all steel ppt

301
Timber and Steel Design Timber and Steel Design Welcome to ภาคการศึกษาที3 ปการศึกษา 2549 Lecture 1 - Introduction Mongkol JIRAVACHARADET S U R A N A R E E INSTITUTE OF ENGINEERING UNIVERSITY OF TECHNOLOGY SCHOOL OF CIVIL ENGINEERING วัตถุประสงค - เขาใจพฤติกรรมการรับน้ําหนักบรรทุกขององคอาคารในโครงสราง เมื่อเรียนจบวิชานี้นักศึกษาจะมีความสามารถดังนี- เขาใจหลักในการวิเคราะหและออกแบบโดยวิธี หนวยแรงที่ยอมให - ออกแบบองคอาคารตามมาตรฐาน ... โดยใชวัสดุที่มีในประเทศ - มีความชํานาญในการทําโครงงาน รายการคํานวณ และแบบโครงสราง

Upload: komkit-srimanta

Post on 24-Nov-2015

83 views

Category:

Documents


4 download

DESCRIPTION

Steel Profile

TRANSCRIPT

  • Timber and Steel DesignTimber and Steel Design

    Welcome to

    3 2549

    Lecture 1 - Introduction

    Mongkol JIRAVACHARADET

    S U R A N A R E E INSTITUTE OF ENGINEERINGUNIVERSITY OF TECHNOLOGY SCHOOL OF CIVIL ENGINEERING

    -

    -

    - ...

    -

  • Conduct of CourseConduct of Course

    Midterm ExamMidterm Exam 40 %40 %

    Final ExamFinal Exam 40 %40 %

    Projects/Assignment/QuizzesProjects/Assignment/Quizzes 20 %20 %

    Grading Policy

    100 - 90Final Score Grade

    A89 - 85 B+84 - 80 B79 - 75 C+74 - 70 C69 - 65 D+64 - 60 D59 - 0 F

  • 1) > 20% = 5

    2)

    3) Project :- 3 - rejectreject

    What is Structural Engineering ?What is Structural Engineering ?

    in such a way that nobody suspect the extent of our ignorance.

    Structural Engineering is:

    the art of molding materials we do not entirely understand

    into shapes we cannot precisely analyse,

    so as to withstand forces we cannot really assess,

    STABILITYSTABILITY SAFETYSAFETY ECONOMYECONOMY

  • Frame structural systemFrame structural system

    LinganLingan Island Island PowerplantPowerplant,, Skeleton FrameSkeleton Frame

  • Nashville Convention Nashville Convention CentreCentre,, tower overview tower overview

    Pan Pacific Hotel and Convention Pan Pacific Hotel and Convention CentreCentre,, VancouverVancouver,, main tower main tower

  • Suspension structural systemSuspension structural system

    RAMA IX Bridge, Bangkok ThailandRAMA IX Bridge, Bangkok Thailand

  • RAMA VIII Bridge, Bangkok ThailandRAMA VIII Bridge, Bangkok Thailand

    Steel Applications

    STEEL is one of most widely used materials for structures

  • What is STEEL ?What is STEEL ?

    manganese (Mn), silicon (Si),

    aluminum (Al), nickel (Ni),

    chromium (Cr), molybdenum (Mo),

    copper (Cu), vanadium (V),

    niobium (Nb), titanium (Ti) and

    boron (B).

    Steel is an alloy of iron (Fe) and carbon (C). Depending on the desired steel properties, one or more of other alloying elements are also added to the steel. The important ones are:

    Iron Ore

    STEEL Manufacturing STEEL Manufacturing

  • Advantages of Steel

    4 High Strength to Weight

    4 Uniformity (properties not change with time)

    4 Highly Ductile

    4 Good Fracture Toughness

    4 Easily Constructed and Modified Structures

    4 Easily Recycled

    Disadvantages of Steel

    4 Maintenance Cost

    4 Requires Fireproofing

    4 Slender Members Susceptible to Buckling

    4 Fatique

    4 Brittle Fracture at very low temperature

  • Steel Casting Steel Casting && Hot RollingHot Rolling

    Continuous Caster

    Blooms

    Billets

    Slabs

    Rolling Mill

    W section S section Unequal-legangle

    Equal-legangle

    Channel Zee Tee

    Flange

    Web 0-5% slope 16.67% slope

    16.67% slope

    HotHot--Rolled Steel ShapeRolled Steel Shape

  • ColdCold--Formed SteelFormed SteelCold-formed steel shapes are formed at room temperature.

    Angle Channel Stiffenedchannel

    Zee StiffenedZee

    Hat StiffenedHat

    D

    D

    Stress Stress -- Strain RelationshipsStrain Relationships

    su

    strain hardening

    ultimatestress

    sf

    necking

    fracturestress

    spl

    elasticregion

    elasticbehavior

    elastic limit

    proportional limit

    sY

    plastic behavior

    yielding

    yield stress

    true fracture stresssf

    e

    s

    Low-carbon steel

  • ASTM A36JIS G3101 SS400JIS G3106 SM400TIS SM400

    4000 - 5200

    DESIGNATION

    YIELD STRESS(kg/cm2) TENSILE STRENGTH

    (kg/cm2)Thickness (mm)16 or under over 16

    2500 2400

    JIS G3101 SS490 5000 - 62002900 2800

    JIS G3106 SM490TIS SM490 5000 - 62003300 3200

    ASTM A572JIS G3106 SM520TIS SM520

    5300 - 65003700 3600

    JIS G3106 SM570 5800 - 73004600 4500

    In this course:

    Yield stress, Fy = 2500 kg/cm2

    Tensile Strength Fu = 4000 kg/cm2

    Properties of Structural SteelsProperties of Structural SteelsASTM = American

    JIS = Japanese

    TIS = Thailand

    Steel Sections : Steel Sections : Wide Flange : WFWide Flange : WF

  • Channel Sections :Channel Sections :

    Angle Sections :Angle Sections :

  • C Sections :C Sections :

    Round Tube :Round Tube :

  • Square Tube :Square Tube :

    Rectangular Tube :Rectangular Tube :

  • Timber and Steel DesignTimber and Steel Design

    Lecture 2 - Specification, Loads andDesign Methods

    < Specifications and Building Codes

    < Design Loads

    < Wind Load

    < Structural Members

    < Load Transfer between Structural Members

    < Design MethodsMongkol JIRAVACHARADET

    S U R A N A R E E INSTITUTE OF ENGINEERINGUNIVERSITY OF TECHNOLOGY SCHOOL OF CIVIL ENGINEERING

    Specifications

    Developed by organizations such as AISC, ACIASCE, and EIT

    Recommendations of good practice based onthe accepted body of knowledge

    NOT legally enforceable

  • OrganizationsEIT = Engineering Institute of Thailand

    AISC = American Institute of Steel Construction

    ASCE = American Society of Civil Engineers

    AASHTO = American Association of State Highwayand Transportation Officials

    UBC = Uniform Building Code

    BOCA = Building Officials & Code Administrators

    ATTC = American Institute of Timber Construction

    American Institute of American Institute of Steel Construction SpecificationSteel Construction Specification

    Latest: Steel Construction Manual, Thirteenth Edition

    The following specifications, codes, and standards are printed in this Manual:

    2005 AISC Specification for Structural Steel Buildings

    2004 RCSC Specification for Structural Joints Using ASTM A325 or A490 Bolts

    2005 AISC Code of Standard Practice for Steel Buildings and Bridges

    - The 3rd Edition (2001) Load and Resistance Factor Design (LRFD) Manual.

    This Manual replaces both :This Manual replaces both :

    - The 9th Edition (1989) Allowable Strength Design (ASD) Manual and

    Visite AISC Website @

    http://www.aisc.org

  • ... : http://www.eit.or.th

    ...... 1015-40

    1020-46

    487 39 () . 10310 0-2319-2410~3 0-2319-2710~11 E-mail: [email protected]

    ((.....).)

    Building Codes

    -- ....

    - -

    -

  • ArchitecturalFunctional Plans

    DesignDesign ProcessProcess

    Select StructuralSystem

    Trial Sections,Assume Selfweight

    Analysis for internalforces in member

    Member Design

    Acceptable?Redesign

    NG

    Final Design& Detailing

    OK

    Design LoopDesign Loop

    AllowableAllowable StreStrengthngth Design Design ((ASDASD))

    Design MethodsDesign Methods

    ASDASD methodmethod remainsremains practicalpractical andand isis stillstill widelywidely usedused

    allowable strength of each structural component equals or exceeds the

    required strength

    Design shall be performed in accordance with :

    W /na RR

    whereRa = required strength (ASD)

    Rn = nominal strength

    W = safety factor

    Rn / W = allowable strength

    ... 1015-40

  • Load and Resistance Factor Design Load and Resistance Factor Design ((LRFDLRFD))

    LRFDLRFD willwill becomebecome thethe dominantdominant methodmethod inin thethe futurefuture

    design strength of each structural component equals or exceeds the

    required strength

    Design shall be performed in accordance with :

    nu RR f

    where

    Ru = required strength (LRFD)

    Rn = nominal strength

    f = resistance factor

    f Rn = design strength

    Factor of Safety (FS) =Strength of member

    Strength due to load

    1) Material strength: initial variation, creep, corrosion and fatigue

    2) Method of analysis

    3) Disaster (hurricane, earthquake)

    4) Fabrication and erection stress

    5) Technology change live load ; traffic load

    6) Live load estimation

    7) Other --> residual stress, stress concentration and variation

    in dimension

    Uncertainties affecting F.S.

  • Design Loads

    < Dead Loads - self weight not known before design

    < Live Loads - change in position and magnitude

    < Wind Load

    < Seismic Load

    < Snow/Rain Load

    < Earth Pressure

    Dead Loads

    Caused by the weight of structure

    Include both the load bearing and non-load

    bearing elements in a structure

    Generally can be estimated with reasonable

    certainty

  • kg/m3 2,400 2,320 500-1,200 7,850 kg/m2 14 50, 5 10-30 5 180-360 100-200

    Live Loads

    Floor Loads

    Snow and Ice: 50 - 200 kg/sq.m.

    Traffic Load & Pedestrian Load for Bridges

    Impact Loads

    Lateral Loads: Wind & Earthquake

  • 6 (.. 2527) ... .. 2522

    (kg/m2)

    (1)

    (2) (3)

    (4)

    (5)

    (6) ()

    ()

    30

    100150

    200

    250

    300

    300

    () 6 (.. 2527) ... .. 2522

    (kg/m2)

    (7) ()

    ()

    (8) ()

    ()

    (9)

    400

    500

    500

    600

    (10)

    500

    800

  • Wind Loads

    25.0 Vq r=

    q = stagnation pressure (./.2)

    V = basic wind speed 10 (./.)

    ASCE 7-98 200483.0 VKq =

    K = 10

    10 5010 < h < 20 8020 < h < 40 120 40 160

    () (./..)

