alternatives to the use of antibiotic growth promotores in ... · alternatives to the use of...

Post on 22-Feb-2020

3 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

Alternatives to Alternatives to thethe UseUse of of AntibioticAntibioticGrowthGrowth Promotores in RuminantsPromotores in Ruminants

S. CalsamigliaS. CalsamigliaDept. CiDept. Cièència Animal i dels Alimentsncia Animal i dels AlimentsUniversitat Autònoma de BarcelonaUniversitat Autònoma de Barcelona

sergio calsamigliasergio.calsamiglia@@uab esuab.es

FIBER STARCH

1 GLUCOSE

2 PYRUVATE

2 LACTATE

2 PROPIONATE

2 ACETATE

1 BUTYRATE

2 METHANE

+ 2 XH2

+ 2 XH2

- 4 XH2

- 2 XH2

- 2 XH2

- 2 XH2

N N MetabolismMetabolism in in thethe RumenRumen

CP

CP-Deg

CP-NoDeg

CP-Bac

NH3

AA

CP-InDig

UREA

Used Protein(15-30%)

Rumen

Liver

E

Req

MonensinMonensin⇓⇓ GramGram ++⇑⇑ GramGram --

⇓⇓ CatabolismCatabolism PepPep & AA& AA

⇓⇓ NHNH33

⇑⇑ PropionatePropionate⇓⇓ AcetateAcetate⇓⇓ ButyrateButyrate

⇓ CH4

Ban Ban ofof antibioticsantibiotics 2006 Regulation 1831/2003 ⇒⇒⇒⇒ searchsearch ofof alternativesalternatives

Objectives

Enhance Microbial Activities

Inhibit Microbial Activities

Fermentation and inefficiencies

Modulation

•Yeast/Fungi

0

1

2

3

4

5

6

Lact

ate

Util

izat

ion,

m

mol

/mg/

min

0 x1 x2.5 x5 x10Dose

Live SC SC Filtrate

Lactate Utilization by S. ruminantiumin Live vs Dead S. cerevesiae

Nisbet & Martin (1991)

0

1

2

3

4

5

6

7

Bac

teri

a C

ount

s (1

08 )

CTRL (102) YC-1 (103) YC-2 (108) YC-3 (146) YC-4 (189)

Strain (O2, nm/min/ml)

Total Cellulolytic

YC Strain, Oxygen Consumptionand Microbial Counts

Newbold et al. (1996)* (P<0,05)

* *

**

Live Yeast• Summary of 25 studies

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

PV

IMS

Pro

d G P L

MS

FND PB

CL

HCL

Tota

l

Celu

lo

Pro

teo

Pro

tz pH

Tota

l

Ace Pro

A:P Bu

Ram

if.

Lact

ato

NH3

Variación resp

ect

o a

l gru

po c

ontrol (%

)

9 18 8 8 8 3 10 14 5 1 1 0 1 0 4 17 14 16 15 10 15 7 6 14

Milk Digestibility

Microbiology

N=

FermentationProfile

-60

-50

-40

-30

-20

-10

0

10

20

30

40

50

60

PV

IMS

Pro

d G P L

MS

FND PB

CL

HCL

Tota

l

Celu

lo

Pro

teo

Pro

tz pH

Tota

l

Ace Pro

A:P Bu

Ram

if.

Lact

ato

NH3

Variaci

ón r

esp

ect

o a

l gru

po c

ontr

ol (%

)

Fermentationprofile

Microbiology

DigestibilityMilk

N= 14 17 11 11 11 8 7 6 6 0 2 2 3 1 3 9 8 9 9 8 9 8 1 9

Yeast Culture• Summary of 21 studies

Yeast/Fungi

Elimination of Oxygen

Estimulation fibrolytic bacteria

Estimulation oflactic acid use

Increase in fiber digestion

Increase in DM intakeand nutrient supply

Increase in production

Nutrients

EffectsEffects ofof S. S. cerevisaecerevisae andand A. A. oryzaeoryzae ononPerformance Performance ((YoonYoon & Stern, 1995)& Stern, 1995)

S. cerevisae: Summary 12 studies:– Average increase in fat corrected milk (4%): 0.58 L– Average increase in DM intake: 0.32 kg– The increase in DM intake justifies the improvement in

milk production.

A. Oryzae: Summary of 14 studies– Average increase in fat corrected milk (4%): 0.79 L– Average increase in DM intake: 0.36 kg– The increase in DM intake justifies the improvement in

milk production.

