biosensors christopher byrd enpm808b university of maryland, college park december 4, 2007

Post on 21-Dec-2015

222 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Biosensors

Christopher Byrd

ENPM808B University of Maryland, College Park

December 4, 2007

Outline

Introduction

4 Specific Types of Biosensors Electrochemical (DNA)

Carbon nanotube

BioFET

Whole Cell Basic functionality

Benefits/Challenges

Summary

References

Introduction

Biosensor:

Incorporation of a biomolecule in order to detect something

Species to be detected (analyte)

FilterRecognition Layer

Transducer Electronics SignalRecognition Layer

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Introduction

Biosensors ~ $3B 90% → Glucose testing 8% - 10% increase in industry per year

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Electrochemical DNA Sensors

Harnesses specificity of DNA Simple assembly Customizable Vast uses for small cost

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

DNA Structure

DNA structures---double helix

4 complementary bases:

Adenine (A), Guanine (G),

Thymine (T), and Cytosine (C)

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

DNA Specificity

Hydrogen bonding between base pairs

Stacking interaction between bases along axis of double-helix

Animation

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Principles of DNA biosensors Nucleic acid hybridization

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: http://cswww.essex.ac.uk

ssDNA (Probe)

(Target Sequence)

(Hybridization)

(Stable dsDNA)

E-DNA Sensor Structure

“Stem-loop”

s

Gold electrode

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

E-DNA Sensor Structure

“Stem-loop”

Target

s

Gold electrode

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

E-DNA Sensor Structure

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Ricci et al., Langmuir, 2007, 23, 6827-6834

(Stem-loop)

(Open, extended)

Carbon Nanotube Biosensor

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Image: www.cnano-rhone-alpes.org

Carbon Nanotube Biosensor

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

One atom thick One nanometer diameter Ability to be functionalized

Electrical conductivity as high as copper, thermal conductivity as high as diamond

CNT Biosensor Structure

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Succinimidyl ester

Source: Chen et al., 2001

CNT Uncoated vs. Coated

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Chen et al., 2001

CNT Biosensor Signal Detection

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Besteman et al., 2003

O2

H2O2

Glucose

Gluconic Acid

e-

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Besteman et al., 2003

e-

e- e-e-

e-

Effectively increases electrical current

CNT Biosensor Signal Detection

CNT Biosensor Results

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Besteman et al., 2003

0 mM

20 mM

60 mM

160 mM

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

BioFET Draws upon versatility of common electronic

component (Field-Effect Transistor) Well understood expectations/results

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

FET

Drain Gate

Source

-

-

-

-

-

-

Insulator

+

+ + + +

(Electron Channel)(Not conductive enough)

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

FET

Drain Gate

Source

-

Insulator

+

+ + + +

Threshold Voltage

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

FET

Drain Gate

Source

-

-

-

-

-

-

- -

Insulator

+ + + +

+

+ + + +

- -- -- -

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Im et al., 2007

BioFET

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Im et al., 2007

BioFET

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Im et al., 2007

BioFET Results

Gate (before)

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Im et al., 2007

BioFET ResultsGate

(after etch, w/biotin)

Gate (w/ complete Biomolecule)

d

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: http://www.whatsnextnetwork.com/technology/media/cell_adhesion.jpg

Whole Cell Sensors

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Whole Cell Sensors Harness normal genetic processes May detect dozens of pathogens Modifiable/customizable Reports bioavailability

Temperature/pH sensitive Short shelf-life

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Daunert et al., 2000

Whole Cell Sensors

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Tonomura et al., 2006

Action-Potential Biosensor

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Tonomura et al., 2006

Action-Potential Biosensor

(Side view)

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Tonomura et al., 2006

Action-Potential Biosensor

Suction

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Tonomura et al., 2006

Action-Potential Biosensor

Suction

Carbon N-T E-DNA BioFET Whole Cell SummaryIntroduction

Source: Tonomura et al., 2006

Action-Potential Biosensor

Carbon N-T E-DNA BioFETIntroduction

Summary Use of biomolecules in sensors offers:

Extreme sensitivity Flexibility of use Wide array of detection Universal application

Whole Cell Summary

Summary But still maintains challenges of:

pH/Temperature sensitivity Degradation Repeatable use

Regardless of challenges: Biosensors will permeate future

society

Carbon N-T E-DNA BioFETIntroduction Whole Cell Summary

References K McKimmie. “What’s a Biosensor, Anyway?”, Indiana Business Magazine, 2005, 49, 1:18-23. N Zimmerman. “Chemical Sensors Market Still Dominating Sensors”, Materials Management in Health Care, 2006, 2, 54. K Odenthal, J Gooding. “An introduction to electrochemical DNA biosensors”, Analyst, 2007, 132, 603–610. S V Lemeshko, T Powdrill, Y Belosludtsev, M Hogan, “Oligonucleotides form a duplex with non-helical properties on a positively charged surface”, Nucleic

Acids Res., 2001, 29, 3051–3058. F Ricci, R Lai, A Heeger, K Plaxco, J Sumner. “Effect of Molecular Crowding on the Response of an Electrochemical DNA Sensor”, Langmuir, 2007, 23,

6827-6834. M Heller. “DNA Microarray Technology”, Annual Review of Biomedical Engineering, 2002, 4, 129-153. E Boon, D Ceres, T Drummond, M Hill, J Barton, “Mutation Detection by DNA electrocatalysis at DNA-modified electrodes”, Nat. Biotechnol. 2000, 18, 1096-

1100. S Timur, U Anik, D Odaci, L Gorton, “Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes”,

Electrochemistry Communications, 2007, 9, 1810-1815. K Besteman, J Lee, F Wiertz, H Heering, C Dekker. “Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors”, Nano Letters, 2003, 3, 6: 727-730. R Chen, Y Zhang, D Wang, H Dai. “Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization”, J. Am. Chem.

Soc., 2001, 123, 16: 3838 -3839. K Balasubramanian, M Burghard. “Biosensors based on carbon nanotubes”, Anal. Bioanal. Chem., 2005, 385, 452-468. Hayes & Horowitz, Student Manual for the Art of Electronics, Cambridge Univ. Press, 1989. I Hyungsoon, H Xing-Jiu, G Bonsang, C Yang-Kyu. “A dielectric-modulated field-effect transistor for biosensing”, Nature Nanotechnology, 2007, 2, 430 –

434. D Therriault. “Filling the Gap”, Nature Nanotechnology, 2007, 2, 393 - 394. S Daunert, GBarrett, J Feliciano, R Shetty, S Shrestha, W Smith-Spencer. “Genetically Engineered Whole-Cell Sensing Systems: Coupling Biological

Recognition with Reporter Genes”, Chem. Rev. 2000, 100, 2705-2738. T Petänen, M Romantschuk. “Measurement of bioavailability of mercury and arsenite using bacterial biosensors”, Chemosphere, 2003, 50, 409-413. F Roberto, J Barnes, D Bruhn. “Evaluation of a GFP Reporter Gene Construct for Environmental Arsenic Detection.”, Talanta. 2002, 58, 1:181-188. W Tonomura, R Kitazawa, T Ueyama, H Okamura, S Konishi. “Electrophysiological biosensor with Micro Channel Array for Sensing Signals from Single

Cells”, IEEE Sensors, 2006, 140-143. R Leois, J Rae. “Low-noise patch-clamp techniques”, Meth. Enzym. 1998, 293: 218-266. [1] A Vikas, C S Pundir. “Biosensors: Future Analytical Tools”, Sensors and Transducers, 2007, 2, 935-944.

Questions?

Carbon N-T E-DNA BioFETIntroduction Whole Cell Summary

top related