    WIND DIRECTION

    Windwardside

    Leew

    ard

    side

    0 m

    10 m

    20 m

    30 m

    Step wind loading

    ... .. 2522

  • 19

    50(8) 40(7) 30(6) 20(5) 10(4) 0(3) 0(2) 0(1)

    .. = 20 .. = 20

    .. = 20 .. = 20

    .. = 20 .. = 20

    .. = 20 .. = 20

    .. = 20 .. = 20

    .. = 20 .. = 20

    .. = 20 .. = 20

    .. = 20 .. = 20

    98.8%

    97%

    95%

    92.9%

    = 8(20)+3(20)+0.9(20)+0.8(20)+0.7(20)+0.6(20)+ 0.5(20) = 290 = 90.625%

    100%

    100%

    = 120 = 100%

    88.9%87.5%

  • Load Transfer between Structural Members

    Roof + Dead load

    Snow, Rain, Windand Construction load Floor loads

    Slab + Dead load Wall load

    Beam + Dead load

    Foundation

    Wind load Column + Dead load

    Tributary area = 0.5SL sq.m

    Load on beam = 0.5wSL kg/m

    Floor load = w kg/sq.m

    LoadLoad from from PrecastPrecast Concrete SlabConcrete Slab

    S

    L

  • Example: CPAC Hollow Core Slab HC100Example: CPAC Hollow Core Slab HC100

    600 mm

    100 mm

    SLAB WEIGHT 296 KG/M2

    PC WIRE 6 4 MM.

    SPAN 4 M.

    LIVE LOAD 300 KG/M2

    L

    L : Beam span

    w = ? kg/m Superimposed DL = 80 KG/M2

    Total Load = 296 + 300 + 80 = 676 KG/M2

    Load on Beam = 676 4 / 2 = 1,352 KG/M4 m

    2 m 2 m

    1 m 1 m

    Load Tributary Area on Beam

  • 2 m DISTRIBUTIVEWIDTH TO INT.FLOOR BEAM

    Example 2.1: Compute load on structural membersExample 2.1: Compute load on structural members

    EXTE

    RIO

    R G

    IRD

    ER

    EXTERIORCOLUMN

    INTE

    RIO

    R G

    IRD

    ER

    INTERIOR COLUMN

    EXTERIOR FLOOR

    BEAM

    INTERIOR FLOOR

    BEAM

    A

    B

    8 m

    2 m TYP.

    1 2 34 m 4 m

    INDICATESCONCENTRATEDLOAD POINT ATTRANSFER TOGIRDER

    Live Load = 500 kg/m2

    Dead Load = 600 kg/m2

    2 m

    2 m

    4 m

    INTERIOR FLOOR BEAM :INTERIOR FLOOR BEAM :

    w = 2200 kg/m

    4 mR R

    w = 2 (500 + 600) (2) / 2 = 2,200 kg/m

    R = (2,200) (4) / 2 = 4,400 kg/m

    Reaction @ Beam End :Reaction @ Beam End :

  • INTERIOR GIRDER :INTERIOR GIRDER : 21 3

    R R

    R R

    R R

    P = 2 R = 2 4,400 = 8,800 kg/m

    Point Load on Girder :Point Load on Girder :

    P = 8,800 kg

    8 mR R

    P P

    R = 3 P / 2 + P1/2 = 3 8,800 / 2 + 4,400 = 17,600 kg/m

    Reaction transfer to Column :Reaction transfer to Column :

    P1/2P1/2

  • Timber and Steel DesignTimber and Steel Design

    < Allowable Tensile Strength< Net Areas< Staggered Holes< Effective Net Area< Block Shear

    Rama 8 Bridge

    Lecture Lecture 33 -- Analysis of Tension Members

    Mongkol JIRAVACHARADETS U R A N A R E E INSTITUTE OF ENGINEERINGUNIVERSITY OF TECHNOLOGY SCHOOL OF CIVIL ENGINEERING

    T

    S W

    Types of Tension Members

  • Tension Members subjected to axial tensile forcesTension Members subjected to axial tensile forces

    - truss members

    - bracing for buildings and bridges

    - cables in suspended roofand bridges

    P

    Stress in an axially loaded tension member:

    The stress P/A must be less than a limiting stress F or

    f =PA

    < FPA

    P < FAThus the load P must be less than FA or

    The stress in a tension member is uniform throughout the cross-section except:

    - near the point of application of load, and

    - at the cross-section with holes for bolts or other discontinuities, etc.

    P

    Gusset plate

    22 mm hole

    20 x 1 cm. bar

    For example, consider an 20 x 1 cm. bar connected to a gusset plate and loaded in tension as shown below.

    b b

    a a

    Section b-b

    Section a-a

    Area of bar = 20 x 1 = 20 cm2

    Area of bar = (20 2 x 2.2) x 1

    = 15.6 cm2

    From f = P/A, the reduced area of Section b b will be subjected to higher stresses.

    However, the reduced area and therefore the higher stresses will be localizedaround Section b b.

    Section b-b

  • P P

    TENSILE STRENGTHTENSILE STRENGTH

    Use the minimum of

    P = 0.60 P = 0.60 FFyy AAggYield Yield StrengthStrength ::

    P = 0.50 FP = 0.50 Fu u AAeeUltimate Ultimate StrengthStrength ::

    0.50 Fu Ae 0.50 Fu Ae0.60 Fy Ag

    AAggGrossGrossAreaArea

    AAnnNetNet

    AreaArea

    AAeeEffectiveEffective

    AreaArea

    The unreduced area of the member = cross-section total area

    The reduced area of the member = Ag hole area

    which may be equal An or smaller

    Hole = bolt + punched(1/16 or 1.5 mm)

    + damaged metal (1/16 or 1.5 mm)

    = bolt + 3 mm

    T b

    d

    TNet area

    t

    (Net Area), (Net Area), AAnn

    Ag = Gross Area =

    An = Net Area =

    An = Ag -

  • 3-1 36 AISC A36 19 ..

    20 cm

    36 ton36 ton 1.5 cm

    Ag = 20 .1.5 . = 30 .2

    An = 30 .2 2(1.9 . + 0.3 .)(1.5 .)= 23.4 .2

    f = 36(1,000) .. / 30 .2 = 1,200 ../.2

    0.60Fy = 0.60(2,500) = 1,500 ../.2 < 1,200 ../.2 OK f = 36(1,000) .. / 23.4 .2 = 1,539 ../.2

    0.50Fu = 0.50(4,000) = 2,000 ../.2 < 1,539 ../.2 OK

    3-2 25 19 .. A36

    15 cm

    25 ton25 ton t

    Ag = 25 /0.60Fy = 25/(0.62.5) = 16.67 .2

    t = 16.67/15 = 1.11 . 12 ..

    An = 25 /0.50Fu = 25/(0.54.0) = 12.5 .2

    t

    An = 15 t (1.9 + 0.3) t = 12.8 t

    12.5 = 12.8 t

    t = 0.977 . 10 ..

  • 3-3 P A36 22 ..

    Bar 15 cm1.2 cm

    P

    P = 0.60Fy Ag = 0.60(2.5)(15)(1.2) = 27

    An = 1.2(152.20.3) = 15 .2 = Ae

    P = 0.50Fu Ae = 0.50(4.0)(15) = 30

    P 27 n

    Example 3.4 A 15 x 1 cm bar of A572 Gr. 50 steel is used as a tension member. It is connected to a gusset plate with six 22 mm. diameter bolts as shown in below. Assume that the effective net area Ae equals the actual net area An and compute the tensile design strength of the member.

    P

    Gusset plate

    22 mm bolt

    15 x 1 cm. bar

    Solution

    Gross section area = Ag = 15 x 1 = 15 cm2

    Net section area = An = (15 2 x (2.2+0.3)) x 1

    = 10 cm2

    Gross yielding design strength = 0.6 Fy Ag

    = 0.6 x 3.5 x 15 = 31.5 ton

    Fracture design strength = 0.5 Fu Ae

    Fracture design strength = 0.5 x 4.5 x 10 = 22.5 ton

    Assume Ae = An (only for this problem)

    Design strength of the member in tension = smaller of 31.5 ton and 22.5 ton

    Therefore, design strength = 22.5 ton (net section fracture controls) Ans

  • Staggered HolesStaggered Holes A

    B

    A

    B

    ++-= g

    sdnbtAn 4)3.0(

    2

    min

    s

    gs = pitch distance

    g = gage distance

    Possible failure paths: ABC or ABDE

    A

    C

    B

    E

    D

    Compute net area of each path:

    Select the minimum net areaSelect the minimum net area

    T T

    10 cm

    10 cm

    10 cm

    10 cm

    A

    B

    D

    C

    E

    F

    10 cm

    40 2(2.2) 35.6 ABCD cm= - =

    An = 35.6(1.2) = 42.7 cm2

    (control)

    21040 3(2.2) 35.94(10)

    ABCEF cm= - + =

    21040 2(2.2) 36.854(20)

    ABEF cm= - + =

    Plate thickness = 12 mm

    Bolt diameter = 19 mm

    3-4

  • TT

    5 cm

    5 cm

    5 cm

    s s

    AD

    B

    G C

    E

    F

    0

    1

    2

    3

    4

    5

    0 5 10 15 20 25 30

    , g, .

    , s

    ^2/4

    g,

    .

    s = 5 .

    s = 10 . s = 15 .

    s = 20 .

    3-5 Minimum pitch (smin)

    ABC = 15 (1)(2.2) = 12.8 .2 2

    15 (2)(2.2) 10.6(4)(5) 20

    s sDEFG = - + = +

    s ABC = DEFG2

    12.8 10.620s

    = +

    s = 6.63 . n

    3-6 A36 19 ..

    L100x75x10

    60 mm100 mm

    45 mm

    Unfolding

    g = 100 + 75 - 10 - 30 - 40 = 95 mm

    5 @ 50 mm

    A

    B

    C

    DE 30 mm

    40 mm

    ABC = 100 + 75 10 22 = 143 ..

    DEBC = 100 + 75 10 2(22) + 502/(495) = 127.6 ..

    An = (12.76)(1.0) = 12.76 .2 n

  • tw

    g

    g1g + g1 tw

    tw

    g

    g1g/2 + g1 tw/2

    3.5

    2 2

    2

    8 8 1.6 1.0569.39 2(2.2)(1.6 1.05) (1.05) (2)4(20) 4(13.68) 2

    61.6 cm

    + = - + + +

    =

    ABCDEF

    3-7 ABCDEF C38010054.5 (Ag = 69.39 .2, tw = 10.5 .., tf = 16 ..) 19 ..

    g + g1 tw60+90-10.5 = 139.5 mm

    40 mm

    200 mm

    80 mm

    139.5 mm

    40 mm

    A

    B

    C

    D

    E

    F

    tw = 10.5 mm

    g = 60 mm

    g1 = 90 mm

    100 mm

    380 mm

    90 mm

    200 mm

    tf = 16 mm

    16 mm

    10.5 mm

  • Effective Net Areas, Effective Net Areas, AAee

    Bolted or Riveted Members: Ae = U An

    P

    P

    Shaded areastressed very little

    shear lag

    U = 0.75

    III

    U = 0.85 I

    II

    U = 0.90 W, S

    I

    3.2 U

    2d/3(min.)

    dd

    2d/3(min.)