EffectsEffects ofof livelive vsvs culture culture ofof S. S. cerevisaecerevisae (Robinson & (Robinson & ErasmusErasmus, 2008), 2008)

Live: – DM Intake: +4.3%– Milk yield: 2.7%– Milk energy output: +3.4%

Culture– DM Intake: +1.8%– Milk yield: 3.6%– Milk energy output: +3.0%

Direct Fed Microbials: Energy

Fiber Starch

Glucose

AcetateMethane

Propionate

Lactate

Butyrate

SC/AO

SC/AO

Objectives

Enhance Microbial Activities

Inhibit Microbial Activities

Fermentation and inefficiencies

Modulation

•Yeast/Fungi•Plant extracts•Antibodies

Borcher et al., 1965; Oh et al., 1967

Oh et al., 1968; Nagy & Tengerdy, 1968

1960

1980

1990Ismael et al., 1990; Sivropoulou et al., 1995Sivropoulou et al., 1996; Helander et al., 1998

1970

2000

EssentialEssential OilsOils

Legal use of Monensin (1971-1975)

Ban on Antibiotic Use Anounced

Broderick & Balthrop, 1979

2000-2012: More than 65 papers and 4 reviews

16.0 †

2.5

6.4

CIN

5.55.46.8LPep N

17.0†13.0*19.2Ammonia N

4.6*4.4†1.9SPep + AA N

GARMONCTR

* P < 0.05 † P < 0.10

NitrogenNitrogen MetabolismMetabolism

Busquet et al., 2005a

NitrogenNitrogen MetabolismMetabolism

6.94.85.04.36.14.53.8LPep N

6.47.18.58.07.48.77.5Ammonia N

2.84.04.74.55.05.05.2SPep + AA N

CLOGINDILTEACADFENCTR

*

* P < 0.05 † P < 0.10 Busquet et al., 2005c

1* 2 3 4 5 6 7 8 9 10 11 12 13 14

Fluo

resc

ence

Time (seconds)

0

1

2

3

4

5

6

7

8

9

10

11

35 37 39 41 43 45 47 49 51 53 55

CTR1 P2 restrikcija HaeIII CIN1 P2 restrikcija HaeIII PCR GAR1 P2 neredcenCTR 1 (P2) HaeIII digestion CIN 1 (P2) HaeIII digestion GAR 1 (P2) undigested PCR product

CTR CIN

P. rP. rP. b

P. b

Mechanism of Action: (Prevotella)

(Ferme et al, 2004)

DietaryDietaryProteinProteinProteinProtein

PeptidesPeptidesAAAA

NHNH33

UreaUrea

MicrobialMicrobial ProteinProtein

XX EUGCIN

EO

Essential Oils: Protein

0

1.25

2.5

CTR MON MONx10 CIN

Busquet et al., 2005 (J. Dairy Sci.)

AcetateAcetate toto PropionatePropionate RatioRatio

c

a

b

abc (P<0,05)

b

Molar Molar ProportionProportion ofof ButyrateButyrate

0

5

10

15

CTR MON MONx10 CIN

mol

/100

mol

Busquet et al., 2005a (J. Dairy Sci.)

c

bb

abc (P<0,05)

b

Fibre Starch

Pyruvate

Acetate

Methane

Propionate

Lactate

Butyrate

Glucose+4 H+

+4 H+

-8 H+

-4 H+

-2 H+

-2 H+

Hipothesis: Inhibition of Methanogenesis

Monensin

EO

X

Hydroxy-Methyl-Glutaryl-CoAGAR

Hipothesis: Inhibition of methanogenesis

Acetyl-CoA

Mevalonate

Isoprenoids

X HMG-CoAreductase

ProteinIsoprenilated

MethanogenicArchaea

Hipothesis: Inhibition of methanogenesis

The methanogenic Archaea are the onlyrumen microorganisms that require theisoprenoid untis in the cell membrane.

Garlic extract and their active components may be very selective agaist this group of microbes

Essential Oils: Energy

Fiber Starch

Glucose

AcetateMethane

Propionate

Lactate

Butyrate

EO

Beef: Fermentation Profile0.073.15

0.611.050.850.160.190.04

6.05152.9

52.9*30.5*12.14.1*1,7*0.25*

6.14154.5

53.9*29.812.14.0*

1,81†

0.29

6.07155.5

53.9*31.2*10.73.8*1.7*

0.27†

6.1155.1

56.826.711.64.52.10.33

pH VFA total, mMVFA individual,%

- Acetate- Propionate- Butyrate

BC-VFA, mMC2:C3

L-lactic, mM

CIE SEMCAPANICTR

* P< 0.05; † P< 0.10 UAB

Beef: Dry Matter Intake

6,5

6,9

7,3

7,7

8,1

8,5

CTR ANI CAP CIE

Kg/

d

*†

* P< 0.05; † P< 0.10

9 %

5 %

UAB

Hypothesis

• How can we increase intake and maintain pH?

