1 simulator status, faa wj hughes technical center completed since the april 1999, seattle meeting :...

Post on 01-Apr-2015

217 Views

Category:

Documents

2 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Simulator Status,FAA WJ Hughes Technical Center

• Completed since the April 1999, Seattle meeting :– Simulator Inlet :

• A 22 foot long, 22 inch diameter inlet duct has been installed to feed the blower

• Transducer to measure airflow installed– hot wire anemometer in duct center line– treat inlet flow as "classic" parabolic distribution and

derate velocity by 10% to determine mass flow rates– calibration curve still being worked out

– Air flow heating :• core heating assembly installed• in-line duct heaters are wired

– locked out, not serviceable– incorrect part installed; replacement expected within the

week

• On-going :– hot plates

• ALL hot plate materials on-site• assembly for plate #1 completed this week• plate #2 expected by the end of October• will require testing exterior to the simulator prior to

placement (control software and final assembly validation)

– dry ice; looking to produce on-site• Work to date :

– hot-agent simulant work– developing/learning simulator procedures and behavior

International Halon Replacement Working GroupOttawa, Canada 13-14October 1999

Douglas Ingerson, Federal Aviation AdministrationWJ Hughes Technical Center, Fire Safety Section, AAR-422

Atlantic City Int'l Airport, NJ 08405 USA

2

High Bypass Ratio Turbofan Simulator - Core Heating Impact on ByPass Air Flow

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

0 600 1200 1800 2400 3000 3600 4200 4800 5400

Time (s)

Tem

pera

ture

(°F

)

fwdcor6:00

aftcor6:00

2inair6:00

4inair6:00

fwdcor12:00

aftcor12:00

2inair12:00

4inair12:00

cvr approx 36 ac/minmdot approx 4.3 lbm/s

cvr approx 86 ac/minmdot approx 11 lbm/s

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

0 600 1200 1800 2400 3000 3600 4200 4800 5400

Time (s)

Tem

pera

ture

(°F

)

fwdcor6:00

aftcor6:00

2inair6:00

4inair6:00

fwdcor12:00

aftcor12:00

2inair12:00

4inair12:00

cvr approx 36 ac/minmdot approx 4.3 lbm/s

cvr approx 86 ac/minmdot approx 11 lbm/s

International Halon Replacement Working GroupOttawa, Canada 13-14October 1999

Douglas Ingerson, Federal Aviation AdministrationWJ Hughes Technical Center, Fire Safety Section, AAR-422

Atlantic City Int'l Airport, NJ 08405 USA

3

HFC-125 Distribution Comparison, Simulator Environment, 30Jul99

HFC-125 Distribution Comparison, Average Distribution Comparisons, 30Jul99

International Halon Replacement Working GroupOttawa, Canada 13-14October 1999

Douglas Ingerson, Federal Aviation AdministrationWJ Hughes Technical Center, Fire Safety Section, AAR-422

Atlantic City Int'l Airport, NJ 08405 USA

4

0

2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000 12000 14000

Time (ms)

%V

/V H

FC

-125

11

9

8

4

1

7

5

2

10

12

6

3

Halonyzer Channel Designations - FAA WJH Technical Center - Nacelle SimulatorForward Ring Mid Ring Aft Ring

12:00 11 1:00 1 12:00 103:00 9 4:30 7 3:00 126:00 8 7:30 5 6:00 69:00 4 11:00 2 9:00 3

International Halon Replacement Working GroupOttawa, Canada 13-14October 1999

Douglas Ingerson, Federal Aviation AdministrationWJ Hughes Technical Center, Fire Safety Section, AAR-422

Atlantic City Int'l Airport, NJ 08405 USA

HFC-125 - h125.99.730.02.hot.c

0

2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000 12000 14000

Time (ms)

%V

/V H

FC

-125

11

9

8

4

1

7

5

2

10

12

6

3

Halonyzer Channel Designations - FAA WJH Technical Center - Nacelle SimulatorForward Ring Mid Ring Aft Ring

12:00 11 1:00 1 12:00 103:00 9 4:30 7 3:00 126:00 8 7:30 5 6:00 69:00 4 11:00 2 9:00 3

HFC-125 - h125.99.730.05.ambient.c

Bottle volume = 600 in^3Agent weight = 5.44 lbfAgent storage pressure = 650 psigAgent storage temp = 200 °FAir flow temp = 92°FAir flow = 4.3 lbm/s