  • 3.7

    Load

    3 Bolts per lineU = 0.90 or 0.85

    Load

    2 Bolts per lineU = 0.75

    Welded Members: Ae = U Ag

    2. Longitudinal welded:

    L > 2w U = 1.00

    2w > L > 1.5w U = 0.87

    U = 0.751.5w > L > w

    - Flat plate and Bar:

    Short connection fittings: splice plate, gusset plate, and beam-to-column fitting

    1. Transverse welded: Ae = Connected area

    L

    w

    Ae = An 0.85 Ag

  • TABLE D3.1: Shear Lag Factors for Connections to Tension Members

    Case Description of Element Shear Lag Factor, U Example

    1 All tension members where the tensionload is transmitted directly to each ofcross-sectional elements by fastenersor welds (except in Cases 3, 4, 5 and 6)

    U = 1.0

    2 All tension members, except plates andHSS, where the tension load is trans-mitted to some but not all of the cross-sectional elements by fasteners or lon-gitudinal welds (Alternatively, for W, M,S and HP, Case 7 may be used.)

    LxU /1-= x

    x

    U = 1.0

    and

    An = area of the directlyconnected elements

    3 All tension members where the tensionload is transmitted by transverse weldsto some but not all of the cross-sectio-nal elements.

    = the distance from the centroid of the connected area to the plane of the connection.x

    L = length of connection.

    LxU -= 1

    The definition of was formulated by Munse and Chesson (1963).x

    If a member has two symmetrically located planes of connection,

    Munse, W.H. and Chesson, E., Jr. 1963. Riveted and Bolted Joints: Net Section Design. Journal of the Structural Division, ASCE 89 (no. ST1): 107-126.

    is measured from the centroid of the nearest one-half of the area.x

    x x

    x

    x x

  • Case Description of Element Shear Lag Factor, U Example

    4 Plates where the tension load is trans-mitted by longitudinal welds only.

    L 2w U = 1.0

    2w > L 1.5w U = 0.87

    1.5w > L w U = 0.75 L

    w

    5 Round HSS with a single concentric gusset plate

    L 1.3D U = 1.0

    D > L 1.3D DLxU /1-=p/Dx =

    6 Rectangular HSS L H

    B

    LxU /1-=

    )(422

    HBBHBx

    ++

    =

    with a single con-centric gusset plate

    H

    L H

    B)(4

    2

    HBBx

    +=

    with two side gusset plates

    HLxU /1-=

    w = plate width

    B = overall width of rectangular HSS measured 90o to the plane of the connection

    H = overall height of rectangular HSS measured in the plane of the connection

    U = 0.70

    Case Description of Element Shear Lag Factor, U Example7 bf 2/3d U = 0.90W, M, S or HP

    shapes or tees cut from these shape. (If U is calculated per Case 2, the larger value is per-mitted to be used)

    with flange con-nected with 3 or more fasteners per line in direction of loading

    bf < 2/3d U = 0.85

    with web connected with 4 or more fasteners per line in the direction of loading

    8 with 4 or more fas-teners per line in the direction of loading

    Single angles (If U is calculated per Case 2, the larger value is permitted to be used)

    with 2 or 3 fas-teners per line in the direction of loading

    U = 0.80

    U = 0.60

  • Eccentric Bracing ConnectionSydney Airport Domestic Terminal - Sydney, Australia

    3-8 W250 66.5 19 .. A36

    W 250 x 66.5 T

    T/2

    T/2

    W25066.5 (Ag = 84.70.2, d = 248 .., bf = 249 ..)T = 0.60FyAg = 0.60(2.5)(84.70) = 127

    An = 84.70 4(2.2)(1.3) = 73.26 .2

    U = 0.90 bf > 2/3dAe = UAn = 0.90(73.26) = 65.93 .2

    T = 0.50FuAe = 0.50(4.0)(65.93) = 132 T = 127 n

  • Example 3.2 A single-angle tension member, an L90 x 90 x 10 mm, is connected to gusset plate with 22-mm-diameter bolts. A36 steel is used. The service loads are 16 ton dead load and 8 ton live load. Investigate this member for compliance with the AISC Specification. Assume that the effective net area is 85% of the computed net area.

    L90 x 90 x 10 mm

    Section

    Solution First compute tensile strengths.

    Gross section: Ag = 17.1 cm2 ( .5)P = 0.6 Fy Ag = 0.6(2.5)(17.1) = 25.7 tonYielding design strength:

    An = 17.1 1 x (2.2+0.3) = 14.6 cm2Net section:

    Ae = 0.85An = 0.85(14.6) = 12.4 cm2Effective area:

    The design strength is the smaller value: P = 24.8 ton (Fracture)

    Dead Load + Live Load = 16 + 8 = 24 ton

    Since the design strength 24.8 ton > 24 ton required by loads,the member is satisfactory. Ans.

    Fracture design strength: P = 0.5 Fu Ae = 0.5(4.0)(12.4) = 24.8 ton

    Single Angle ConnectionsSydney Convention &Exhibition Centre - DarlingHarbour, Australia

  • Example 3.4 Determine the effective net area for the tension member

    L90 x 90 x 10 mm

    Section

    Gross section: Ag = 17.1 cm2 ( .5)An = 17.1 1 x (2.2+0.3) = 14.6 cm2Net section:

    Only one leg of the cross section is connected, so the net area must be reduced.

    .5, the distance from the centroid to the outside face of an L90x90x10 is

    cm 58.2=x

    cm 58.2=x

    7.5 cm7.5 cm

    The length of the connection is L = 7.5 + 7.5 = 15 cm

    828.01558.211 =-=-=\

    LxU

    Ae = UAn = 0.828(14.6) = 12.09 cm2Effective area:

    Alternative U : this angle has 3 bolts in the direction of load.

    L90 x 90 x

    10 mm

    the reduction factor U can be taken as 0.60

    Either U value is acceptable, and the code permits the larger one to be used.

    Computed U is more accurate.

    Alternative U can be useful during preliminary design.

    Ae = UAn = 0.60(14.6) = 8.76 cm2Effective area:

  • Block Shear

    Tbs = 0.30Fu Av + 0.50Fu AtBlock Shear

    PP

    Tension area

    Shear area

    P P

    Shear areaP

  • 3-11 A36 19 ..

    T

    T

    L150x100x12 mm, A = 28.56 cm29 cm 6 cm

    5 cm

    10 cm

    10 cm

    :T = 0.30(4.0)(25-2.5(2.2))(1.2)+0.50(4.0)(6-0.5(2.2))(1.2) T = 39.8

    :T = 0.60FyAg = 0.60(2.5)(28.56) = 42.8 An = 28.56 2.2(1.2) = 25.92 .2

    U = 0.85 AISC T = 0.50FuAe = 0.50(4.0)(0.8525.92) = 44.1 T = 39.8 n

    3-12

    T T

    10 cm

    PL1.2 20 cm

    :T = 0.30(4.0)(2)(101.2) + 0.50(4.0)(201.2)

    = 76.8 :

    T = 0.60(2.5)(201.2) = 36.0 T = 36.0 n

  • Timber and Steel DesignTimber and Steel Design

    < Selection of Sections

    < Rods and Cables

    < Sag Rods

    Lecture Lecture 44 -- Design of Tension Members

    Mongkol JIRAVACHARADETS U R A N A R E E INSTITUTE OF ENGINEERINGUNIVERSITY OF TECHNOLOGY SCHOOL OF CIVIL ENGINEERING

    Selection of Sections

    Slenderness ratio:(tension members) 300r

    L

    T = 0.60 FyAgy

    g FTA

    60.0min =

    T = 0.50 FuAeu

    e FTA

    50.0min =

    UFT

    UAA

    u

    en 50.0

    minmin ==

    +=UF

    TAu

    g 50.0min

    300min Lr =

  • 4-1 W300 8 A36 100 22 ..()

    Load

    Ag :

    U = 0.90 W300 tw = 14 ..

    2100min 4(2.2 0.3)(1.4) 69.6 cm0.50(4.0)(0.90)g

    A = + + =

    2100min 66.7 cm0.60 0.60(2.5)g y

    TAF

    = = =

    8(100)min 2.67 cm300 300Lr = = =

    W30065.4 (Ag = 83.36 .2, d = 298 .., bf = 201 .,tf = 14 ., ry = 4.77 .)

    : T = 0.60FyAg = 0.60(2.5)(83.36) = 125.0 > 100 OKT = 0.50FuUAn U = 0.90 bf /d > 2/3

    An = 83.36 4(2.5)(1.4) = 69.36 .2

    T = 0.50(4.0)(0.90)(69.36) = 124.9 > 100 OK8(100) 168 3004.77

    Lr

    = = < OK

    Check Block Shear Strength: From block shear path, Four blocks will separate from the tension member (two

    from each flange).

    5 cm

    5 cm

    5cm 8cm 8cm

    W300X65.4

    At = 4 x [5 0.5(db+0.3)] x tf

    At = 4 x (5 2.5/2)(1.4) = 21.0 cm2

    Av = 4 x [5+8+8 2.5(db+0.3)] x tf

    Av = 4 x (21 2.5(2.5))(1.4) = 82.6 cm2

  • Calculate block shear strength:

    Tbs = 0.30FuAv + 0.50FuAt

    Tbs = 0.30 x 4.0 x 82.6 + 0.50 x 4.0 x 21.0 = 141.1 tons

    Summary of solution:

    Member W300x65.4

    Design load 100 ton

    Yield strength 125.0 ton

    Ultimate strength 124.9 ton

    Block shear strength 141.1 ton

    W300 x 65.4 is adequate for T = 100 tons and the given connection Ans.

    Design strength = 124.9 tons (ultimate strength governs)

    2cm33.21)5.2(60.0

    3260.0

    min ===y

    g FTA

    232min 18.82 cm0.50 0.50(4.0)(0.85)

    3(100)min 1.0 cm300 300

    nu

    TAF U

    Lr

    = = =

    = = =

    3, U = 0.85

    4-2 3 32 22 .. () A36 (Fy = 2,500 ../.2, Fu = 4,000 ../.2)

  • (..)

    25.. (.2)

    (.2)

    9 2.25 21.07 150 x 100 x 9(A=21.84, r=2.15)

    10 2.50 21.32 120 x 120 x 10(A=23.20, r=2.36)

    12 3.00 21.82 100 x 100 x 12(A=22.70, r=1.94)

    13 3.25 22.07 125 x 75 x 13(A=24.31, r=1.60)

    L150 x 100 x 9 ..

