC

1ω ≈≈ ==

VINGd

ESR Zero

Q factor

-40db/dec

-20db/dec

Control to Output Transfer Function (buck)

16

( )

( ) R//R sZ

R//R0SZ

1

)1()1(R//R

i

vZ

cp

Lp

2oω

2S

oωQS

zLω

S

zωS

Lo

op

==

==

++

+•+•==

dVindIL1:D

+A C

P

+

L

C

RRC

RL ov

inV

0invdo

op

i

vZ

==

=

L

C

RRC

RL ov

ZO

Open Loop Output Impedance

17

( )

( ) R//R sZ

R//R0SZ

1

)1()1(R//R

i

vZ

cp

Lp

2oω

2S

oωQS

zLω

S

zωS

Lo

op

==

==

++

+•+•==

CL

LzL

czo

RQ ,

L

Rω ,

CR

1ω ,

LC

1ω ≈≈ ==

Zp

ESR Zero

Q factor

20db/dec

-20db/decRL //R

Rc //R

ωZL

ωZ

L

C

RRC

RL ov

ZO

Open Loop Output Impedance

18

Single Close Loop Controlled Switching Regulator

19

Small Signal Close Loop Controlled Switching Regulator

PWM

Comparator

Fm

Converter

Power Stage

Compensator

... ,d

v ,

i

v ,

v

v o

o

o

in

inv

ov

oi

d -A(S)

GV

ZP

inv

Xov

-A(S)

Fm

Gd

T

d

oi

Small Signal Block Diagram

Power Stage

20

0d and 0i @v

vG

lity)Susceptibi audio loop (Open

Gain Voltage Loop Open

oin

ov ===

0v and 0d @ i

vZ

Impedance Output Loop Open

o

op ===

Open-loop Transfer Function

GV

ZP

inv

Xov

-A(S)

Fm

GdT

d

oi

Cv

21

0iv @ d

vG oin

od ===

Open-loop Transfer Function (Cont.)

GV

ZP

inv

Xov

-A(S)

Fm

GdT

d

oi

Cv

o

c

v

vA(s) =

Control to Output Transfer Function

Loop Compensator Gain

PWM Comparator Gain

cv

dFm =

22

vcomp

vramp

DTs

VP

Small Signal PWM Comparator Gain Fm

PWM Comparator

Fm

cv+

-

dVc

vc

cv

sTd

Pccm V

1

v

d

dv

ddF ===

23

Closed Loop Audio-Susceptibility (Line Trans. Response)

T1vG

AmFdG1vG

invov

+=

+=

A dG mFT =Loop Gain:

om

dinvo

v AFd

dGvGv

-=

+=

• High loop gain T will improve the line transient response

Audio-Susceptibility Physical meaning: Line transient response

in

o

v

v Audio Susceptibility GV

ZP

inv

Xov

-A(S)

Fm

GdT

d

oi

Cv

0io =

24

T1

pZ

AmFdG1

pZ

oi

ov

+=

+=

GVinv

Xov

-A

Fm

GdT

d

ZPoi

omdopo v A F Gi Zv -=

Closed Loop Output Impedance (Load Transient Response)

• The smaller the output impedance, the faster the transient response

• Higher loop gain is desired

Output Impedance Physical meaning: Load step transient response

o

o

i

v

0v in =Closed Loop Output Impedance

25

Loop Gain Analysis

Loop Gain Provides:

• System performance analysis: Transient response

• Stability analysis:

• Absolute stability

• Degree of stability

• Design insight

• Measurement verification

26

Function of Loop Gain T: Closed-Loop Audio Susceptibility

T1

G

v

vG

v

in

oCL +

==

1+T

GV

GCL

T

ESR Zero

of

fC (bandwidth)

• The smaller GCL, the faster line transient response

• Require higher bandwidth fc

GVinv

Xov

-A

Fm

GdT

d

ZPoi

2o

2S

oQS

z

S

in

ov

1

1D

v

vG

ωω

ω

++

+==

27

T1

Z

i

vZ

p

o

oCL +

==

• ZCL used for load transient analysis

• The smaller ZCL, the faster load transient response

• The minimum high frequency Zo is ESR

1+T

ZP

ZCL

TESR Zero

of

fC (bandwidth)

