an analytic model for full spectral skydome radiance

Post on 23-Feb-2016

34 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

DESCRIPTION

An Analytic Model for Full Spectral Skydome Radiance. Alexander Wilkie Charles University. Lukáš Hošek Charles University. Motivation: Skydome models. outdoor scenes prediction of material appearance architecture, outdoor scenes alternative: skyboxes. The Preetham Model. - PowerPoint PPT Presentation

TRANSCRIPT

An Analytic Model for Full Spectral Skydome Radiance

Lukáš HošekCharles University

Alexander WilkieCharles University

Motivation: Skydome models•outdoor scenes•prediction of material appearance •architecture, outdoor scenes

•alternative: skyboxes

The Preetham Model• De facto standard analytic skydome model• Simple closed form formulas• Outputs tristimulus data, convertible to spectral• Perez formula, fitted to the outputs of Nishita model• Fitting results publicly available

B/cos θ D 2θ, γ 1+Ae 1+ Ce γ+ EcF( ) os= γ

solar anglezenith angle

luma distribution parameters

The Preetham Model

A,B,C,D,Ez

A,B,C,D,E s

F (θ,γ)x = x ·

F (0,γ )

output zenith angles

A 0.1787 -1.4630B -0.3554 0.4275

T=C -0.0227 5.3251

1D 0.1206 -2.5771E -0.0670 0.3703

2z

3S2S

S

0.00166 -0.00375 0.00209 0x = T T 1 -0.02903 0.06377 -0.03202 0.00394

0.11693 -0.21196 0.06052 0.25886

θθθ1

zenith luminance luma distribution parameters

for each sample

turbidity

solar-zenith angle

once per scene

inputs

Issues With the Preetham Model

•Simple functions for calculating zenith luminance and luma distribution parameters•Only a small subset of possible atmospheric

conditions can be captured•Lack of localised aureole at higher turbidities•Spectral data are obtained by conversion from

trisitmulus data

Issues with the Preetham Model

•spectral (including UV)•larger range of turbidities•eliminate artifacts•ground albedo (came later & almost for free)

Goals for the New Model

•Brute force Monte Carlo path tracer that incorporates•Mie scattering•Rayleigh scattering•Albedo & colour of Earth surface

•Delta scattering•Approaches the simulation as a transport problem, the same way physicists simulate e.g. gamma rays passing through containment shells of nuclear reactors

Obtaining Reference Data

Obtaining Reference Data

Result: Raw Data

Result: Comparison

Modified formulas for a better fit

2

32 2

1+cosαχ(g,α) =(1+g ·cos- α)2g

Eγ 2θ+0.B 1

c 201osF(θ, γ) = 1+Ae · C+De γ +G χ(H,γ) +I cos+ F cos θ

B/cos θ D 2θ, γ 1+ Ae 1+Ce γ+ EcF( ) os= γ

fudge factor to preventdivergence to infinityat zenith

anisotropic termfor luminance peaksaround sun

supresses luminance peakexending too far up

original Perez formula

modified formula

Model flowchart

output

mean radiance radiance distribution parameters

for each sample

solar elevationalbedo

turbidity

once per scene

inputs

dM

AB

= B (η,α, T)

I

M

rz Mx = B (η,α, T)

z A, B, ,Ix = x ·F )(θ,γ

How the Fitting was Done•Levenberg-Marquardt nonlinear optimization•Yields a mean radiance and radiance distribution

array•These are then used as control points for Bezier interpolation

•Albedo 0-1Turbidity 1-10Solar elevation 0-90°320nm – 720nm bands, 40nm increment

Results

Sky Colour Patterns (sunset)

UV & Fluorescence

Ground Albedoblack white

water blue forest green

Conclusion

•Reference implementation and data available for download

•Version 1.1 out!•http://cgg.mff.cuni.cz/projects/SkylightModelling/

top related