    4-3 BC 20 A36 2 19 ..

    C

    B 220min 13.3 cm

    0.60 0.60(2.5)g y

    TAF

    = = =

    3(200)min 2.0 cm

    300 300Lr = = =

    12 .. Ae U = 0.85220min 11.8 cm

    0.50 0.50(4.0)(0.85)n u

    TAF U

    = = =

    min Ag = 11.8 + 2(1.9 + 0.3)(1.2) = 17.1 cm2

    2L 75 75 12 .. (Ag = 33.4 .2, ry = 2.22 .) n

  • Rods and CablesRods and Cables

    4.1

    CableOpen socket

    Open socket connection

    RodWeld

    Weld

    Sag Rod

    Anchorsocket

    Steel plateor washer

    StructuralmemberCable

    0.33D uTA

    F=

  • Example 3.14 A threaded rod is to be used as a bracing member that must resist a service tensile load of 3.6 tons. What size rod is required if A36 steel is used?

    Solution: Required area = 2cm 73.20.433.0

    6.333.0

    =

    ==u

    D FTA

    From AD = ,4

    2dp

    Required d = cm 86.1)73.2(4

    =p

    Use a 19-mm-diameter threaded rod (AD = 2.84 cm2) Ans.

    To prevent damage during construction, use rod min. of 16 mm.

    CableCable--Stayed BridgesStayed Bridges

  • CableCable--Stayed RoofsStayed Roofs

    Manchester City Stadium

    Olympic stadium roof - Munich

    Lisbon Expo 1996 - and 1998

    Strand & Wire ropeStrand & Wire rope

    Wire Strand Wire rope

    Low Relaxation Prestressed Concrete Steel Strand (PC Strand)

  • BracingSag rod

    Tension Members Tension Members In Roof TrussesIn Roof Trusses

    PinnedSupport

    Span

    RollerSupport

    Purlin

    Truss

    Truss

    Bay Truss Members :Truss Members : -- TrussTruss

    -- PurlinPurlin

    -- Sag rodSag rod

    -- BracingBracing

    y wwxwy

    x

    q

    T

    q

  • s/2

    s/2

    s s/2

    Truss

    Tributary area fordesign of rod ab

    a b

    Purlin

    Sag rod

    T1

    T2

    RT1

    T2

    R

    Design of Sag RodDesign of Sag Rod

    31

    6 @ 4 m = 24 m

    4 m

    12.65 m

    C 200 24.6 purlins3.16

    6 mSag rods

    Truss

    Truss

    Truss

    6 m

  • 4-5 6.0 A36 16 .. 80 ./.2 100 ./.2

    : = 80.00 ../.2

    = (7 24.6 ) / 12.65 = 13.61 ../.2

    = 100.00 ../.2

    = 80 + 13.61 + 100 = 193.61 ../.2

    T1 = (1/3.16)(193.61) = 61.27 ../.2 1

    33.16

    W

    T1W

    T1

    Details of sag rod connections

    4 m

    24 m

    12.65 m

    2 m

    :ST1 = 12.65(2.0)(61.27) = 1,550 ..

    ST1ST121.550 1.17 cm

    0.33 0.33(4.0)D u

    TAF

    = = =

    TTOP

    :TTOP = (3.16/3)(1550) = 1633 ..

    21.633 1.24 cm0.33(4.0)D

    A = = 16 . ( AD = 2.01 .2 )

  • < Sections used for Columns

    < Critical Load (Eulers Formula)

    < Allowable Stress

    < Effective Length

    Timber and Steel DesignTimber and Steel Design

    Lecture Lecture 55 -- Analysis of Compression Members

    Mongkol JIRAVACHARADETS U R A N A R E E INSTITUTE OF ENGINEERINGUNIVERSITY OF TECHNOLOGY SCHOOL OF CIVIL ENGINEERING

  • Tall BuildingsTall Buildings

  • World Trade Center, WTCNew York

    WTC on September 11, 2001

  • Frame Buckling MechanismFrame Buckling Mechanism

    How can column fail?How can column fail?

  • Buckling Buckling TypesTypes

    Sections used for ColumnsSections used for Columns

    Double angleWide flange Tube Pipe

    Built-up sections

  • Critical LoadCritical Load

    P

    L

    B

    A

    P

    L

    B

    A

    Buckling of column due toaxial compressive load P

    Buckling = Type of failure which occurs when column is slender

    ShortYielding

    LongBuckling

    IntermediateYielding & Buckling

  • Columns with Pinned EndsColumns with Pinned Ends

    P

    L

    B

    A

    Ideal column: - perfectly straight- linearly elastic material- no imperfections

    P

    L/2

    B

    A

    yx u

    umax

    P

    P

    M = -Pu

    By

    x

    u P

    2

    2

    dEIdx

    u=

    Bending-momentequation

    2

    2 0d P

    EIdxu

    u+ =Differential equationof deflected curve

    Critical load:p

    =2

    2crEIP

    LEulers formula

    Buckling about the Weakest AxisBuckling about the Weakest Axis p=2

    2From crEIP

    L

    I = least moment of inertia

    Which axis give the least moment of inertia?a

    a

    b

    b

    Pcr

    For symmetry section,

    use minimum of Ix and Iyx

    y

    Angle sectionequal legs

    45oIx

    Imin ImaxIy

    Angle sectionUnequal legs

    q Ix

    IminImax

    Iy

  • Critical StressCritical StressDividing critical load by cross-sectional area

    2

    2

    ALEI

    APcr

    crp

    s ==

    L/r

    scr

    Eulers curve

    spl Proportional limit

    0

    AIr /=Radius of gyration

    2

    2

    )/( rLE

    crp

    s =Critical stress

    rL / Slenderness ratio

    5-1 (a) W250x175 5.0 F.S. = 2 Proportional Limit = 2,500 ../.2 (b) (a) 2.5 (a) W250175 (A = 56.24 .2, rx = 10.4 ., ry = 4.18 .)

    r ry = 4.18 .L/r = 5.0(100)/4.18 = 119.6

    ( )( )

    2 6

    2

    2.1 101,448

    119.6PA

    p = = ../.2 < 2,500 ../.2 OK

    (b) L/r = 2.5(100)/4.18 = 59.81

    ( )( )

    2 6

    2

    2.1 105,791

    59.81PA

    p = = ../.2 < 2,500 ../.2 NG

  • Pipe or tubecolumn Base plate

    welded to column

    Welded or boltedconnection

    Stiffening plateswelded to flange

    (Inflection Point) KL

    KL=L

    K = 1.0(a)

    K = 0.5(b)

    KL = 0.5L LKL = 0.7L

    K = 0.7(c)

    L

  • K 0.5 0.7 1.0 1.0 2.0 2.0

    K 0.65 0.8 1.2 1.0 2.1 2.0

    Effective Length Factor Effective Length Factor ((K K ))

    Buckling AxisBuckling Axis

    P

    yy

    x

    x

    x x

    y

    y

    Deflectedpositions

    Buckling about y-y axisin the x-x plane

    Buckling about x-x axis in the y-y plane

    Columns normally buckle laterally (the cross-section moves sideways).

    This is usually the y-y axis, but both must be considered.It occurs about the axis which has the highest value of L / r.

    Usually, rx > ryx-x = strong axis

    y-y = weak axis

    But . . .But . . .

  • x - x = Strong axis ()

    y - y = Weak axis ()

    = Lateral support against

    buckling about weak axis

    x x

    y

    y

    2 m

    2 m

    KL = 2 m

  • 2 m

    2 m

    KL = 4 m

    Column Buckling Strength from ExperimentColumn Buckling Strength from Experiment

    Weight

    a b

    Eulers formula

    Fy

    L/r

    Pu/A

    Short Column fails by Yielding, Long Column fails by Buckling

    So, What happen to Intermediate Column ? Fails by ???

  • Buckling Buckling strength strength vs. slendernessvs. slenderness

    MAX 200MAX 200

    A

    A

    KLr

    Elasticbuckling

    Inelasticbuckling

    Failu

    re s

    tress Band of

    test data

    Eulersformulas =

    crcr

    PA Where is section AWhere is section A--AA

  • Cc

    KL/r

    P/A

    p=

    2

    2( / )crP EA KL r

    Eulers formula:

    ElasticElastic vs. vs. InelasticInelastic BucklingBuckling

    = -

    2

    2

    ( / )12

    cry

    c

    P KL rFA C

    Elastic Buckling = 0.50Fy ( )

    2 2

    2 2/ c

    E ECL r

    p p= =

    Fy

    0.50Fy

    yc F

    EC22p

    =

    ( )

    ( ) ( )

    -

    =

    + -

    2

    2

    3

    3

    /1

    2

    3 / /53 8 8

    yc

    a

    c c

    KL rF

    CF

    KL r KL rC C

    < cKL Cr

    ( )p

    =2

    212

    23 /a

    EFKL r> c

    KL Cr

    Inelastic Buckling:

    Elastic Buckling:

    p=

    22c

    y

    ECF

    0.60Fy Fa

    / 223/12

    yF

    AISCAISC FormulasFormulasAllowable Compressive StressAllowable Compressive Stress

    F.S. Variable

    Cc

    KL/r

    P/A

    p=

    2

    2( / )crP EA KL r

    = -

    2

    2

    ( / )12

    cry

    c

    P KL rFA CFy

    F.S. = 23/12

  • 5-2 P W300 94

    P

    P

    5 mW300x106

    W30094 ../.(A = 119.8 .2, ry = 7.51 .) - 5.1 K = 0.8

    2 62 (2.1 10 ) 128.82,500c

    C p = =

    0.8(500) 537.51

    KLr

    = =

    KL/r < Cc (5.8)3

    35 3(53) (53)F.S. 1.813 8(128.8) 8(128.8)

    = + - =

    2

    22

    (53)1 2,5002(128.8)

    1,264 kg/cm1.81a

    F

    -

    = =

    P = FaAg = (1.26)(119.8) = 151 n

    30 cm

    PL1.2 50 cmy

    39.2 cmMC380 100

    67.3 kg/m

    5-3 .1 P KL = 6.0

    = .12.1542.231

    )2.20)(71.85(2)6.0)(50(2.1=

    +y

    MC380100 67.3 ./.

    (A=85.71 .2, Ix=17,600 .4,

    Iy = 671 .4, cy = 2.50 .)