Bottle volume = 600 in^3Agent weight = 5.44 lbfAgent storage pressure = 650 psigAgent storage temp = 200 °FAir flow temp = 215°FAir flow = 3.5 lbm/s

5

Simulating the Distribution of Halon 1301 in an Aircraft Engine Nacelle with HFC-125

International Halon Replacement Working GroupOttawa, Canada 13-14October 1999

Douglas Ingerson, Federal Aviation AdministrationWJ Hughes Technical Center, Fire Safety Section, AAR-422

Atlantic City Int'l Airport, NJ 08405 USA

• 1994-1995. Actions sought to minimize the release of Halon 1301 unnecessarily

• DoD (U.S. Navy) sponsors work through the National Institute of Standards and Technology (NIST) to develop or discover a simulant for Halon 1301 for use in nacelle discharge testing

• The cumulative effort also involves Boeing, Walter Kidde Aerospace (WKA), and Shorts Brothers, PLC

• NIST reviewed existing material data bases for materials having :

– characteristics commensurate with the application of nacelle discharge testing

– characteristics comparable to Halon 1301 during discharge in this application

• Jakob number• Saturated vapor pressure• Experimental history• Atmospheric lifetime (ODP and ALT)

• 3 candidates selected :– CHClF2

– SF6

– C2HF5 (HFC-125, pentafluoroethane)

6

Simulating the Distribution of Halon 1301 in an Aircraft Engine Nacelle with HFC-125

• Field Work :– NIST– USN, WKA on the F-18– Boeing on the Pratt and Whitney PW 4084 on the B777

airframe– Shorts Brothers, PLC on the Allied Signal TFE731-40

on the IAI Astra SPX airframe• Conclusions :

– HFC-125 most effectively simulates a Halon 1301 discharge in these applications

– US military specification Mil-E-22285 edited to reflect such procedures

• Additional field work, April 1998.– FAA personnel assisting USN on agent distribution

within the F-18 nacelle– As courtesy to the FAA, a simulant test pair is run– Results reflect previous results– Historical review indicates overdesign far outweighs the

delta found between agents in the simulation– FAA publishes technical note on the concept

• Qualitative discussion regarding limitations :– the simulation appears to be sensitive to the ventilation

rate of the compartment; compare cargo and nacelle environments (forced vs. natural/gravitationally driven ventilation)

– recent work at the FAATC indicates agent temperature likely plays a role in the simulation effectiveness

International Halon Replacement Working GroupOttawa, Canada 13-14October 1999

Douglas Ingerson, Federal Aviation AdministrationWJ Hughes Technical Center, Fire Safety Section, AAR-422

Atlantic City Int'l Airport, NJ 08405 USA

7

Simulating the Distribution of Halon 1301 in an Aircraft Engine Nacelle with HFC-125

• Procedures.– Agent Storage :

• Calculate/determine required weight of Halon 1301 for application

• multiply desired Halon 1301 weight by 0.77 to determine the required weight of HFC-125 for the simulation

• load and superpresurize with N2 as would be done for the design Halon 1301 bottle

• cold soak the bottle• perform test

– Halonyzer operation :• the analyzer is configured for HFC-125• capture the simulant test with the HFC-125 calibration

curve as the analyzer reference• compare results to the certification criteria of Halon 1301• determine success or failure

• NOTE : This procedure is not intended to provide a method to determine a weight of HFC-125 for fire suppression purposes. This process delineates a method to use HFC-125 in a manner which would reasonably simulate the discharge of Halon 1301 in an aircraft engine nacelle from a gaseous distribution perspective.

International Halon Replacement Working GroupOttawa, Canada 13-14October 1999

Douglas Ingerson, Federal Aviation AdministrationWJ Hughes Technical Center, Fire Safety Section, AAR-422

Atlantic City Int'l Airport, NJ 08405 USA

8

Simulating the Distribution of Halon 1301 in an Aircraft Engine Nacelle with HFC-125

• References.• Kaufmann, K. J., Miller, M. P., Wozniak, G., and Mitchell, M.D., 1995,

"Results of Halon 1301 and HFC-125 Concentration Tests on a Large Commercial Aircraft Engine Installation," International Halon Replacement Working Group Minutes, United States Department of Transportation, Federal Aviation Administration, W.J. Hughes Technical Center, Atlantic City, NJ.

• Ingerson, D. A., "Simulating the Distribution of Halon 1301 in an Aircraft Engine Nacelle with HFC-125," DOT/FAA/AR-TN99/64, United States Department of Transportation, Federal Aviation Administration, W.J. Hughes Technical Center, Atlantic City International Airport, NJ.

