4. Κανάλια ιόντων και μεταγωγή σήματος

Post on 25-Nov-2015

90 Views

Category:

Documents

4 Downloads

Preview:

Click to see full reader

DESCRIPTION

f

TRANSCRIPT

  • 1.

    2.

    3. - - - -

    4. - (ligand-gated ion channel receptors)

    Cys-loop

    Gaba : NMDA

    5. G-

    6. (cGMP, cAMP) (3)

    4o

  • 80

    1.

    , . , , .. .

    , .

    . . - , .

    -- . , , - . , , , GABA, , , , ( 4.1). . , - Ca2+ Ca2+ . Ca2+ .

    4.1 . Kraus, Biochemistry of Signal Transduction, 2000.

  • 81

    ( 4.2). - (ligand gated ion channels), G- -. , -.

    - . -. : - Na+/K+ - Cl-. , .

    4.2 . ,

    . Ca2+ . , , . .

    (), , G (), . G , cAMP. cAMP cAMP-, . Eric Kandel, , 2000.

  • 82

    2. : -

    Na+ Cl-

    , K+ , . , , . , , :

    1. Na+ K+ . - Na+/K+.

    2. K+ K+.

    , . , 30mV 50 mV . , : Na+, , , , , K+ Cl- , . , , . : - Na+ , (msec) , ( +30mV). , K+, K+, , . msec, ( 4.3).

    , - Ca2+ ( 4.4).

    140 mM K+ 4 mM K+ 12 mM Na+ 150 mM Na+ 4 mM Cl- 120 mM Cl- 148 mM A- ( ) 34 mM A-

  • 83

    4.3 . 1. . 2. a+

    . 3. . 4. + . 5. .

    4.4 . , .

    1.

    2.

    3. 4.

    5.

  • 84

    3. -

    . :

    - , .

    -, , .

    (effectors) . , Gai , G- (GPCRs).

    , , . NMDA .

    , , , .

    -

    - . , , a+, + Ca2+. : , 0,5 2 msec, a+, + Ca2+. msec. , 2 msec . . , , . , . : , . . . .

    I: a+, + Ca2+ . , a+ 12 .

  • 85

    Ca2+ Ca2+ 1000 .

    -

    - 140 , (review Yo et al, 2005).

    - a+ Eliktrophorus electricus, Ca2+ + shaker Drosophila. a+ Ca2+ , + .

    - Na+ Ca2+ -, 1-4 . - 4 (-IV).

    4.5 . - - Na+ ( Ca2+). - Na+ Ca2+ 4 (-IV). Yu et al, Overview of molecular relationships in the voltage-gated ion channel superfamily, Pharmacological Reviews, 2005, 57, 387-395. . - - (auxiliary subunit) Na+.

    .

    .

  • 86

    - + -, (-IV) - Na+ Ca2+.

    4.6 - + . -

    + 4 -, I-IV Na+ Ca2+. - 6 (S1-S6),

    -. S4 , SS1 SS2 . .

    . 4.7 - -. 6 (S1-S6), -. S4 , SS1 SS2 .

    , . , , , / . (gating current). , .

  • 87

    S4 . S4 . 4. 8 S4. S4 + . S4. (R1, R2, R3, R4, K5, R6).

    . . . S4 , , . S4 - - . .

    4.9

    ( S4), , .

  • 88

    - (-IV). , , , , . a+ , , . SS1 SS2 ( 4.7). SS1 SS2, . , , SS1 SS2 . , S6 .

    -

    , . , msec sec, . a+, , , . a+: Na+

    - ,

    - . - 200 . , , .

    , .

    Ion passage and ion selectivity

    4.10 Na+,

    .

  • 89

    . .

    -

    - - , , (. ) , . , .

    Na+ (1 4). , - , C- . , . Cys .

    Ca2+ 4 (2, , , ). 2 , ( 2 ) . - . 4 , , .

    + -, - . .

    4.11 - . Yu et al,

    Overview of molecular relationships in the voltage-gated ion channel superfamily, Pharmacological Reviews, 2005, 57, 387-395.

