all projects - 3 - university of...

41
2014-2015 [HQP PROJECT DESCRIPTIONS]

Upload: haminh

Post on 02-May-2018

213 views

Category:

Documents


1 download

TRANSCRIPT

 

 

 

   

 

2014-2015              

[HQP  PROJECT  DESCRIPTIONS]

1  

 

 

Contents Theme  I  ..................................................................................................................................................................................  3

Coupling  the  Landscape,  Aquatic  Ecosystems,  Services  and  Environmental  Change  in  Canada’s  North  ..............................  3

Theme  1,  Project  1.1:  A  synthesis  and  analysis  of  existing  hydrological,  biological  and  chemical  data  for  the  Hudson  Bay  Lowlands  .....................................................................................................................................................................  4

Theme  1,  Project  1.2a:  Optical  Measurements  for  Characterizing  Dissolved  Organic  Matter  in  Northern  Peatland  Surface  Waters  ..................................................................................................................................................................  5

Theme  1,  Project  1.2:  Hydrogeomorphic  Classification  Approach  for  the  Hudson  Bay  Lowlands  in  the  Attawapiskat  Watershed  .........................................................................................................................................................................  6

Theme  1,  Project  1.3a:  Geographic  Extension  of  Benthic  invertebrate  RCA  Bioassessments:  How  Far  Can  We  Go?  .......  7

Theme  1,  Project  1.3b:  Lakes  in  the  Far  North  of  Ontario:  Regional  Comparisons  and  Contrasts.  ...................................  8

Theme  1,  Project  1.4:  Determining  the  biogeochemical  and  hydrological  feedbacks  in  fen  peatlands  due  to  hydrological  and  treated  wastewater  additions  ................................................................................................................  9

Theme  1,  Project  1.4:  Subsurface  Flow  Behavior  of  a  Continuous  Solute  Release  in  a  Sub-­‐Arctic  Bog  ...........................  10

Theme  1,  Project  1.5a:  Potential  effect  of  climate  on  the  bioaccumulation  of  mercury  in  two  large-­‐bodied  fish  species  in  northern  Ontario  ..........................................................................................................................................................  11

Theme  1,  Project  1.5:  Modeling  mercury  (Hg)  cycling  and  accumulation  in  aquatic  biota  across  the  Attawapiskat  watershed;  implications  for  subsistence  fisheries  and  the  Ring  of  Fire  development  in  Ontario’s  Far  North  ................  12

Theme  II  ...............................................................................................................................................................................  13

Healthy  Forests,  Healthy  Aquatic  Ecosystems  .....................................................................................................................  13

Theme  2,  All  Theme  2  research  projects:  Cross-­‐Project  Research  Enterprises  ................................................................  15

Theme  2,  Project  2  cross:  Cross-­‐Project  Research  Enterprises  ........................................................................................  16

Theme  2,  Project  2.1:Susceptibility  of  oligotrophic  lakes  in  Ontario  to  formation  of  algal  blooms  ................................  17

Theme  2,  Project  2.1:  Elucidating  climate  forcing  oscillations  in  water  discharge  across  the  temperate  biome  ............  18

Theme  2,  Project  2.1:  Classifying  streamflow  regimes  in  different  forest  landscapes  across  Canada  ............................  19

Theme  2,  Project  2.2:  Impacts  of  forest  harvesting  on  stream  nutrient  processing  mediated  by  organic  carbon-­‐nitrate  .........................................................................................................................................................................................  20

Theme  2,  Project  2.2:  Effects  of  operational  harvesting  practices  on  hydrological  and  biological  indicators  of  aquatic  ecosystem  services  in  northern  hardwoods  of  central  Ontario.  ......................................................................................  21

Theme  2,  Project  2.2:  Conserving  Aquatic  Ecosystem  Services  through  the  Emulation  of  Natural  Disturbance  Paradigm  for  Sustainable  Forest  Management  ...............................................................................................................................  22

Theme  2,  Project  2.2:  Effect  of  forest  condition  on  food  web  structure  and  other  aquatic  indicators  in  headwater  streams  in  different  regions  of  Canada.  ..........................................................................................................................  23

Theme  2,  Project  2.3:  Dissolved  organic  matter  controls  on  aquatic  food  webs  and  mercury  accumulation  in  fish  ......  24

2  

 

 

Theme  2,  Project  2.3:   Feedbacks  and  Dynamics  of  Aquatic  Ecosystem  Services  in  a  Multi-­‐use  Watershed  ..................  25

Theme  2,  Project  2.4/2.5:  Simulating  wetland  ecosystem  services  under  different  policy  scenarios  .............................  26