ESR

Function of Loop Gain T: Closed-Loop Output Impedance

GVinv

Xov

-A

Fm

GdT

d

ZPoi2

o

2S

oQS

zL

S

z

S

Lo

op

1

)1()1(R//R

i

vZ

ωω

ωω

++

+•+•==

L

R

LzL =ω

28

Co

Q1

Q2

L

+

RL

RcRo

ZO

1+T

ZP

ZCL

TESR Zero

of

fC (bandwidth)

ESRL

R

LzL =ω

When f • C shorts and L open

• Minimum ZO: ESR

• Smaller ESR, better load transient

• Higher T, better load transient

T1

Z

i

vZ

p

o

oCL +

==

Closed-Loop Output Impedance

29

Ideal Loop Gain Characteristics

• High DC gain (Low frequency) for small DC error

• Wide bandwidth for fast transient response

• -20dB/dec slope near cross-over frequency for higher phase margin

• High attenuation at high frequency for noise reduction

|T|

of

fC (bandwidth)

-180omΦ

Gm: Gain margin

Phase margin

0dB

∠∠∠∠T

30

Examples of Loop Gain T

T pω

-90o

-45o

0o

p

m

ω

S1

GT

+

=• Single Order System ;

ω

• Always stable

• 90o phase margin

-20dB/Dec

Phase Margin: 90o

-180o

(-1,0) Gm (S=0)

S-Plane

S=jω

Definition

( )TAnglePhase

Tlog20Magnitude

=

=

T=1/(1 + j) @ S=jωp

Magnitude = -20 log

Phase = -45 degree2

31

Examples of Loop Gain T

T oω

-180o

-90o

0o

2o

2

o

m

ω

S

S1

GT

++

=• 2nd Order System ;

ω

• Stable

• ϕϕϕϕ phase margin: may be very small

• Gain margin: infinite (theoretical)

-40dB/Dec(-1,0) Gm (S=0)

S-Plane

ϕϕϕϕ

|T|=1

S = jωo

j

QGT

m=

32

Basic Pole and Zero Characteristics

One Pole

• 45 degree at the Pole (frequency fp)

• Total of 90o phase delay after >10 fp

• -20 db/dec

One Zero

• 45o phase lead at the zero

• Total of 90o phase lead after >10 fz

• +20db/dec

5

3

10

S1

10

S1

)S(G

+

+

=

T

90o

45o

0o

ω20dB/Dec

33

DC Loop Gain

GV

inv

oV

AFm

GdT

d

ZPoi +

+VREF-

Error

0iv oin ==

)gain loop DC(T

V

GAF

VVVError DC

o

0Sdm

ooREF ===

=

-

• The higher DC loop gain, the smaller the DC steady-state error

• 40dB DC loop gain, 1% error

OUTPUT

34

Compensator Design Considerations

35

GV

inv

ov

-A(S)

Fm

GdT

d

ZPoi +

md F)S(AGT ••=

Objectives of Loop Gain Design

Objective:

• To shape the loop gain T for achieving

High DC gain at low frequency

>40 degree phase margin

> 10 dB gain margin

High bandwidth for fast transient response

36

Crossover

Frequency

0 5 10 15 200

0.5

1

1.5

21.659

1.177 104−

×

v t 15,( )

v t 30,( )

v t 45,( )

v t 60,( )

200.015 ω c t⋅

Load Transient Step Response vs Phase Margin

• The amount of ringing determines the phase margin

– 45º phase margin is sufficient

• The crossover frequency is equal to the ringing frequency

– Crossover frequency should be 1/5 or 1/10 of the converter

switching frequency ϕϕϕϕ=15°°°°

ϕϕϕϕ=30°°°°

ϕϕϕϕ=45°°°°

ϕϕϕϕ=60°°°°

37

c

2oω

2S

oωQS

zωS

INm

cmd

K

1

1VFT

;KA(s) ,AFGT

++

+=

==

CLc

zo

RQ ,

CR

1ω ,

LC

1ω ≈≈ =

Compensator Design Considerations (Voltage mode)

Buck Converter

T

ESR Zero

fC (bandwidth)

-180o

-90o

• Low DC gain, need an integrator

• Almost 0o phase margin if ωz > 3 ωo

• Stable if ESR zero ωz < 3 ωo

Compensator: Constant Gain

0o ωZ

38

ScK

2oω

2S

oωQS

zωS

INm

ScK

md

1

1VFT

;A(s) ,AFGT

++

+=

==

CLc

zo

RQ ,

CR

1ω ,

LC

1ω ≈≈ =

T

ESR Zero

ωC (bandwidth)

-180o

-90o

• Integrator: 90o delay; Double pole: 180o delay

• low bandwidth or unstable

• Need to introduce two zeros before cross-over frequency ωC

Compensator Design Considerations (cont.)