  • 90

    4.12 - Ca2+. 1 2, , .

    4. - (Ligand-gated ion channel receptors)

    - - .

    3 :

    (2), , , - C- . 7 2, . 22/3, 21/5, 22/6, 24/6.

    cys-loop , -, 5 (2) . 4 , C- - . , / / . , . 3 4 , . Cys-loop ( nAChR, 5-3, C-Zinc activated ion channel Zn2+) (- GABAA, GABAC ).

    , 4 . - , , P loop, . C- . NMDA ( NR1 R2A, NR2B, NR2C, NR2D), AMPA .

  • 91

    4.13 (A) :

    (2), (GluR) Cys-loop (nAChR, 5HT3, ZAC, GABAA gly). (B) 4 /, . . Hogg RC., Buisson B., Bertrand D., Allosteric modulation of ligand-gated channels, Biochemical Pharmacology, 2005, 70, 1267-1276.

    - , , : a+ Ca2+ , 5-3 , Cl- GABAA, GABAC . (depolarization) -. , 5-3 ( NMDA, AMPA ), . (hyperpolarization) -. GABAA GABAC , .

  • 92

    , msec, (fast responding receptors), G, , G, .

    - Cys-loop

    O 5 (subunits) - : 4 , - , - .

    4 EN (-V). 20-30

    -, . ( 20) .

    4.14 (A) GABAA. 5 (22)

    . : 4 , NH2 COOH , 2 . Bormann J., The ABC of GABA receptors. TiPS, 2000, 21, 16-19. (B) 4 22 GABAA. 4 (1, 2, 3, 4). G.B. Smith and R.W.Olsen, TiPS 1995, 16, 162-167.

    ( ,

    ) ( 5,6 ). , . (Pro) .

    Cys-

  • 93

    , (Ser248, Ser254, Ser256, Ser262) , (non competitive blockers)* ( 4.15, 4.16). (. , , ) (), , N- -.

    4.15 . -. 4 (1-4), 20-30 - . . . 2 . H.R. Arias, Brain Res.Rev., 1997, 25, 133-191.

    () , 2 ( ) . CPZ (), (-), TID Arias H.R., Brain Res. Review, 1997, 25, 133-191.

    * , . (D). . (J-P. Changeux et al, Achetylcholine receptor: an allosteric protein, Science, 1984, 225, 1335-1344).

    A B

  • 94

    4.16 .

    -. (high affinity site) , 30 , (low affinity sites) . J-P. Changeux et al, Science, 1984, 225, 1335-1343. 1 E 2-

    3 .

    : , GABAA, Cl-, , , Na+ Ca2+. - , (driving force) .

    2 . -

    , cAMP. .

    AMINOTEIKO AO (NH2-TERMINAL). , - , (Cys139 Cys153), S-S. Cys-Cys ,

    , . . , , , ( - -). (2).

    . (2) GABA (22) 5-3, -, . . , . 2001, Changeux, ( ACh). ( ) -, , ACh - - ( 4.17).

  • 95

    ACh

    ACh

    ACh

    4.17 () . ()

    . () , . . . () , ACh, - -. () , Galzi and Changeux, 1995. -. () , Changeux 2001. -, - -. Lester et al, Cys-loop receptors: New twists and turns, Trends in Neurosciences, 2004, 27, 329-336. - - GABA

    . GABA . GABA .

    (COOH-TERMINAL).

    G, , - .

  • 96

    . , . , . , . . 2-3 nm .

    4.18 , . ) . , . . . ) 2 -, . Unwin, 1993.

    .

    -

  • 97

    .

    prefilter

    M2M2M2

    4.19 () 2 .

    ( ) . .

    () 2 . . 2 . (): 2 . . (): 2 . 2 . ( ) , . Unwin, 1995. , 2 . . , . , - , , 2. 2 . , . 2 , . .