• Rumen fermentation, pH and DM intake patterns

PatternPattern of DMI and pHof DMI and pH

CAP

CTRL

(Rodriguez et al., un published)

ModifyingModifying thethe PatternPattern of DMI of DMI withwithAdditivesAdditives

CAP

CTR

(Rodriguez et al., unpublished)

Essential OilsEssential Oils

Antimicrobial activity: no search for the most antimicrobial, but for the optimal product/dose.

High diversity of substances (and effects).

Some have proven effects in vivo

Performance data limited, incosistent and urgently needed

Objectives

Enhance Microbial Activities

Inhibit Microbial Activities

Fermentation and inefficiencies

Modulation

•Yeast/Fungi•Plant extracts•Antibodies

InhibitionInhibition ofof SpecificSpecific MicrobialMicrobialGroupsGroups: : AntibodiesAntibodies

Immunization– Immunization Antibodies to the rumen

through saliva Reduction of specificmicrobial groups

Bacterial Bacterial CountsCounts afterafter ImmunizationImmunization

0123456789

S. bovis Lactobacilllus

Bac

teria

, (Lo

g10

CFU

/ml)

.

Control Immunized

Shu et al. (1999)

LactateLactate ConcentrationsConcentrations afterafterImmunizationImmunization

0

2

4

6

8

10

12

Control Immunized

Lact

ate

(nm

ol/L

)

L-Lactate D-Lactate

Shu et al. (1999)

InhibitionInhibition ofof SpecificSpecific MicrobialMicrobialGroupsGroups: : AntibodiesAntibodies

Immunization– Immunization Antibodies to the rumen

through saliva Reduction of specific microbial groups

Polyclonal antibodies– Immunization of chickens Polyclonal

antibodies Oral dose Reduction of specific microbial groups

Antibodies against S. bovis and pH:

Day 11=2.5kg concentrate/ hdDay 12=5kg concentrate/ hdDay 13=7.5kg concentrate/ hdDay 14=10kg concentrate/ hdDay 15=12.5kg concentrate/ hd

Days post PAP-Sb or CTRL feeding

(Blanch et al., 2006)

Antibodies and S. bovis and M. elsdenii

0,00

20,00

40,0060,00

80,00

100,00

120,00

140,00160,00

180,00

200,00

A1 A10 A P1 P4

ng/m

L R

F

CT

DAY: P < 0.10

0,0020,0040,0060,0080,00

100,00120,00140,00160,00180,00200,00

A1 A10 A P1 P4

ng/m

L R

F

S. bovis M. elsdeniiDAY: NS

(Blanch et al., 2006)

Effect of Effect of S.bS.b. and . and F.nF.n. Antibodies on . Antibodies on RuminalRuminal pHpH

5

5,2

5,4

5,6

5,8

6

6,2

None PAPSb FA Both

Treatment

Rum

en p

H

a

b

bb

a, b (P < 0.05). DiLorenzo et al. (2005)

Effect of Antibodies on Feedlot Effect of Antibodies on Feedlot PerformancePerformance

Initial BW, kgInitial BW, kg 265265 267 266 267267 266 267 0.720.72

Final BW, kgFinal BW, kg 539 545 544 543539 545 544 543 2.762.76

ADG, kg 1.70ADG, kg 1.70 1.74 1.74 1.741.74 1.73 0.021.73 0.02

DMI, kg/d 9.46DMI, kg/d 9.46 9.40 9.32 9.37 0.109.40 9.32 9.37 0.10

Gain/FeedGain/Feed 0.1790.179aa 0.1850.185bb 0.1860.186bb 0.1840.184abab 0.0020.002

CTR Fn CTR Fn SbSb Both SEBoth SE

a,b (P < 0.05) DiLorenzo et al. (2005)

Summary: Energy

Fiber Starch

Glucose

AcetateMethane

Propionate

Lactate

Butyrate

SC/AO

EO AB

SC/AO

The objectives of modulating ruminal fermentation should be clearly defined for each production system.

The careful selection and combination of additives with specific effects and synergies may help in optimising ruminal fermentation.

Data on benefits of these combinations is not available.

The use rumen modifiers can only be justified if animal performance and economic benefits are obtained. However, this information is very limited and urgently needed.

Conclusions

top related