    A = 1.2(50) + 2(85.71) = 231.42 .2

    Ix = 2(17,600) + 2(85.71)(20.2-15.12)2 + (1/12)(50)(1.2)3

    + (1.2)(50)(15.12-0.6)2

    = 52,281 .4

  • Iy = 2(671) + 2(85.71)(15+2.5)2 + (1/12)(1.2)(50)3 = 66,339 .4

    .03.1542.231

    281,52==r

    600 4015.03

    KLr

    = =

    .1 Fa = 1,337 ../.2

    P = Fa Ag = 1.337(231.42) = 309.4

    5-4 W25066.5 7.2 x-x 3.6 y-y A36

    W25066.5 (A = 84.7 .2, rx = 10.8 ., ry = 6.29 .)1(360) 576.29

    y

    y

    KLr

    = = ()

    ()0.8(720) 5310.8x

    x

    KLr

    = =

    .1 Fa = 1,263 ../.2

    P = (1.263)(84.7) = 107 n

  • < Column Design Tables

    < Local Buckling

    < Alignment Chart

    < Column Base Plate

    Timber and Steel DesignTimber and Steel Design

    Lecture Lecture 66 -- Design of Compression Members

    Mongkol JIRAVACHARADETS U R A N A R E E INSTITUTE OF ENGINEERINGUNIVERSITY OF TECHNOLOGY SCHOOL OF CIVIL ENGINEERING

    Use of structural steel column-tree assemblies prefabricated in the shop to avoid welding at the critical regions of frame structures.

  • Overall view of the erection of a structural steel- framed structure usingprefabricated tree-column assemblies.

    Column Design TablesColumn Design Tables

    .1 2,500 ./.2

    KL/r vary from 1 to 200(Max)

    Fa vary from 1,497 ksc to 270.3 ksc

    50

    1,281 ksc

    .2 W, Fy = 2,500 ./.2

    .3 .4-5 .6 Strength Reduction Factor (SRF)

  • 6-1 W350 A36

    KL/r = 500/8.78 = 57Fa = 1,238 ./.2

    P = 1,238(146)/1,000 = 181 > 170 OK

    W350 x 115

    5.0 m

    170 ton

    170 ton

    KL/r = 50 Fa = 1,281 ./.2 .1Areqd = 170(1,000)/1,281 = 132.7 .2

    W350 x 106 (A = 135.3 . 2, ry = 8.33 .)KL/r = 500/8.33 = 60

    Fa = 1,219 ./.2

    P = 1,219(135.3)/1,000 = 165 < 170 NG W350 x 115 (A = 146 . 2, ry = 8.78 .)

    - Large part of load transferred through bearing between columns

    Shop weld

    Field weld

    (a) Columns from same W series (dlower < 5 cm greater than dupper )

    Erectionbolts

    Spliceplate

    d for uppercolumn

    d for lowercolumn

    Erectionclearance

    Column SplicesColumn Splices

    - 60-90 cm above floor levels to keep from interfering with beam

  • Clip angles

    Erection bolts

    Bearing or butt plate

    Shop weld

    (b) Columns from different W series

    Local Buckling of the Beam Flange Local Buckling of the Beam Flange

  • Classification of Sections for Local BucklingClassification of Sections for Local Buckling

    Sections are classified as :

    Compact sections

    Noncompact sections

    Slender-element sections

    lp = width-thickness ratio

    h t w

    Point of fixity

    Point of fixity

    t f

    b f / 2

    STIFFENED ELEMENT = WEB; WIDTH/THICKNESS RATIO = h / twUNSTIFFENED ELEMENT = FLANGE; WIDTH/THICKNESS RATIO = 1/2 bf / tf

  • bb bb

    tt

    t

    welds

    Unstiffened Elements

    b

    bt

    welds

    t bt

    b

    t

    Stiffened Elements

    Stiffened and Stiffened and UnstiffenedUnstiffened ElementsElements

    6.1

    N.A.h / tw

    N.A.1/2 bf / tf

    1/2 bf / tf

    b / t

    b / t

    yF/544 yF/795

    yF/795

    yF/100,2

  • TABLE B4.1 Limiting Width-Thickness Ratios for Compression Elements

    Case Description ofElement

    WidthThick-nessRatio

    Unstiffened Elements:Flexure in flange of rolled W-shaped sections andchannels

    1

    Limiting Width-Thickness Ratio

    lpcompact

    lrnoncompact

    Example

    b

    tb / t yFE /38.0 yFE /0.1

    Unstiffened Elements:Flexure in flange of doubly And singly symmetric W-shaped built-up sections

    2

    b

    tb / t yFE /38.0

    ][],[/95.0

    ba

    Lc FEk

    Unstiffened Elements:Uniform compression in flange of rolled W-shapedsections

    3

    b

    tNAb / t yFE /56.0

    TABLE B4.1 Limiting Width-Thickness Ratios for Compression Elements

    Case Description ofElement

    WidthThick-nessRatio

    Unstiffened Elements:Uniform compression in flange of built-up W-shapedsections and plates or angle legs projecting frombuilt-up W-shaped sections

    4

    Limiting Width-Thickness Ratio

    lpcompact

    lrnoncompact

    Example

    b

    tNAb / t

    ][/64.0

    a

    yc FEkt

    b

    Unstiffened Elements:Uniform compression inlegs of single angles, legsof double angles with seperators, and all otherstiffened element

    5

    b

    tNAb / t yFE /45.0

    Unstiffened Elements:Flexure in legs of singleangles

    6 b / t yFE /91.0

    b

    tyFE /54.0

  • TABLE B4.1 Limiting Width-Thickness Ratios for Compression Elements

    Case Description ofElement

    WidthThick-nessRatio

    Unstiffened Elements:Flexure in flanges of tees7

    Limiting Width-Thickness Ratio

    lpcompact

    lrnoncompact

    Example

    b

    tb / t yFE /0.1yFE /38.0

    Unstiffened Elements:Uniform compression instems of tees

    8 dt

    NAd / t yFE /75.0

    Stiffened Elements:Flexure in webs of doublysymmetric W-shapedsections and channels

    9 h / tw yFE /70.5yFE /76.3 h tw

    Stiffened Elements:Uniform compression in webs of doubly simmetricW-shaped sections

    10 NAh / tw yFE /49.1 h tw

    TABLE B4.1 Limiting Width-Thickness Ratios for Compression Elements

    Case Description ofElement

    WidthThick-nessRatio

    Stiffened Elements:Flexure in webs of singly-symmetric W-shapedsections

    11

    Limiting Width-Thickness Ratio

    lpcompact

    lrnoncompact

    Example

    hc / tw yFE /70.5r

    y

    p

    yp

    c

    MM

    FE

    hh

    l

    -

    2

    09.054.0

    b

    tw

    2ch

    cg2

    phpna

    Stiffened Elements:Uniform compression inflanges of rectangular boxand hollow structuralsections of uniformthickness subject tobending or compression;flange cover plates and diaphragm plates betweenlines of fasteners or welds

    12 b / t yFE /40.1yFE /12.1b

    t

    Stiffened Elements:Flexure in webs of rectangular HSS

    13 h / t yFE /70.5 ht

    yFE /42.2

  • TABLE B4.1 Limiting Width-Thickness Ratios for Compression Elements

    Case Description ofElement

    WidthThick-nessRatio

    Stiffened Elements:Uniform compression in allother stiffened elements

    14

    Limiting Width-Thickness Ratio

    lpcompact

    lrnoncompact

    Example

    NAb / t yFE /49.1

    b

    t

    Stiffened Elements:Circular hollow sections

    In uniform compression

    In flexure

    15

    yFE /07.0

    t

    D / t

    D / t

    NA

    yFE /31.0

    yFE /11.0D

    ,/4][

    wc

    a

    thk = but shall not be taken less than 0.35 nor greater than 0.76 for calculation purpose.

    (See Cases 2 and 4)[b] FL = 0.7Fy for minor-axis bending, major axis bending of slender-web built-up W-shaped members, andmajor axis bending of compact and noncompact web built-up W-shaped members with Sxt / Sxc 0.7;FL = FySxt / Sxc 0.5Fy for major-axis bending of compact and noncompact web built-up W-shaped memberswith Sxt / Sxc < 0.7. (See Case 2)

    (a) Diagonal bracing (b) Shear wall

    AISC (conservative) K = 1.0

    SideswaySidesway Inhibited FramesInhibited Frames

  • bb

    c

    c

    LILI

    LEI

    LEI

    GS

    S=

    S

    S=

    beamsfor 4

    columnsfor 4

    0

    0.1

    0.2

    0.3

    0.40.50.60.70.80.91.0

    2.03.05.0

    10.050.0

    GA

    0

    0.1

    0.2

    0.3

    0.40.50.60.70.80.91.0

    2.03.05.010.050.0

    GB

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    K

    (a) Sidesway prevented (b) Sidesway uninhibited

    GA

    GBK

    0

    1.0

    2.0

    3.0

    4.05.06.07.08.09.0

    10.0

    20.030.050.0

    100.0

    0

    1.0

    2.0

    3.0

    4.05.06.0

    8.010.0

    30.0

    100.0

    7.09.0

    20.0

    50.0

    1.0

    1.5

    2.0

    3.0

    4.05.010.020.0

    Alignment ChartsAlignment Charts

    K :1.

    3. GA GB K

    2. GA GB

    K = 1.6

    Alignment Charts:1. , G G = 102. , G G = 1.03. , 6.2

    6.2 Condition at far end Sidesway Prevented Sidesway UninhibitedPinned 1.5 0.5Fixed against rotation 2.0 0.67

  • 6-2

    6.0 m 9.0 m

    3.0 m

    3.5 m

    A

    HEB

    GD

    C IF

    W20

    0x30

    .6W

    200x

    30.6

    W20

    0x30

    .6W

    200x

    30.6

    W450x76.0 W450x124

    W400x56.6 W400x94.3

    W20

    0x56

    .2W

    200x

    56.2

    Ix L Ix/L

    AB W200x30.6 2690 350 7.686BC W200x30.6 2690 300 8.967DE W200x56.2 4980 350 14.23EF W200x56.2 4980 300 16.60GH W200x30.6 2690 350 7.686HI W200x30.6 2690 300 8.967BE W450x76.0 33500 600 55.83CF W400x56.6 20000 600 33.33EH W450x124 56100 900 62.33FI W400x94.3 33700 900 37.44

    Stiffness factors:

  • G factors for each joint:

    JOINT (Ic/Lc)/ (Ib/Lb) G

    A 10.0B (7.686+8.967)/55.83 0.298C 8.967/33.33 0.269D 10.0E (14.23+16.60)/(55.83+62.33) 0.261F 16.60/(33.33+37.44) 0.235G 10.0H (7.686+8.967)/62.33 0.267I 8.967/37.44 0.240

    COLUMN GA GB K

    AB 10.0 0.298 0.77BC 0.298 0.269 0.63DE 10.0 0.261 0.77EF 0.261 0.235 0.61GH 10.0 0.267 0.77HI 0.267 0.240 0.61

    Column K factors from chart:

  • weld

    Anchor bolts

    (a) (b)