• Military Specification MIL-E-22285(AS), Amendment 3, 1996, "Extinguishing System, Fire, Aircraft, High-Rate-Discharge Type. Installation and Test of," United States Department of Defense, Department of the Navy, Naval Air Systems Command, Washington, D.C.

• Mitchell, M. D., 1994, "Methodology for Halon 1301 Simulant Testing and Concentration Equivalence Verification," Report No. R-5102, Kidde Technologies, Wilson, NC.

• Mitchell, M. D., 1995, "Full Scale Halon Simulant Testing of F-18D Aircraft Using Bromotrifluoromethane and Pentafluoroethane," Report No. R-5127, Kidde Technologies, Wilson, NC.

• Riordan, D., 1995, "Engine Fire Extinguisher Agent Concentration Testing," International Halon Replacement Working Group Minutes, United States Department of Transportation, Federal Aviation Administration, W.J. Hughes Technical Center, Atlantic City, NJ.

• Womeldorf, C. A., Grosshandler, W. L., 1995, "Selection of a CF3Br Simulant for Use in Engine Nacelle Certification Tests," Fire Suppression System Performance of Alternative Agents in Aircraft Engine and Dry Bay Laboratory Simulations, SP890, Vol. 2, p.591-621, National Institutes of Standards and Technology, Gaithersburg, MD.

International Halon Replacement Working GroupOttawa, Canada 13-14October 1999

Douglas Ingerson, Federal Aviation AdministrationWJ Hughes Technical Center, Fire Safety Section, AAR-422

Atlantic City Int'l Airport, NJ 08405 USA

9

Simulating the Distribution of Halon 1301 in an Aircraft Engine Nacelle with HFC-125, Historical

Example of Overdesign

International Halon Replacement Working GroupOttawa, Canada 13-14October 1999

Douglas Ingerson, Federal Aviation AdministrationWJ Hughes Technical Center, Fire Safety Section, AAR-422

Atlantic City Int'l Airport, NJ 08405 USA

Lockheed C-140 Jet Star Concentration Profile at N1 = 78%

(Sommers, 1970, p. 34)

10

Simulating the Distribution of Halon 1301 in an Aircraft Engine Nacelle with HFC-125, Historical

Example of Overdesign

International Halon Replacement Working GroupOttawa, Canada 13-14October 1999

Douglas Ingerson, Federal Aviation AdministrationWJ Hughes Technical Center, Fire Safety Section, AAR-422

Atlantic City Int'l Airport, NJ 08405 USA

General Dynamics F/EF-111 Agent Concentration Profile for Test 1301-8 (Chamberlain and Boris, 1988, p.57)

11

Halon 1301 - h1301.99.923.01.c

0

2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000 12000 14000

Time (ms)

%V

/V H

alon

130

1

11

9

8

4

1

7

5

2

10

12

6

3

Halonyzer Channel Designations - FAA WJH Technical Center - Nacelle SimulatorForward Ring Mid Ring Aft Ring

12:00 11 1:00 1 12:00 103:00 9 4:30 7 3:00 126:00 8 7:30 5 6:00 69:00 4 11:00 2 9:00 3

HFC-125 - h125.99.927.01.c

0

2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000 12000 14000

Time (ms)

%V

/V H

FC

-125

11

9

8

4

1

7

5

2

10

12

6

3

Halonyzer Channel Designations - FAA WJH Technical Center - Nacelle SimulatorForward Ring Mid Ring Aft Ring

12:00 11 1:00 1 12:00 103:00 9 4:30 7 3:00 126:00 8 7:30 5 6:00 69:00 4 11:00 2 9:00 3

International Halon Replacement Working GroupOttawa, Canada 13-14October 1999

Douglas Ingerson, Federal Aviation AdministrationWJ Hughes Technical Center, Fire Safety Section, AAR-422

Atlantic City Int'l Airport, NJ 08405 USA

Bottle volume = 600 in^3Agent weight = 7.59 lbfAgent storage pressure = 400 psigAgent storage temp = 100 °FAir flow temp = 71°FAir flow = 2.3 lbm/s

Bottle volume = 600 in^3Agent weight = 5.89 lbfAgent storage pressure = 400 psigAgent storage temp = 100 °FAir flow temp = 75°FAir flow = 2.3 lbm/s

12

HFC-125 - h125.99.930.03.c

0

1

2

3

4

5

6

7

8

9

10

0 2000 4000 6000 8000 10000 12000 14000

Time (ms)