  • 98

    4.20 ACh, ACh. ACh Torpedo , Unwin et al (2003). (2). Ch () (). 2 - (), () . Colquhoun D., and Sivilotti L., Function and structure in glycine receptors and some of their relatives, Trends in Neurosciences, 2004, 27, 327-344.

    4.21 ACh, ACh . Ch . Lester H., Dibas M., Dahan D., Leite JF., Dougherty DA., Cys-loop receptors: New twists and turns, Trends in Neurosiences, 2004, 27, 329-336.

    GABA :

    GABA . GABA ( , 17-20% GABA, ~6.000 ),

    , -

    , -

  • 99

    - GABAA, Cl- .

    GABA :

    GABA ,

    GABA . GABA , 2, -

    ..

    (.

    ). () GABA, , GABA. 6 - GABA ,

    GABA.

    E 4.22 GABA. GABA GABA

    . GABAA - Cl-, () , (GABA spillover) GABAA , () .

    Semyanov A, Walker M., Kullman D., Silver R., Tonically active GABAA receptors: modulating gain and maintaining the tone, Trends in Neurosciences 2004, 27, 262-269.

    GABA :

    (. CA1 ). () GABA, , GABA. 6 - GABA , GABA.

    GABA , GABA . GABA ,

  • 100

    2, - . , GABA GABA . GABA (ipsc) , GABA.

    GABA

    1. GABA: GABA -

    : (1-6), (1-3), (1-3), , , . , . , GABA , .

    GABA , . , .

    (ipsps) GABA. ,

  • 101

    . , CA1 GABA 1, 2 5 . , ipsps . ; , .

    2. - GABA

    , GABA . .

    6 ( ) . 6 .

    3. GABA,

    . GABA , . , GABA , GA , .

    4. GABA () () ,

    GABA . , .

    5. Cl- Cl- GABA

    . , K+/ Cl- Cl-, Cl- GABA.

    6. GABA

    , . , GABA. /. Ser410 2 (Akt), GABA . , 2 / 3 .

    7. GABA

    . GABA , , , 5-, ACh .

  • 102

    GABA GABA. GABA , GABA GABA . GPCR , GABA, Ca2+.

    4.23 GABAA. , : (1) . (2) . (3) , C (PKC). (4) Cl-, K+/ Cl- (KCC2) . , : (5) Ca2+ (6) GABAB , (7) , , (8) , GB1 , (9) , , 5-, ACh. , , , (10). Mody I., Pearce R., Diversity of inhibitory neurotransmission trough GABAA receptors, Trends in Neurosciences, 2004, 27, 569-575.

    -

    - (Glu), . , , NMDA (--D-), AMPA (--3--5--4- ).

  • 103

    , NMDA . NMDA LTP ( ). , Ca2+. NMDA . NMDA :

    .

    AMPA NMDA. NMDA Mg2+ ( Zn2+),

    . , , Na+.

    Mg2+ NMDA.

    NMDA a+ Ca2+.

    4.24 NMDA, ,

    ( ) . . NMDA ( Mg2+ ) ( Na+). . , NMDA, Mg2+ , a+ Ca2+. Ca2+ .

  • 104

    NMDA

    NMDA -, 4 : NR1 2 NR2A, NR2B, NR2C NR2D ( NR1-NR1-NR2A-NR2A).

    3 (1, 3 4). 2 2 . 2 , , S1, S2 ( 4 , , ). COO- , .

    4.25 NMDA. (NR1-NR4). 3 (1, 3 4). 2 2 .

    4.26 . D (Amino Terminal Domain) 2 , . S1 , 1 , 2 3 . 3 4 S2 . S1 S2 . CTD (Carboxy Terminal Domain) . Wollmuth L., Sobolevsky A., Structure and gating of the glutamate receptor ion channel, Trends in eurosciences, 2004, 27, 321-328.

  • 105

    2 . 2 -, , 1 3 . Q/R/N . (Q), (R) , () DA ( 4.28).

    4.27 2 .

    + + . + 6 ( 4.6). , + . 2 +. . .