    Concretefooting

    Column Base PlatesColumn Base Plates

    A1 = = B x N

    A2 =

    Transfer bearing to concrete footing

    B

    NA1

    A2

    A1 = A2,

    A1 A2,

    Allowable Bearing Pressure, Allowable Bearing Pressure, FFppA1 A2Fp =

    fc =

    0.35p cF f =

    2

    1

    0.35 0.7p c cAF f fA

    =

    Fp

    A2/A10 1 2 3 4

    0.35fc

    0.7fc2

    12

    10.35 c

    PAA f

    =

    2

    1 1

    0.35 cAP f

    A A=

  • Minimum Thickness of Column Base PlateMinimum Thickness of Column Base Plate

    P

    fp

    t

    B or N

    1 cm

    1 cm

    bfB

    d N

    m

    0.95d

    m

    n n0.80bf

    fp = P / ( B N )

    1 . 0.80bf 0.95d

    :2

    2 2p

    p

    f nnM f n= = 2

    2 2p

    p

    f mmM f m= =

    1 cm

    t 1 . t

    3 21/ (1)( ) /( / 2) / 612

    S I c t t t= = =

    M/S Fb

    ( )2 22 2

    / 2 3/ 6

    p pb

    f m f mMFS t t

    = = =23 p

    b

    f mt

    F=

    ,23 p

    b

    f nt

    F=

    AISC Fb = 0.75Fy:

    2 py

    ft m

    F= 2 p

    y

    ft n

    F=

  • Design of Column Base PlatesDesign of Column Base Plates

    1 cm

    1 cm

    bfB

    d N

    m

    0.95d

    m

    n n0.80bf N B m = n

    1N A= + D

    A1 =

    D = 0.5(0.95d 0.80bf)

    N B B = A1/N

    6-4 A36 W30094.0 (d= 30 ., bf = 30 .) 160 2.5 2.5 = 210 ./.2

    A1

    ( )

    22

    21 ' 2

    2

    1 1 160 75.8 cm0.35 250 0.35 0.210c

    PAA f

    = = =

    21 '

    160 1,088 cm0.7 0.7(0.210)c

    PAf

    = = =

    :0.5(0.95 0.80 ) 0.5(0.95(30) 0.80(30)) 2.25 cmfd bD = - = - =

    1 1088 2.25 35.2 cmN A= + D = + = ( 35 .)1 1088 31.1 cm

    35ABN

    = = = ( 32 .)

  • :2160(1000) 143 kg/cm

    (32)(35)pPf

    B N= = =

    m n :0.95 35 0.95(30) 3.25 cm2 2

    N dm - -= = =

    0.80 32 0.80(30) 4.00 cm2 2

    fB bn- -

    = = =

    2

    ' 22

    1

    2500.35 0.35(210) 549 kg/cm(32)(35)P c

    AF fA

    = = =

    ' 20.7 147 kg/cmP cF f= =

    fp < Fp OK

    :

    1432 2(4.0) 1.9 cm2,500

    p

    y

    ft n

    F= = = ( 2 .)

    PL 2 32 35 . n

  • !"#

    $%"" %##$#"&"%'%""%'

    $%"#(" %&&'( &&&"%'%""%'

    !

    ) *

    ) +,

    ) -*

    -..+

    /

  • +0 /...+

    &1234567

    8

    8

    9

    :

    9

    +

    8

    8

    :

    8 0

    : 0 ;

    : < ++

    +0*

    +0

    0 *

    8

    9

    :

  • "# "#

    "# "#

    $

    ! %&

    '()*

    %+ ,&-.

    $%/"-.

    %+&"+&0,&

    ()*

    %+ ,&-.

    $% /"%-.

    ,&

    "

    0

    0

    +

    1

    0

    ;

    0;

    1 %

    % %

    0

    0 =

    = 0;

    23'444

  • !" #$%'$ ( &) $

    *+,-./0.

    >

    >+/

    !/..?

    !/..?

    1#' "

    2-../.

    %5.65&7%.#"

    - %.#"688&6.5#%6955:0

    34

    567 89:4;

    1" #--./. ! $*+,-./.

  • .@@++

    .

    .

    A

    0>>

    A

    >>

    ( A( O

    ;..+ A

    6&1 &1&)(&) !"

    ( A P/ P/ '('"

    #"" & :#&

    #90## &

  • 4 AA--D>&L =KQ RS 2*,--../0.2

    1--D> -0. T -.. PU -0. U ,.. ) *+-0.A&)>

    ?AC

    :#

    #""

    % /+

    >

    8.: 8.888"

    1

    1

    ;A

  • ++/--

    -)

    .++...

    -/..

    D

    8

    +/

    D!!

    9

    :

    1

    1

    &8889"8896

    505

  • "

    "

    /+

    /+

    55.8

    JA!='A? &L# ! "#$ #% =K ! &! "#$ #%Q =K ! 4! "#$ #% =KQ =KJ ?

    ! "#$ #% =K !

    &! "#$ #%Q =K !

    8.: 8.888"

    1

    1

    4! "#$ #% =KQ =KJ ?

    J!(&) % %0V$A! &L '' ' ''

    %"#$$ # Q ' 8.58 %"#$$A!"% "#$(J! !'

    J% !%(&) % %"#$$$ & $

    #$9)

    $:

    ?

    #$9)

    #$9

    % % Q %(

    'W %X #QA%$(&) % % !=""#$V$$( % %

  • %*

    %* "#$$A!(V"%% !%&J0 "960 68 09#7# 68

    $

    ()**++,+

    " 8.580 68958 68

    $"09#7# 68

    ()**+,+

    "

    696:# 68 8.58

    %*

    %*

    7"09588 8.58 1

    $%%?& % AB(JO"#$ #J!( # %!.-YV2.=$!A$ "#$B$Q %6.8

    >

    :

    C8C: 8

    &

    E

    :F 8

    &

    '$

    9

    E

    9

    : 8C> 8

    '

    &

    E

    9

    88G 8

    &

    '

    >

    '#$

    8E $

    &

    FE:>

    $

    &

    '#

    %*

    %*

    %*

    %*

  • '

    0?+ .+/..

    (>

    )+

    )+

    .

    .

    '

    '

    >>

    >

    '

    '

    *

    *

    '

    % "#$(0960 68

    69"889888 &

    1

    55.8

    58.8

    58.8

    >>

    >

    '

    '

    *

    *

    '

  • *!$

    '

    '

    -

    0 >

    /+

    /+

    - A='A? %"#$$(%.--D>&L#$.,*+.- !D.-Q # %(RS 2*,--../0.2

    +1/%.--D> 01 -0. 2T -.. PU -0. 2U ,.. ZS +*3,-0.A.%@088:" ! !

    0 :F9

    >>

    0 FE

    >

    RP -.++RS -.++02*,--*+,-../0.2[[ 8445:8445: \[6 8447&:

    RP -.+-RS -.+-02*,--*,--../0.2[6 8447&: \ [[ 8-4:8-4: \[] 874:

    [] 874: \

    [[ 84:84:

  • % !%

    8/'W D--/@.2+-D

    [] 874: \

    [[ 84:84:

    ='A?=""#$%&%"# % % 6

    +,

    "

    -"

    ""

    =

    4/(

    1 &(1 4

    1/? 6

    +,

    ;LCD=MGNN?GABH

  • &'9( "&)4..3V3%2WX,-&$%&$ 2'Y&Z!$$T''$3[SR/\

    ;

    = =

    *+&)4..3V3 ], Q31RR^]- Q00RR^.Q0]- Q1R1SR^/Q_VR0SR

    "$$!2&$`"&$

    1&0+('..., *&0/(!%+ 1/4 , (/0+(4 1/4 0/0,"

    = 5

    ./33- 7./33+1'4..,7('34.RR+SR0

    *&0/(RR+SR0 a ('34.RR+SR0 @A

    "$$!2&

    (/4

    11 1 ( & -" "" "

    =

    (/41 (4 (/0 1'4..+1/1,1 1+(/0, ( &

    )*/1 1/1 (/0

    700'3&3RR Q 00/3"& b &0"& @A

  • 0+12&;cC>dcC>MGABe?>3CPH

    .

    "#6

    =

    ./&4

    1

    (

    ./&4 ./)

    $6

    1

    61 %

    1 1

    & 1

    + % 1,+ % 1, &( % (1

    %

    & 7 7./)4-1&

    1./)4

    - -

    &'94"&)1[.3.-/Q1,R1SR 5- Q0VRVSR ], Q3.RR ]- Q3[RR2'.Q,RVSR fZ&$%#&"2W!2-g6 Q03.RR+SR0$$$#"2WX,-!h!2,."&Y#&0.SR !"$

    *

    &.+('..., ./33+1'4..,+ 1/4 , (/.+ 1/4 &/*,"

    = 5 =

    " =7 /0&SR a 1.SR @A

    (/4

    1 (/. 1'4..+(/4,&.+('..., 1 1+(/., ( &0&/0 (/4 (/.=

    " =7(*/(SR a 1.SR @A

  • 1

    (&.+('..., 0.

    ./&4 ./&4+1(.,

    7(= 70.%1.71./0SR

    ( 7+1.,+14,74..SR0>0.SR0 @A

    714%1B &/*7/3SR

    7&.+('...,%4..73.RR+SR0

    1 1& &+3.,+/3, 1/33./)4+1'4..,

    77;iAPJddC MG=>?cCAKGABH

    /0

    /01

    :

    1 4

    1

    1

    /01

    1

    1

    /04

    1

    4

  • /0

    U!'""2&2'- 7 'C

    %#"UC2'-#'%$#"U&

    -C

    C -

    %&"&" j C C (/.CC

    %&"&" $ - - (/.--

    #2&"&/3R.^ (/.-CC -

    (/../33 ./)4

    -C

    - -

    f!%"&W&"

    &'()*+,5L%&"2&''#f&Q [R."Y2W&

    2'#f&

    -.7'/7

    =?

    1

    .>

    ?@;

  • 23('.%&" $#fQ 03R110-.1Q41RR+R%&" $2 Q 03R1100[1Q,[RR+R

    1 1

    )/4&4 0 ((./)%)/4 &/3

    C"

    1 1

    &/3 0 &3/&4%)/4 &/3

    -"

    .

    >

    .

    >

    .

    >

    :

    =?

    A

  • !"#

    $ %&'

    (

    )

    )(*+),)),

    ()%-*+

    &)**,- &***+%),)),

    ! .!

    /0

    /0

    1

    2

  • 3

    4

    !

    !

    !

    5

    #

    5

    6

    6

    77

  • 8!39:3::34

    " #$%&'($")#*+,-

    &+$.&'$$$/ ,#(*(.&$$/.&$/&*&) &'&)&

    &'#$ #$ &'($ 0

    "&*&))

    !")1))2,+*$3.)*#&/)4"&'&)

    "#.))*#/"(*30%

    "5)%(".(*3/.+*$/)%(",#(*(0

    !"# $%&'( )*+ ,- ./-%0 )+ & 123+++4 '56-%0 7

    $*&

    6

    6

    5

    #

    5 $*&

    !

