1 chapter 2: geometric camera models objective: formulate the geometrical relationships between...

Post on 21-Jan-2016

214 Views

Category:

Documents

0 Downloads

Preview:

Click to see full reader

TRANSCRIPT

1

Chapter 2: Geometric Camera Models Objective: Formulate the geometrical relationships between image and scene measurements

Scene: a 3-D function, g(x,y,z)

Image: a 2-D function, f(x,y)

2

Contents: (i) Homogeneous coordinates(ii) Geometric transformations(iii) Intrinsic and extrinsic camera parameters(iv) Affine projection models

2.1. Elements of Analytical Euclidean Geometry

2.1.1. Coordinate Systems

○ Right-handed coordinate system

3

, ,i j k

, , :x y z

x

y

z

p

coordinates of point P

: position vector of point P

O: origin;

: basis vectors

4

◎ Homogeneous Coordinates

Advantages: (a) Some nonlinear systems can be transformed into linear ones (b) Equations written in terms of homogeneous coordinates become more compact. (c) A transformation, comprising rotation, translation, scaling, and perspective projection, can be written in a single matrix

5

x

y

z

p

1

x

y

z

p

0ax by cz d

0T p a

b

c

d

○ Point:

○ Plane equation:

or p

cx

cy

cz

c

where

6

2 2 2 2x y z r

0T S p p

2

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0

S

r

○ Sphere equation:

where

7

2 2 2200 110 020 011 002

101 100 010 001 000 0

a x a xy a y a yz a z

a xz a x a y a z a

0TQ p p

200 110 101 100

110 020 011 010

101 011 002 001

100 010 001 000

1 1 1

2 2 21 1 1

2 2 21 1 1

2 2 21 1 1

2 2 2

a a a a

a a a a

a a a a

a a a a

Q

○ Quadric surface equation:

where

8

2.1.2 Coordinate System Changes and Rigid Transformations

Two subjects: (a) Coordinate system changes (b) Rigid transformations

Consider two coordinate systems, A and B

9

○ Coordinate System Changes

Position vectors:

( , , )B B BP x y z ( , , )A A AP x y z

,pA

AA

A

x

y

z

pB

BB

B

x

y

z

B AMp pCoordinate transformation: (?)

10

BAT

。 Translation vector

: the vector translates the origin of coordinate system A to that of system B

○ Rigid Transformations

Tx

BA y

z

t

t

t

11

BA R

。 Rotation matrix

: the 3 by 3 matrix rotates coordinate system A to coincide with system B

11 12 13

21 21 23

31 31 33

BA

r r r

R r r r

r r r

A B A B A B

A B A B A B

A B A B A B

i i j i k i

i j j j k j

i k j k k k

12

BA R

Ai ( , )

B B Bi j ,k

BA R

BA R

Bi ( , )

A A A i j ,k

BA R

The 1st column of is formed by projecting onto

The columns of form frame A described in terms of frame B

is formed by projecting onto

The rows of form frame B described in terms of frame A

The 1st row of

A B A B A BBA A B A B A B

A B A B A B

R

i i j i k i

i j j j k j

i k j k k k

13

1( ) ( )B B TA AR R

det( ) 1BA R ( )B A T

A BR R

, :B AA BR R

* Properties:

(a)

(b)

: unitary matrix

(c)

(d) orthonormal matrices

○ Rigid Transformation: A rigid transformation preserves: (1) the distance between two point

s (2) the angle between two vectors

B B A BA AR p p T

14

be their corresponding

points in frame B, i.e.,

Proof: Let be two points in frame A

Then,

,A Ap q

,B Bp q

B B A BA AR p p T B B A B

A AR q q T

( )B B B A AA R p q p q

|| || || ||p q p qB B B A B AA AR R

(1) Distance preservation

1/ 2[( ) ( )] p q p qB A B A T B A B AA A A AR R R R

15

1/ 2

[( ) ( ) ( ) ( )

( ) ( ) ( ) ( )]

p p q p

p q q q

B A T B A B A T B AA A A A

B A T B A B A T B AA A A A

R R R R

R R R R

1/ 2

[( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )( )]

p p q p

p q

q q

A T B T B A A T B T B AA A A A

A T B T B AA A

A T B T B AA A

R R R R

R R

R R

1/ 2

1/ 2

[( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )]

[( ) ( )] || ||

p p q p p q q q

p q p q p q

A T A A T A A T A A T A

A A T A A A A

(2) Angle preservation (Assignment)

164 4

,1

B BA AB

A T

RH

0

T(0,0,0)T T0

11 12

21 22

,A A

AA A

11 12

21 22

B BB

B B

11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

A B A B A B A BAB

A B A B A B A B

det( ) det( )det( )AB A B

○ Matrices can be multiplied in blocks

○ ○ In homogeneous coordinates:

-- (2.7)

where

then

1 1

B ABA H

p p,B B A BA AR p p T

17

2.2 Camera Parameters。 Intrinsic parameters -- Relate the actual camera coordinate system to the idealized camera coordinate system (1) the focal length of the lens f (2) the size and shape of the pixels (3) the position of the principal point (4) the angle between the two image axes

Idealized camera Actual camera

18

。 Extrinsic parameters -- Relate the idealized camera coordinate system to a real world coordinate system (1) translation and (2) rotation parameters

。 Camera calibration -- estimates the intrinsic and extrinsic parameters of a camera

Idealized cameracoordinate system

Real worldCoordinate system

1919

2.2.1. Intrinsic parameters

Start with ideal perspective projection equations

: scale

: skew

: shift

parameters

20

21

22

23

24

○ The relationship between the physical image frame and the normalized one

25

26

27

,1 1

p pC WCW H

1

TC CW WC

W T

RH

0

,1 1

p pP P

C WC W

,P PC C WW H

where

28

29

30

31

A LQ(Only if) – If , A: nonsingular

A can always be factorized intoQ: orthonormal matrixL : right upper triangular matrix

det( ) 0A

32

( ) ( ) ( ),W A LQ L Q b b b L b b

( )C CW WK R T

,b CWT

Compared with

L, K : right upper triangular matrices

Q, : orthonomal matrices

: vectors

W is a perspective projection matrix

CW R

33

34

35

2.3. Affine Projection Models• Orthographic Projection Models -- Objects are far from the camera

• Parallel Projection Models -- Objects are far and lie off the optical axis of the camera

36

• Paraperspective Projection Models -- Objects lie near the optical axis

• Weak Perspective Projection Models -- Objects lie on the optical axis and their reliefs are ignored

37

Consider object reliefs in weak perspective projection

38

39

40

41

42

43

44

45

46

47

48

top related