Compensator: Integrator

-270o

ωZ

-20db/dec

-60db/dec

-40db/dec

Unstable

39

GdFm

ESR Zero

of

A(S)Two Zeros x x

Two PolesIntegrator

|T|

fC

∠∠∠∠T-90o

-180o

Type III Compensator Characteristics

• Design based on OPEN LOOP GAIN

• An integrator for high DC gain

• Place two zeros around fo for

compensating phase delay due to

the integrator and double poles

• Two high frequency poles

• to cancel ESR zero

• to attenuate high frequency noise

• to ensure the gain decreasing after fc

• to ensure the phase lag minimum at fc

( )sAFGT

FGT

mdCLOSE

mdOPEN

=

=

40

R2

-+

VREF

R1

C3

R3C1 C2

vovC

ZFZI

)SC

1R//(RZ

);SC

1R( //

SC

1Z

,Z

Z

v

v)S(A

231I

12

3F

I

F

o

c

+=

+=

== -

)2pω

S1()

1pωS

1(

)2zω

S1()

1zωS

1(I

S

K)S(A

+•+

+•+

= - ( )

( )

3C1C3C1C

2R

12p2C3R

1p1

3R1R2C1

2z1C2R1

z1

3C1C1R1

I

ω ,ω

ω ,ω

,K

+

+

+

==

==

=

Type III Loop compensator Circuit

Compensator

output

• Zeros:

1. R2, C1;

2. R1+R3, C2

• Poles:

1. DC

2. R2, C3 if C1>>C3

3. R3, C2

41

)1()1(S

)1()1(K

1

1VFT

AFGT

2pωS

1pωS

2zωS

1zωS

c

2oω

2S

oωQS

zωS

INm

md

+•+•

+•+

++

+=

=

Gd(S)

GV

inv

ov

-A

Fm

GdT

d

ZPoi +

A(S): Compensator

• Type III compensator: two zeros (ωz1, ωz2) and three poles (0, ωp1, ωp2)

• Loop gain is proportional to the input voltage.

Need input voltage feed-forward function

Loop Gain Design (voltage mode)

CLc

zo

RQ ,

CR

1ω ,

LC

1ω ≈≈ =

42

Objective of Compensator Design

)1()1(S

)1()1(K

1

1VFT

AFGT

2pωS

1pωS

2zωS

1zωS

c

2oω

2S

oωQS

zωS

INm

md

+•+•

+•+

++

+=

=

• Objective is to design a compensator, Kc, ωz1, ωz2, ωp1, ωp2, to SHAPE

the loop gain T for stability and optimum performance for given power

stage parameters, ωz, ωo, Q, VIN, and PWM gain Fm.

43

A(S)Gd(S)

Tωp1

ωp2

Loop Gain Design Procedure (Case 1)

)1()1(S

)1()1(K

1

)1(VFT

2pωS

1pωS

2zωS

1zωS

c

2oω

2S

oωQS

zωS

IN

m+•+•

+•+

++

+=

ωc

FmGd

ESR Zero ωz

ωo

Integrator

-20db/dec

ωz1, ωz2

-40deb/dec

• Bandwidth fc = (1/5-1/10) fs

• ωz1, ωz2 near ωo

• ωp1 cancel ESR zero ωz

• ωp2 = 10 ωc

• Determine Kc

• Select compensator R’s and C’s

44

GdFm

ESR Zero

of

A(S)Two Zeros x x

Two PolesIntegrator

|T|

fC

∠∠∠∠T-90o

-180o

Type III Compensator Design (Case II)