    !

    6

    6

    6

    &*$

    6 6

    6

    6

    5 %6 - /- , $*&,

  • 77

    8-,-7

    956 ! & 95,'-:& &*$

    & . % / 6

    ,-$ 6 $6, 76% - ; )8%&)

    )

    )&)

    )8 %

    96:

    &*$& &

    ! !

    !

    !

    6 6 66 6

    %- < % -'! 75 %6 ; $*&,

    &*$

    & &

    ! !

    !

    !

    6 6 66 6

    /40# 25 %6 ; $*&,

    /;0""5

    &*$$*3$

    !

    !

    6 6 6

    /30!5 %6 $*&,

    &*$ ! !

    6 6 6

  • "

    "

    5

    5

    2>2

    1:.=9

    2< >5

    /0

    /0

    /0

    "

    3

    "

    4

    "

    3

    ?"

    4

    /0

    "

    3

    "

    4

    "

    3

    ?"

    4

    /0

    /0

    &

    )

    $*3 $*#

    &*$& %

    6

    $@@@

    $@@@

  • 6 =>"#?#"! @ A B 4+4 CD4E F$ B 4EG)+ CD%E H$ B 3*% CDE HI B J*& CDE '( B 1*1J DE 'K B 4*4) DL

    !") %6 *%3+3& M.N60&-,-7 9 +,6, -%G ,%9/- - .N,M - O$ B *&4 & OI (9 &-56 , *+

    3::

    3::

    4:6

    4:6

    9

    "&$$.&'$$$/%)$)"#, *PM-*4

    : ".&*$$/.,$$/%(*",3*&(

    :!!! ".&*)/.,$$/%&,*8"3)*+, ./0

    6 "&')$+*PM-*4

    % 6 "#,%&')$+"$*#&;$*&,

    N+%- @&*GL & @&*)L

    ")$.&'$$$/.&$$/%)'3+$"+#**PM-*4

    ))

    )&) )'+#30%

    )8 % ! ! !

    96:

    79 0- + "$*(,$*(, &*$# &*$$

  • "

    >

    >

    !"6 % 6( 9 6 *4+++*G (9, Q,$

    0 (. 0 R ( 7,6 G %- 'N696 $/- S M. 9 @TL %% (. R &N6 0 3 $8 %--0!6 - &.-

    9

    ;4

    ;4

    :

    3

    3.34

    3.34

    /0

    >?7 "8).&'$$$/%8*$&"()$0

    6 "4++#+*G @A B $*+ CD4E H$ B J*+ CDE HI B *G CDE F$ B 4)) CDE FI B G)*G CDE % B *$ DL

    :

    3

    4

    ;

    AB4.:134.:

    ;.:

    /0

  • : "&*$

    :!!! ".&*$/.))#/%(*8$")+

    : ".&*$/.&&)/%8*3&"8&

    * 6 "&'8(8 *PM-*4

    6 "()$%&'8(8"$*,;$*&,

    N&%- @$*GL & @$*)L

    ) 3

    )&) .)*& &$ / '(8#0

    )8 )+!6

    '()* >+

    % 6 7-

    .N U, B +*J3

    % 6 7- /- .N U, B *+

    ,V ".$*(,2&*$/%)"$*),

    "#".,/.)*)#/%#")*($

    ",%8)",.,/.)*)#/%8)

    "&*+,

    ;4

    ;4

    9

    !

    :

    3

    ;4

    ;4

    9

    !

    :

    3

    ;4

    ;4

    9

    !

    :

    3

    ;4

    ;4

    9

    !

    :

    3

    &,V W B @4*J+ X *)3L P 4 B 4*4J -,-

  • $*&+*$

    (8#'()$&

    ),*$

    &

    6

    @

    0.&- B )*)(.&'$$$/.&$$/%)++"&'$$#*PM-*4

    ,V.-,-7B .$28&3/%)"&*$,-,-

    &-B &*$,.&'$$$/.&$$/%)++"8+*PM-*4

    ()$ .&*$/.&'$$#/ &*)3 &*$&'8(8 &',$$

    &

    6 6

    6

    ABCCC

    /012134/50

    666

    ///Y/Y

    D !D ! CCCCCC

    !"#$% ""&$&'

    !"#$% ""&$&'

    C /

    0

    /0DC

    '

    #.

    ")2

    ! "

    - & "% 66 # Z/(95/ * ;8 - &-5N&& " (*, & " " 8

  • "&$$2.+/.,*+/2.#/.,*+/.)*3)/")$$

    !"#$%&(*,%'"$8

    "&$$2.+/.(*,/2.#/.(*,/.8/")3&*,

    %()**+,-.&&/

    0 1234 15

    $# 6 7570 1234 122

    "&$$2.+/.3*3/2.#/.3*3/.)*3&/")&,8%!&,)98:;

    !"7 ,$6 " ,%0,'$ - [ , ++ &.-,-7 W$ B ) -,- & WI B 1 -,- %--0! O B 3 ,- U,$ B U,I B +*J3 &&,6 G

    "&$$.&'$$$/%&+8*3",+30

    :!!! ",$$%&,*)"8)*(

    : ",$$%(*(#",3*,3""

  • 03'(*8))8

    /&$&*).&))

    3)

    !6

    08($'8,3*,3)8

    /&$&*).&))

    3)

    6

    &*$$*&$)*$

    3',+3&

    (,*$

    &

    !

    !

    6

    $*&$),*&

    8($'8,+3&

    (,*$

    &

    6

    '(

    %8 -/&.%'-/.

    $*(*$(+,'&

    /,&,/.$),*&.,$$'&

    /8$#/.$*&.)#&'&,+3

    '(

    ,+3 8$# ,&, $*(#8 &*$&',$$ &'3,$ &'(+,

    '(

    @D ) *

  • < Types of Roof

    < Bracing of Truss

    < Loading on Truss & Purlin

    < Secondary Truss

    Timber and Steel DesignTimber and Steel Design

    Lecture Lecture 1010 Roof Design

    Mongkol JIRAVACHARADETS U R A N A R E E INSTITUTE OF ENGINEERINGUNIVERSITY OF TECHNOLOGY SCHOOL OF CIVIL ENGINEERING

    Types of RoofTypes of Roof

    (a) Flat roof

    (d) Gable

    (b) Lean to

    (e) Hip

    (c) Butterfly

    (f) Curve

  • RoofRoof RafterRafter

  • (RUN)

    (SPAN)

    (RISE)

  • ..

    1.0 1.2 .15 ../..10, 15, 20 ()

    0.32 0.34 .50 ../..30 - 35 ()

    1.0 2.0 .5 ../..MIN. 1 - 2 (Metal sheet)

    (RUN) (SPAN)

    (RISE)

    P/2P

    PP

    P/2 RR

    RL

  • 10-1

    4 m0.8 m 0.8 m

    1.2 m

    = 30 ../. = 50 ../. = 80 ../.

    0.8 m

    0.8 m

    2 m

    2 m

    1 .

    1 .

    1.0 1.0 = 801.0 = 80 ../. = 10 ../. = 90 ../.

  • 2 . 0.8 .

    0.8 m RL RR2 m

    w = 90 kg/m

    72 kg 75.6 kg

    104.4 kg

    0.84 m

    31.8 kg-m

    28.8 kg-m

    RL = (1/2) (90) (2.8)2 / 2.0 = 176.4 ..RR = (90) (2.8) 176.4 = 75.6 ..

    Mmax = 31.8 ..-.Fb = 0.60(2,500) = 1,500 ../.2

    S = Mmax/Fb = 31.8(100)/1,500 = 2.12 .3

    5025 .. 1.6 .. (Sx = 2.81 .3)

    10-2 1

    4 m

    4 m

    0.5 m

    0.5 m

    4 m 4 m0.5 m

    0.5 m

    90 ../..

    L

    L

    45

    2 24 4= + = 5.66

    2 20.5 0.5= + = 0.707 L = 4.0/2 = 2.0

  • wmax = 2L() = 2(2.0)(90)= 360 ../.

    = 3(0.5)2(90) = 67.5 ..= (0.5)2(90) = 22.5 ..

    :

    :

    RRRL5.66 m0.707 m

    wmax = 360 kg/m67.5 kg

    RRRL5.66 m0.707 m

    wmax = 360 kg/m22.5 kg

    RoofRoof TrussTruss

    Truss

    Free Support

    Purlins

    Top chord

    Bottom chord

    Sag rod

    Truss

    Fixed Support

  • Types of TrussesTypes of Trusses

    King Post Truss Pratt Truss

    Howe Truss

    Fink Truss

    Fan Truss

    Howe TrussPratt Truss

    King Post This is the most basic truss type. Primarily used for simple structures with short spans.

    Fink Capable of longer spans than the King Post, adding further design flexibility.

    Flat - Using this truss can reduce the amount of wall area that needs to be sheathed.

    Double Pitch or Dual Pitch An asymmetrical truss used where the designer wants a change in roof appearance.

    Gambrel This truss is often used in agricultural buildings and barns.

    Hip This is one section of a hip roof system.

  • T-2

    Sag rodPurlins Bracing

    T-1

    Bracing of TrussesBracing of Trusses

    Roof Plan

    1 25.00

    35.00

    45.00

    55.00

    65.00

    75.00

    85.00

    95.00

    105.00

    A

    B

    10.0

    0M

    C

    10.0

    0M

    Loading on TrussesLoading on Trusses

    Purlins

    Prim

    ary

    Trus

    sS

    econ

    dary

    Tru

    ss

    Trib

    utar

    y A

    rea

    =5

    x 20

    =10

    0S

    q.M

    .

  • Loading on Loading on PurlinPurlin

    s s

    Primary Truss

    C Purlins

    L

    s

    s

    s

    Tributary Area

    + = ./.

    s L

    = x s ./.

    = 6 ./.

    q

    q

    sin,8

    ,

    cos,8

    ,

    2

    0

    2

    wwlwMSM

    f

    wwwlw

    MSMf

    xx

    yy

    yby

    yy

    xx

    xbx

    ===

    +===

    0.175.066.0

    +=+y

    by

    y

    bx

    by

    by

    bx

    bx

    Ff

    Ff

    Ff

    Ff

    q

    wwy

    wx

    Design of Design of PurlinsPurlins

  • Secondary TrussSecondary Truss

    Primary Truss under Loading

    Lower chordin Tension

    Upper chordin Compression Lateral Buckling of upper

    chord in primary trussLa

    tera

    l win

    d lo

    ad

    Secondary Truss helps Primary Truss for

    - Lateral wind load

    - Lateral buckling of upper chord

    - StabilityL

    L

    L/r

  • : = 30 ./.

    = 14 ./.