    4.28 +. + . 2 ( ) & Q/R/N . Wollmuth L., Sobolevsky A., Structure and gating of the glutamate receptor ion channel, Trends in eurosciences, 2004, 27, 321-328.

    2

    3

  • 106

    NMDA 2 NMDA . QRN . 4.29 -615 () R2 616 (+1) R1. . NMDA Ca2+ Mg2+. , NMDA Mg2+.

    4.29 NMDA Mg2+. (616)

    2 R1 (615) NR2B . Ca2+ Mg2+.

    NMDA

    Q/R/N , 3 -. SYTAANLAAF, . NMDA SYTAANLAAF. 4.30, SYTAANLAAF 3 . , - 3 . AMPA . NMDA Ca2+ AMPA. - 3. S1 S2 S2 8 Amstrong ( ). 3, 3 . 3

  • 107

    2 , ( 4.31).

    4.30 () 2 3 - . (Q582) Q/R/N 2 - SYTAANLAAF ( ) 3 -. 3 , . () SYTAANLAAF 3 , DA ( ) ( ). Wollmuth L., Sobolevsky A., Structure and gating of the glutamate receptor ion channel, Trends in eurosciences, 2004, 27, 321-328.

    4.31 .

    .

    .

    3

    R1 R2

  • 108

    NMDA, -, . NMDA , PCP, .

    4.32 NMDA.

    5. G-

    G-. , , G-. GPCR G-. . + Gi Gq. GIRK ( Kir) (G protein-coupled inwardly rectifying potassium channels: G- +) , , . GPCRs ( 2, 2, D2, 5-1, GABA), G . GIRK, +, + ( ). , GIRK ACh, 2 .

  • 109

    GPCR, - G, GDP GTP. G-GTP G-, G . G GIRK G . Gi, G GIRK . + ( +, + ). G GTP GDP, G . Gq, GIRK , . Gq PLC, (2), (3) (DAG). PKC, , .

    4.33 GIRK, G . . Gi , G , . . Gq , PKC 2 . Breitwieser GE, GIRK channels: hierarchy of control. Focus on "PKC-delta sensitizes Kir3.1/3.2 channels to changes in membrane phospholipid levels after M3 receptor activation in HEK-293 cells". Am J Physiol Cell Physiol. 2005, 289, C509-11.

    +,

    . + , . , +, , ( ) Mg2+, .

  • 110

    GIRK . 4 . (1 2) . .

    4.34 G (GIRK).

    (1 2) , . .

    6.

    (CAMP, cGMP) (3).

    , cGMP cAMP, (cGMP- ) (cAMP- ) . : (). , G- (), - (effector). cGMP. cGMP. cGMP Ca2+ Na+ . cGMP . cGMP , Ca2+ Na+ .

    GIRKGIRKVoltagegatedK+Channel

  • 111

    4.35 . (R) . cis/trans . (R*) G- . Gt,a cGMP (PDE), cGMP GMP. PDE , , . PDE cGMP. cGMP Na+ Ca2+ . cGMP , Na+ Ca2+ . . , cGMP cGMP . cGMP , Na+ Ca2+ .

    : GPCR. , G- , cAMP. cAMP Ca2+ Na+ . cAMP , Ca2+ Na+ , .

  • 112

    4.36 . (R) . , G- (AC), cAMP. cAMP Ca2+ Na+. cAMP , Ca2+ Na+ , . Trudeau M., Zagotta W., Calcium/calmodulin modulation of olfactory and rod cyclic nucleotide-gated ion channels, J. Biol. Chem., 2003, 278, 21, 18705-18708.

    cGMP cAMP . 4 . 6 , - - . +,

    . cAMP/cGMP C- - (, , C) 8 (1-8).

    4.37 ( 4) . cAMP/cGMP - (, , C) 8 (1-8). Biel M et al, Arch. Pharmacol., 1998, 358.