%V

/V H

FC

-125

11

9

8

4

1

7

5

2

10

12

6

3

Halonyzer Channel Designations - FAA WJH Technical Center - Nacelle SimulatorForward Ring Mid Ring Aft Ring

12:00 11 1:00 1 12:00 103:00 9 4:30 7 3:00 126:00 8 7:30 5 6:00 69:00 4 11:00 2 9:00 3

Halon 1301 - h1301.99.930.02.c

0

1

2

3

4

5

6

7

8

9

10

0 2000 4000 6000 8000 10000 12000 14000

Time (ms)

%V

/V H

alon

130

1

11

9

8

4

1

7

5

2

10

12

6

3

Halonyzer Channel Designations - FAA WJH Technical Center - Nacelle SimulatorForward Ring Mid Ring Aft Ring

12:00 11 1:00 1 12:00 103:00 9 4:30 7 3:00 126:00 8 7:30 5 6:00 69:00 4 11:00 2 9:00 3

International Halon Replacement Working GroupOttawa, Canada 13-14October 1999

Douglas Ingerson, Federal Aviation AdministrationWJ Hughes Technical Center, Fire Safety Section, AAR-422

Atlantic City Int'l Airport, NJ 08405 USA

Bottle volume = 400 in^3Agent weight = 3.54 lbfAgent storage pressure = 400 psigAgent storage temp = 100 °FAir flow temp = 72°FAir flow = 2.3 lbm/s

Bottle volume = 400 in^3Agent weight = 4.58 lbfAgent storage pressure = 400 psigAgent storage temp = 100 °FAir flow temp = 73°FAir flow = 2.3 lbm/s

13

Halon 1301 - h1301.99.a07.01.c

0

1

2

3

4

5

6

7

8

9

10

0 2000 4000 6000 8000 10000 12000 14000

Time (ms)

%V

/V H

alon

130

1

11

9

8

4

1

7

5

2

10

12

6

3

Halonyzer Channel Designations - FAA WJH Technical Center - Nacelle SimulatorForward Ring Mid Ring Aft Ring

12:00 11 1:00 1 12:00 103:00 9 4:30 7 3:00 126:00 8 7:30 5 6:00 69:00 4 11:00 2 9:00 3

International Halon Replacement Working GroupOttawa, Canada 13-14October 1999

Douglas Ingerson, Federal Aviation AdministrationWJ Hughes Technical Center, Fire Safety Section, AAR-422

Atlantic City Int'l Airport, NJ 08405 USA

Bottle volume = 300 in^3Agent weight = 4.25 lbfAgent storage pressure = 400 psigAgent storage temp = 100 °FAir flow temp = 63°FAir flow = 2.3 lbm/s

HFC-125 - h125.99.a07.02.c

0

1

2

3

4

5

6

7

8

9

10

0 2000 4000 6000 8000 10000 12000 14000

Time (ms)

%V

/V H

FC

-125

11

9

8

4

1

7

5

2

10

12

6

3

Halonyzer Channel Designations - FAA WJH Technical Center - Nacelle SimulatorForward Ring Mid Ring Aft Ring

12:00 11 1:00 1 12:00 103:00 9 4:30 7 3:00 126:00 8 7:30 5 6:00 69:00 4 11:00 2 9:00 3

Bottle volume = 300 in^3Agent weight = 3.28 lbfAgent storage pressure = 400 psigAgent storage temp = 100 °FAir flow temp = 64°FAir flow = 2.3 lbm/s

14

Halon 1301 - h1301.99.a07.04.c

0

1

2

3

4

5

6

7

8

9

10

0 2000 4000 6000 8000 10000 12000 14000

Time (ms)

%V

/V H

alon

130

1

11

9

8

4

1

7

5

2

10

12

6

3

Halonyzer Channel Designations - FAA WJH Technical Center - Nacelle SimulatorForward Ring Mid Ring Aft Ring

12:00 11 1:00 1 12:00 103:00 9 4:30 7 3:00 126:00 8 7:30 5 6:00 69:00 4 11:00 2 9:00 3

International Halon Replacement Working GroupOttawa, Canada 13-14October 1999

Douglas Ingerson, Federal Aviation AdministrationWJ Hughes Technical Center, Fire Safety Section, AAR-422

Atlantic City Int'l Airport, NJ 08405 USA

Bottle volume = 300 in^3Agent weight = 4.40 lbfAgent storage pressure = 400 psigAgent storage temp = 100 °FAir flow temp = 64°FAir flow = 2.3 lbm/s