• An integrator for high DC gain

• Place two zeros around fo

• Two high frequency poles to

cancel ESR zero and increase

gain attenuation at high frequency

Open loop Gain

45

GdFmType II Compensator

• One zero and two poles

• if ESR zero is close to double pole

ωz< 3 ωo

A(S) One ZeroxOne Pole

Integrator

|T|

ωC

∠∠∠∠T

-90o

-180o

ωz

Type II Compensator

1pω

S1

1zω

S1

I

S

K)S(A

+

+

•=

46

)1()1(S

)1()1(K

1

)1(VFT

2pωS

1pωS

2zωS

1zωS

c

2oω

2S

oωQS

zωS

IN

m+•+•

+•+

++

+=

Loop Gain T function of Input Voltage

fC

-90o

-180o

VIN

VIN

Very little phase margin

• T is function of VIN

• Need feed-forward function to cancel

VIN effect

47

Pcomp V

1

V

d=

Pcompcompm V

1

v

d

dv

ddF ===

vcompvramp

d

VP

Comparator Gain with Feed-Forward Function

PWM Comparator

Fm

compv+

-

d

VP = K VININ

m KV

1F =

Feed-Forward:

PWM ramp is function of the input voltage

48

Loop Gain with Feed-Forward Function

)1()1(S

)1()1(K

1

1V FT

AFGT

2p

S

1p

S2z

S

1z

Sc

2o

2S

oQS

z

S

INm

md

ωω

ωω

ωω

ω

+•+•

+•+

++

+=

=

INm KV

1F =

)1()1(S

)1()1(K

1

1V

KV

1T

2p

S

1p

S2z

S

1z

Sc

2o

2S

oQS

z

S

ININ ωω

ωω

ωω

ω

+•+•

+•+

++

+=

• Loop Gain is INDEPENDENT of input voltage.

• Fast line step transient response, Only depends on conversion speed

of Vramp= f(VIN)

49

How to Measure the Loop Gain

VOL

PWM

Comparator

-+VREF

Compensator

VIN RCo

Q1

Q2

+RESR

Gate

driver

R1

VC

s

on

T

TD = -

+

R2

A(S)

Vexcite = 10-20mV

• Network Analyzer

• AP200

• a and b: 20-50mV perturbation; c: depends on output voltage

ab

c

50

Modeling, Simulation and Test Example

TPS40200

• Voltage mode PWM controller

• Input Voltage range: 4.5V to 50V

• Input Voltage Feed Forward function

PWM ramp voltage = VIN/10

• Programmable switching frequency

• Vout: 0.7V to 90% of VIN

VIN=20V, VOUT= 5V, fs = 300kHz, L=47uH, Co=22uF/10mΩΩΩΩ

51

VO

L: 47uH, 0.25ΩΩΩΩ

PWM

Comparator

-+

VREF

0.7V

VIN20V RCo

22µµµµF

Q1

D+

RESR

5mΩΩΩΩ

Gate

driver

VC

s

on

T

TD = -

+Rx

4.99k

A(S)

R2: 23.2k C1:1.5n10

VIN

C3: 10p

R1

30.9k

C2

1n

R3

1.15k

+

Buck Converter with Voltage Mode and Type III Compensator

52

Pspice Simulation Schematic

PWM small signal average model

Type III CompensatorLoop gain test perturbation

PWM gain

53

PSPICE Simulation Results Test Results

VOUT

IOUT

Load Step Transient: 0.4A to 0.8A

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0 40 80 120 160 200 240 280 320 360 400

Time (us)

Ou

tpu

t V

olt

ag

e (

V)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Lo

ad

Cu

rre

nt

(A)

Output Voltage

Load Current

Simulation and Test Results

VOUT

IOUT

54

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

0 100 200 300 400 500 600 700 800 900 1000

Time (us)

Ou

tpu

t V

olt

ag

e (

V)

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Lo

ad

Cu

rre

nt

(A)

Output Voltage

Load Current

VOUT

IOUT

PSPICE Simulation Results Test Results

Simulation and Test Results

Load Step Transient: 0.1A to 1.5A

55

Loop Bandwidth Simulation: Mathcad and Pspice

-60

-40

-20

0

20

40

60

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+06100 1 .103

1 .104

1 .105

1 .106

50

0

5060

80−

gain Tv S fi( )( )( )

1 106

×100 f fi( )

-200

-150

-100

-50

0

1.0E+02 1.0E+03 1.0E+04 1.0E+05 1.0E+0610 100 1 .10

31 .10

41 .10

51 .10

6200

150

100

50

00

200−

phase Tv S fi( )( )( )

180−

1 106

×10 f fi( )

-180

Mathcad Pspice

Bandwidth

35kHzBandwidth

45kHz

Phase Margin

65 degree

Phase Margin

70 degree

56

Thanks!

Current Mode Loop Compensator Design will be next time

top related