    (CNG: cyclic

    nucleotide gated ion channels) Ca2+. Ca2+ , Ca2+/, -

  • 113

    (cAMP, cGMP). feed-back -. 4.38 (CNG) (). cAMP/cGMP , Ca2+/ - . Ca2+/ - C- , cAMP/cGMP. Trudeau M., Zagotta W., Calcium/calmodulin modulation of olfactory and rod cyclic nucleotide-gated ion channels, J. Biol. Chem., 2003, 278, 21, 18705-18708.

    (3)

    InsP3, Ca2+ (InsP3). 3 Ca2+ . 15.000 , , Ca2+ .

    - 3

    1,4,5 (IP3) Ca2+ Ca2+ IP3. , , . IP3Rs : Ca2+ , Golgi .

  • 114

    4.39 () P3. 6 2 , NH2- IP3. 5 6 . () 4 IP3R. (,) . Bosanac et al, Structural insights into the regulatory mechanisms of IP3 receptors, Biochimica et Biophysica Acta 2004, 1742, 89-102. IP3Rs . ( 2700 ) (R) , - C- . 5 6, IP3Rs.

    IP3R, - 226-576, IP3. IP3Rs 4 . 3 3 - .

    3 1 TMR (~1600 ) , IP3Rs. , , IP3Rs : 3, .

    IP3Rs 3 Ca2+. 3 - IP3R Ca2+ ( IP3) Ca2+. 3 Ca2+

    ()

    () () ()

  • 115

    - C- , .

    4.40 - P3. : , Ca2+, 3 ( ). Taylor C., da Fonseca C., Morris E., IP3 receptors: he search for structure, Trends in Biological Sciences, 2004, 29, 210-219.

    4.41 - 3. ()

    , (suppressor) - 1 (gatekeeper) C- 2 , . () 3 - , Ca2+. 3 Ca2+ - C- , . () Ca2+- - (gatekeeper) C- . Taylor C., et al, TiPs, 2004, 29, 210-219.

    -

    () () ()

  • 116

    Ca2+ . 3 20 Ca2+. (CAM: calmodulin), -, Ca2+/- (CAM-kinases).

    : , G ( G ) cAMP, cGMP, 3.

    1. GPCR, G

    2. C

    IP3 DAG 3. (DAG)

    4. IP3 - Ca2+

    5. To Ca2+

    6. Ca2+ , -.

  • 117

    -

    GPCR - G -

    GPCR G Effector -

    4.42 , . ) -: . ) G: . ) (cAMP, cGMP), .

    Arias H.R., Topology of ligand binding sites on the nicotinic acetylcholine receptor, Brain Res. Rev., 1997, 25, 133-191.

    Arias H.R., Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors, Neurochem Int. 2000, 36, 595-645.

    Barnard E.A., The transmitter-gated channels: a range of receptor types and structures, TiPS, 1996, 17, 305-308

    Biel M., Sautter A., Ludwig A, Hoffmann F., Zong X., Cyclic nucleotide-gated channels mediators of NO: cGMP-regulated processes, Naunyn-Schiedebergs Arch. Pharmacol., 1998, 358, 140-144.

    Bradley J., Reisert J., Frings S., Regulation of cyclic nucleotide-gated channels, Current Opinion in Neurobiology, 2005, 15, 343-349.

    Brandon NJ., and Moss SJ., Receptor cross-talk: ligand-gated ion channels start to communicate, Sci. STKE, 2000, 24, PE1.

    Cascio M., Structure and Function of the glycine receptorand related nicotinicoid receptors, J. Biol. Chem., 2004, 279, 19383-19386.

    ()

    ()

    ()

  • 118

    Catterall WA., Structure and function of voltage-gated ion channels, Ann. Rev. Biochem., 1995, 64, 493-531.

    Changeux J-P., Le recepteur de lacetylcholine, un canal ionique membranaire regle de maniere allosterique par un neurotransmetteur, Ann. Institut Pasteur, 1992, 231-239

    Colquhoun D., and Sivilotti L., Function and structure in glycine receptors and some of their relatives, Trends in Neurosciences, 2004, 27, 327-344

    Connolly CN., and Wafford KA., The Cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure and function, Biochemical Society Transactions, 2004, 32, 529-533.