HFC-125 - h125.99.a07.03.c

0

1

2

3

4

5

6

7

8

9

10

0 2000 4000 6000 8000 10000 12000 14000

Time (ms)

%V

/V H

FC

-125

11

9

8

4

1

7

5

2

10

12

6

3

Halonyzer Channel Designations - FAA WJH Technical Center - Nacelle SimulatorForward Ring Mid Ring Aft Ring

12:00 11 1:00 1 12:00 103:00 9 4:30 7 3:00 126:00 8 7:30 5 6:00 69:00 4 11:00 2 9:00 3

Bottle volume = 300 in^3Agent weight = 3.39 lbfAgent storage pressure = 400 psigAgent storage temp = 100 °FAir flow temp = 64°FAir flow = 2.3 lbm/s

15

HFC-125 - h125.99.a06.02.c

0

1

2

3

4

5

6

7

8

9

10

0 2000 4000 6000 8000 10000 12000 14000

Time (ms)

%V

/V H

FC

-125

11

9

8

4

1

7

5

2

10

12

6

3

Halonyzer Channel Designations - FAA WJH Technical Center - Nacelle SimulatorForward Ring Mid Ring Aft Ring

12:00 11 1:00 1 12:00 103:00 9 4:30 7 3:00 126:00 8 7:30 5 6:00 69:00 4 11:00 2 9:00 3

Halon 1301 - h1301.99.a06.04.c

0

1

2

3

4

5

6

7

8

9

10

0 2000 4000 6000 8000 10000 12000 14000

Time (ms)

%V

/V H

alon

130

1

11

9

8

4

1

7

5

2

10

12

6

3

Halonyzer Channel Designations - FAA WJH Technical Center - Nacelle SimulatorForward Ring Mid Ring Aft Ring

12:00 11 1:00 1 12:00 103:00 9 4:30 7 3:00 126:00 8 7:30 5 6:00 69:00 4 11:00 2 9:00 3

International Halon Replacement Working GroupOttawa, Canada 13-14October 1999

Douglas Ingerson, Federal Aviation AdministrationWJ Hughes Technical Center, Fire Safety Section, AAR-422

Atlantic City Int'l Airport, NJ 08405 USA

Bottle volume = 300 in^3Agent weight = 3.08 lbfAgent storage pressure = 400 psigAgent storage temp = 100 °FAir flow temp = 70°FAir flow = 2.3 lbm/s

Bottle volume = 300 in^3Agent weight = 4.00 lbfAgent storage pressure = 400 psigAgent storage temp = 100 °FAir flow temp = 70°FAir flow = 2.3 lbm/s

16

HFC-125 - h125.99.a06.03.c

0

1

2

3

4

5

6

7

8

9

10

0 2000 4000 6000 8000 10000 12000 14000

Time (ms)

%V

/V H

FC

-125

11

9

8

4

1

7

5

2

10

12

6

3

Halonyzer Channel Designations - FAA WJH Technical Center - Nacelle SimulatorForward Ring Mid Ring Aft Ring

12:00 11 1:00 1 12:00 103:00 9 4:30 7 3:00 126:00 8 7:30 5 6:00 69:00 4 11:00 2 9:00 3

HFC-125 - h125.99.a06.01.c

0

1

2

3

4

5

6

7

8

9

10

0 2000 4000 6000 8000 10000 12000 14000

Time (ms)

%V

/V H

FC

-125

11

9

8

4

1

7

5

2

10

12

6

3

Halonyzer Channel Designations - FAA WJH Technical Center - Nacelle SimulatorForward Ring Mid Ring Aft Ring

12:00 11 1:00 1 12:00 103:00 9 4:30 7 3:00 126:00 8 7:30 5 6:00 69:00 4 11:00 2 9:00 3

International Halon Replacement Working GroupOttawa, Canada 13-14October 1999

Douglas Ingerson, Federal Aviation AdministrationWJ Hughes Technical Center, Fire Safety Section, AAR-422

Atlantic City Int'l Airport, NJ 08405 USA

Bottle volume = 300 in^3Agent weight = 3.08 lbfAgent storage pressure = 400 psigAgent storage temp = 100 °FAir flow temp = 70°FAir flow = 2.3 lbm/s

Bottle volume = 300 in^3Agent weight = 3.08 lbfAgent storage pressure = 400 psigAgent storage temp = 100 °FAir flow temp = 66°FAir flow = 2.3 lbm/s

top related