1 feedback control of a micro manipulator alarm lab

Post on 17-Jan-2016

228 Views

Category:

Documents

1 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

FEEDBACK CONTROL OF A FEEDBACK CONTROL OF A

MICRO MANIPULATORMICRO MANIPULATOR

ALARM LABALARM LAB

2

ALARM LABALARM LAB

On 3 stages:

Total displacement = 25mm (coarse / micrometer) 300300m (fine / PZT)m (fine / PZT)

Resolution = 100nm100nm (Joystick)

knob

Z

yx

3

ALARM LABALARM LAB

PZT flexurePipette (8m diameter)

4

Application of the micro-manipulator

Micro-injection (ICSI )Micro-injection (ICSI ) Micro-dissectionMicro-dissection

Zona penetration

Zona

Taking out the dissected membrane

Zona Penetration

Sperm injection

Capturing the X chromosome

Dissecting

Taking the dissected part out

Storing the dissected chromosome

ALARM LABALARM LAB

5

MOTIVATION

• Motion Control of the tip

100nm is not enough for many sub-micron biological applications

• Dynamic Modeling

The uncertainties are causing very low success rates in biological applications

ALARM LABALARM LAB

6

ALARM LABALARM LAB

PiezzoDrill control

Manipulator control

Current

Feedback

CURRENT SETUPCURRENT SETUP

7

ALARM LABALARM LAB

Control card

ROBUST CONTROLLOGIC F

eedb

ack

Control signal

8

ALARM LABALARM LAB

Present work

• Analyical model of the manipulator (excluding the pipette).

• Experimental set-up and tests on the same .

• Comparison of the experimental and analytical results.

• Experiments (including the pipette) with Hg in the pipette and without.

9

Dynamic model

M2

X2

M1

X1

F

Spring (Ki)

Damper (Ci)

PZT force (F)

Equivalent mass (Mi)

F

M3

X3

Input : F; measured output X3

ALARM LABALARM LAB

10

0 0.002 0.004 0.006 0.008 0.01-1.5

-1

-0.5

0

0.5

1

1.5

Time (sec)

Dis

plac

emen

t (u

m)

X3 displacement comparison (the experiments vs. dynamic model)

ALARM LABALARM LAB

11

0 0.5 1 1.5 2 2.5

x 104

0

0.005

0.01

0.015

0.02

0.025

Frequency (Hz)

Dis

plac

emen

t(um

)FFT comparison (the experiments vs. dynamic model)

ALARM LABALARM LAB

12

TipPhotonic probePhotonic probe

Nano level displacement measurement setup

ALARM LABALARM LAB

13

Working principle of photonic probe

Light source

Ou

tpu

t (V

)

Distance (m)

Probe to target

distance

ALARM LABALARM LAB

Resolution = 2.5nmResolution = 2.5nm

14

ALARM LABALARM LAB

Experimental procedure

Photonic sensorGap

Read out (V)

5 10 15 20 25 300

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Vol

tage

Time

15

ALARM LABALARM LAB

0 1 2 3 4 5 6-150

-100

-50

0

50

100

Time (sec)

Dis

plac

emen

t (nm

)Joystick control

16

Setup for ICSI experiment without Mercurywithout Mercury

Vol

tage

Time

ALARM LABALARM LAB

Read out (V)

Pipette dia. < 8

17

ALARM LABALARM LAB

Setup for ICSI experiment with Mercurywith Mercury

Vol

tage

Time

MercuryMercuryMercuryMercuryMercuryMercuryMercury

Read out (V)

18

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Time (sec)

X3 D

ispl

acem

ent (

um) without mercury

with mercury

X3 displacement comparison

ALARM LABALARM LAB

19

0 0.5 1 1.5 2 2.5

x 104

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

Frequency (Hz)

Dis

plac

emen

t (um

)

without mercury

with mercury

FFT comparison

ALARM LABALARM LAB

20

Observations

• The key is at the micro-dynamics of the pipette tip.• The pipette holder does not feel the presence of Hg. • Robust control is possible at 10nm of resolution

Obstacles

• Extreme flexibility at the tip (glass acts like fiber). • Displacement sensing (in 2-D) at the pipette tip• Complex visco-elastic interface between the Hg and

the pipette.

ALARM LABALARM LAB

top related