    Dingledine R., et al, The glutamate receptor ion channel, Pharmacol. Rev., 1999, 51, 7-61. Enz R., and Cutting G.R., Molecular composition of GABAC receptors, Vision Research,

    1998, 38, 1431-1441. Finer-Moore J. and Stroud R.M., Amphipathic analysis and possible formation of the ion

    channel in an acetylcholine receptor, Proc. Natl. Acad. Sci. (USA), 1984, 81, 155-159

    Galzi J-L., and Changeux J.P., Neuronal nicotinic receptors: Molecular organization and regulations, Neuropharmacology, 1995, 34, 563-582

    Grenningloh G. et al, The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors, Nature, 1987, 328, 215-220

    Haefely W.E., The GABAA-benzodiazepine receptor: biology and pharmacology, Handbook of Anxiety, eds G.D. Burrows, M. Roth and R. Noyes, (1990), Elsevier Science Publishers, pp.165-188

    Hogg RC., Buisson B., Bertrand D., Allosteric modulation of ligand-gated channels, Biochemical Pharmacology, 2005, 70, 1267-1276

    Karpen JW., and Ruiz M., Ion channels: does each subunit do something on its own, TiBS, 2002, 27, 402-9.

    Kaupp UB., and Seifert R., Cyclic nucleotid-gated channels, Physiol. Rev., 2002, 82, 769-824.

    Leite J.F., and Cascio M., Structurte of Kigand-gated Ion channels: critical assessment of Biochemical data supports novel topology, Mol. Cell. Neurosci., 2001, 17, 777-792.

    Lester H., Dibas M., Dahan D., Leite JF., Dougherty DA., Cys-loop receptors: New twists and turns, Trends in Neurosience, 2004, 27, 329-336.

    Lipton SA., Choi Y-B. et al, Cysteine regulation of protein function as exemplified by NMDA-receptor modulation, TiNS, 2002, 25, 474-480.

    Lynch JW., Molecular structure and function of the glycine receptor chloride channel, Physiol. Rev., 2004, 84, 1051-1095.

    Mody I., Pearce R., Diversity of inhibitory neurotransmission trough GABAA receptors, Trends in Neurosciences, 2004, 27, 569-575.

    Montal M. et al, Desing, synthesis and functional characterization of a pentameric channel protein that mimics the presumed pore structure of the nicotinic cholinergic receptor, FEBS Lett., 1993, 18, 275-277

    Noda M. et al, Structural homology of torpedo californica acetylcholine receptor subunits, Nature, 1983, 302, 528-531

    Reeves DC., and Lummis SC., The molecular basis of the structure and function of the 5-HT3 receptor: a model ligand-gated ion channel, Mol. Membr. Biol., 2002, 19, 11-26.

    Semyanov A, Walker M., Kullman D., Silver R., Tonically active GABAA receptors: modulating gain and maintaining the tone, Trends in Neurosciences 2004, 27, 262-269.

  • 119

    Schofield P.R. et al, Sequence and functional expression of the GABAA receptor shows a ligand-gated receptor superfamily, Nature, 1987, 328, 221-227.

    Trudeau M., Zagotta W., Calcium/calmodulin modulation of olfactory and rod cyclic nucleotide-gated ion channels, J. Biol. Chem., 2003, 278, 21, 18705-18708.

    Verrall S. and Hall Z.W., The N-terminal domains of acetylcholine receptor subunits contain recognition signals for the initial steps of receptor assembly, Cell, 1992, 68, 324-20.

    Unwin N., Achetylcholin receptor channel imaged in the open state, Nature, 1995, 373, 37-43.

    u F., Yarov-Yarovoy V., Gutman G., Catterall W., Overview of molecular relationships in the voltage-gated ion channel superfamily, Pharmacological reviews, 2005, 57, 387-395

    Wollmuth L., Sobolevsky A., Structure and gating of the glutamate receptor ion channel, Trends in Neurosciences, 2004, 27, 321-328.

top related