    = 44 ./.

    1.0 5.0

    = 44 x 1.0 = 44 ./.

    = 6 ./.

    = 44 + 6 = 50 ./.

    m-kg1538

    549kg/m,4904.14cos50

    m-kg388

    512kg/m,1204.14sin50

    20

    20

    =

    ===

    =

    ===

    xy

    yx

    Mw

    Mw

    3cm27.9)500,2(66.0

    )100(153===

    bx

    xx F

    MS

    C125x50x20x2.3 . (Sx = 21.9.3, Sy = 6.22.3, Ix =137.4, Iy=20.6.4, 4.51./.)

    x :

    y :

    2kg/cm 6.6989.21

    )100(153===

    x

    xbx S

    Mf

    2kg/cm 9.61022.6

    )100(38===

    y

    yby S

    Mf

    OK( ) ( ) 0.175.0500,275.0

    9.610500,266.06.698

    75.066.0=+=+

    y

    by

    y

    bxF

    fF

    f

    :)137)(101.2(384

    )500)(100/49(53845

    6

    44

    max

    ==DEI

    wl

    OK

    ==

  • = 60 x 5 x 0.5 = 150 .

    T-1:

    T-1 = 5

    = 30 ../.

    = 14 ../.

    (+) = 6 ../.

    () = 10 ./.

    = 60 ../.

    = 60 60 1 = 300 .. 150 ..

    300 ..

    (.) (.)L1L2 = L12L13 0 1.00L2L3 = L11L12 2200(T) 1.00L3L4 = L10L11 3000(T) 1.00L4L5 = L9L10 3240(T) 1.00L5L6 = L8L9 3200(T) 1.00L6L7 = L7L8 3000(T) 1.00

    U1U2 = U12U13 2267(C) 1.03U2U3 = U11U12 3092(C) 1.03U3U4 = U10U11 3339(C) 1.03U4U5 = U9U10 3298(C) 1.03U5U6 = U8U9 3092(C) 1.03U6U7 = U7U8 2783(C) 1.03

    Lower Chord:

    Upper Chord:

  • VerticalBracing:

    DiagonalBracing:

    (.) (.)

    L1U1 = L13U13 1800(C) 0.50L2U2 = L12U12 1100(C) 0.75L3U3 = L11U11 600(C) 1.00L4U4 = L10U10 240(C) 1.25L5U5 = L9U9 50(T) 1.50L6U6 = L8U8 300(T) 1.75

    L7U7 1050(T) 2.00

    L2U1 = L12U13 2460(T) 1.12L3U2 = L11U12 1000(T) 1.25L4U3 = L10U11 339(T) 1.41L5U4 = L9U10 64(C) 1.60L6U5 = L8U9 360(C) 1.80L7U6 = L7U8 604(C) 2.02

    L4L5 L9L10 = 3240 . (T) 1.0

    , Ft = 0.60Fy = 0.60(2,500) = 1,500 ./.2

    , Ag = 3240/1500 = 2.16 .2

    L50 x 50 x 4 . (Ag = 3.89 .2, rmin = 0.98 .)

    A307 12 .

    , Ae = 0.85Ag = 0.85(3.89) = 3.31

    = 0.5FuAe = 0.5(4,000)(3.31)

    = 6,620 . > 3,240 . OK

    , L/r = 100/0.98 = 102 < 300 OK

    :

  • U3U4 U10U11 = 3,339 ..() 1.03

    , Fa = 1,000 ../.2

    , A = 3,339/1,000 = 3.34 .2

    L50 x 50 x 4 . (A = 3.89 .2, rmin = 0.98 .)

    , L/r = 103/0.98 = 105

    , Fa = 876.2 ../.2

    = (3.89)(876.2) = 3,408 .. > 3,339 .. OK

    :

    L2U1 L12U13 = 2,460 .. 1.12

    , Ft = 0.60Fy = 0.60(2,500) = 1,500 ../.2

    , Ag = 2460/1500 = 1.64 .2

    L40 x 40 x 3 . (A = 2.35 .2, rmin = 0.78 .)

    :

    A307 12 ..

    , Ae = 0.85Ag = 0.85(2.35) = 2.00

    = 0.5(4,000)(2.00) = 4,000 .. > 2,460 .. OK

    , L/r = 112/0.78 = 143.6 < 300 OK

    1) :

  • L7U6 L7U8 = 604 . 2.02

    L65 x 65 x 6 . (A = 7.53 .2, rmin = 1.27 .)

    = (4.70)(387.7) = 1,822 . > 600 . OK

    L/r = 202/0.78 = 259 > 200 NG

    2 L40 x 40 x 3 . (A = 2(2.35) = 4.70 .2)y

    y

    x x

    Ix = 2 ( 3.45 ) = 6.90 .4

    Iy = 2 ( 3.45 ) + 4.70 ( 1.07 )2 = 12.28 .4Control

    min 6.90 / 4.70 1.21 cmr = =

    L/r = 202/1.21 = 167 < 200 OK

    , Fa = 387.7 ./.2

    2) :

    150 kg300 kg

    300 kg300 kg

    300 kg300 kg

    300 kg

    150 kg300 kg

    300 kg300 kg

    300 kg300 kg

    12 m

    FIXFREE

    Max. Deflection:

    From analysis,

    Dmax = 1.64 cm

    < [1200/300 = 4.0 cm] OK

    Free (Roller) Support Design:

    slot

    = 12

    a = 1210-6 /oc DT = 40 oCaDTL = 1210-6401,200 = 0.576 cm

    Slot length = 2 0.576 + 1.6 = 2.75 cm USE 5 cm

    BOLT 16 MM

    5 cm

    2 cm

  • ! " #$

    % & $$ &%$'$&(&$$&(

    %&!$)'$"&'*'() "''*'!*$&(&$$&(

    + ,-. /

    0

    + 1

    +11

  • ,

    +

    1,

    2 11

    2

    2 01

    '3 ,

    1

    ,14

    2

    2 1

    ,/

    516

  • 7

    *

    + 8

    ,

    ,

  • 799*7

    8:

    8:

    ,

    + 8:

    8:

    8:

    !"#$""%

    "'"() "

    8:

    8:

    ;

    -. -,.

    -.-.

  • -. !" -.

    ,2,

  • >

    =

    ?

    01,/,

    =1

    111

    8:

    8:

    11

    ,

  • 22,=11,

    ( 22,=11,

    $ 1,

    1!

    +"#@2:1

    #$%$ ,/,

    1 +1

    ?AB

    >

    >BC

    !

    "

    (# ")*+,-")*+.-/01"/2 /01"/2

    34546789:;:?@A BC@@ A@@>?2D*EF- ?B@@ B2@@ BCG@>?2D*!"EF- ?B@@ B2@@ 2B@@>CH@*EF- ?G@@ BCG@ BHA@>CH@*!"EF- ?G@@ BCG@ 2G@@

    #$

  • +:

    2

    2

    :

    :

    D@

    + =

    !"#$%&'%&%()&* +,-./,-01#%0022/ (#%3/('45/#'216/& 6

    ::11,

    1

    1

    1

    7&%8 !9% &'()*(+&*(:20% &*(, ")"'-+)'(+&"-:20 &%. &('/()"'-+)*('(+&!-. &('-()!'(+)"-'(+&-(

    ;!&45&&&'%9&459 . &('"- )"'"+")"'+)!+&*'0*&&'9 . &)'(+)"'"+)'"+)!'(+)!+&!"'"!

  • =>?@ A!" #B

    $!%!,-01#%&22 (#%3:8

    ('45$%&'' &%%()C%! +,-.&$ !#'& )DE)#! %

    +

    +E

    11,- +:E1

    :

    .

    :1

    1

    +

    1

    7(;!&45&&%' (9'&45 8F 0(02)G*(02HH*F2&- @

  • %#

    ( %#

    ( 6K0226K22

    6K022 6K0H226K022 0216

    (3!*X( V

    ( YX1!*X( V

    !

    !

    F:11

    -.

    FE11

    -,.G

    F11

    -.

    F:11

    :@

    -.

    F:11

    2%&3

  • =,11,/

    1,1H,H ,/

    ,I,1/11,11

    J:

    $IEJ$()>?2D"BH"/"/EF"KEFLMJFB2"/"/

    @=@= ==

    :E

    !

    :

    @=@=E

    E

    @

    =

    @

    =

    E

    N O>?2DEF

    P +. Q2RB@@/01"/2

    P + QB/2*CR@@@-QCRG@@/01"/2

    J

  • "#$"

    : :

    : : :

    %

    S

    ())@=@='EE>?2DBH"/"/ B

    : :-. E E:

    )Q 2@0BB/HBQB/TG

    "#$"

    U S ())==E

    : :

    : : :

    %

    E

    : :-. E E:

    )Q 2G0BB/HBQ2/D?J

    "#$"

    V S ())@=@=E

    : :

    : @@

    %

    E

    E E

    )Q G0D/HDQB/?D

    "#$"

    W S ())@=@=E

    : :

    : @@

    %

    E

    E E

    )Q A0D/HDQB/BG

    J@

  • !

    : 11

    "$&& '"$(

    2 11,-@

    .

    2 )11,

    @=@=

    ==

    @=@=E

    @

    =

    @

    =

    E

    :@ 11

    #*#$+*#

    JK

    >

    9(

    "2'/

    *-'9

    "-(0("

    ?""'

    !" O#"$%&%$'()!%

    $ &%$*+#&,- &%$.!*+#&,-

    *(2

    *"-

    !0(

    !((9'9"(

    "" *0'!*(9( "" -'"*(9(

    "" 2-'**29( "" 9"'*29(

  • !"#

    $% %$&'%(%%(

    $% )&'!"%&&() !"&&&'! %(%%(

    !

    **

    **

    ** **

  • "

    #

    $

    #

    $

    ##$$%%

    "&

    #

    #

    $

    $

    #

    #$

    $

    '''

    &

    &

    &

    &

    ()*+

    ++**

    , ,

    , ,

    -

    , ,

    . .

    , ,

    -

    - -

    .

    ,-.+

    -

    ,

    **

    ,

  • !"#$% &'()**

    / "0

    1

    1

    1

    1

    "23

    "23 "23

    "23"23

    "23

    "23

    "23

    **

    ,/0

    /0

    !"#$%&' ! ()*$!*&*

    . . .

    -

    . . . .

    12/3 42/ ,/ 3 ,5.66

    .

    .

    .462,/3

    7*6

    ,.66

    .462/3

    ,*6

    ,.66

    81 ,. 81 ,*/

    -

    +"(*,)()*-)

    . .

    7*6 .*/ 7*9

    :,/;/:.60

    : :2,.32.63:.46

  • +!,( #$ !- *.$'!,( #$ /$(0123#$ 1245

    66 '7

    '*89"#$% &'()**

    /=10

    :460

    ,>0

    : ;