Theme  2,  Project  2.4/2.5:   The  Preferential  Loss  of  Small  Geographically  Isolated  Wetlands  on  Prairie  Landscapes  ....  27

Theme  III  ..............................................................................................................................................................................  28

Quantitative  Indicators  &  Metrics  of  Ecosystems  Services,  Health  &  Function  ...................................................................  28

Theme  3,  Project  3.1:  Using  the  concepts  of  river  classifications,  environmental  flow  requirements,  and  aquatic  ecosystem  services  to  inform  sustainable  management  strategies  for  large  river  basins  with  a  focus  on  Canada  ........  29

Theme  3,  Project  3.2:  Quantitative  Frameworks  to  Improve  the  Analyses  of  Ecological  Communities  ..........................  30

Theme  3,  Project  3.2:  Can  watershed-­‐based  classification  help  explain  patterns  in  fish  mercury  concentrations  across  Ontario  and  Quebec?  .......................................................................................................................................................  31

Theme  3,  Project  3.3.1:  Biomass  size  spectra  as  indicators  of  ecosystem  health  in  Ontario’s  inland  lakes  ....................  32

Theme  3,  Project  3.3.2:  Expanding  biomass  size  spectra  models  ....................................................................................  33

Theme  3,  Project  3.3.3:  Size  spectra  of  fish  assemblages:  longitudinal  and  temporal  variation  in  neotropical  reservoirs  .........................................................................................................................................................................................  34

Theme  3,  Project  3.3.4:  Calibrating  the  zooplankton  body-­‐size  spectrum  to  serve  as  an  indicator  of  lake  characteristics  and  environmental  perturbations  ...................................................................................................................................  35

Theme  3,  Project  3.4:  Evaluating  ecosystem  condition  by  quantifying  ecological  resilience  ..........................................  36

Theme  3,  Project  3.5:  Fish  community  responses  to  spatio-­‐temporal  effects  of  global  change  in  aquatic  ecosystems  .  37

Theme  3,  Project  3.5:  Geospatial  Risk  Mapping  -­‐  Relating  Downstream  Aquatic  Species  and  Communities  to  Upstream  Water  Quality  and  Land  Use  in  the  New  Brunswick  Northumberland  Straight  Region  ...................................................  38

Theme  3,  Project  3.6:  Understanding  the  trade-­‐offs  among  ecosystem  services  along  disturbance  gradients  ..............  39

 

 

   

3  

 

 

Theme  I  

Coupling  the  Landscape,  Aquatic  Ecosystems,  Services  and  Environmental  Change  in  Canada’s  North  

Canada’s   boreal   and   subarctic   ecozones   are   its  most   geographically   extensive   and   resource   rich,  but  are  also  the  most  sensitive  to  change  driven  by  development   and   climate.   The   Hudson   Bay  Lowlands,   one   of   the   five   largest   wetlands   in   the  world,   located   in   Canada’s   subarctic   region  encompasses   arguably   the   most   vulnerable   of  Canada’s   freshwater   ecosystems,   yet   is   virtually  unstudied.   An   understanding   of   how   these   vast  peatland   systems   link   with   northern   rivers   and  support   aquatic   ecosystem   functions   remains  largely   unknown.   The   Canadian   subartic   will  experience   some   of   the  most   significant   increases  in  annual  average  temperature  on  Earth  (IPCC  2007),  coupled  with  predicted  increases  in  winter  and  summer  precipitation  for  the  region,  significantly  altering  hydrologic  regimes.  The  role  of  extensive  northern  wetland  areas  in  the  functioning  and  maintenance  of  freshwater  and  coastal  aquatic  ecosystems  and  their  services  has  gone   largely  unstudied.  Understanding  how   these   vast  peatland-­‐dominated   landscapes   contribute   to  AES   is  critical  in  the  face  of  regional  climate  change.  

   Key  Objectives:  

• To  address  the  knowledge  gaps  concerning  the  aquatic  ecosystem  services  of  water  supply  and  safe  freshwater  foods  that  exist  in  the  vulnerable  watersheds  of  this  region  

• Synthesize  existing  knowledge  from  a  range  of  private,  public,  and  First  Nations  sources  

• Develop  strategies  for  classifying  and  modelling  water  flows  in  this  largely  unmonitored  region,  as  well  as  better  understand  the  sources  of  water  to  streams  and  rivers  –  processes  that  deliver  energy,  nutrients,  contaminants,  such  as  mercury,  to  aquatic  biota  

• Develop,  extend,  and  test  a  Reference  Condition  Approach  assessment  of  aquatic  species  diversity  and  abundance  to  establish  a  baseline  against  which  all  future  environmental  change  and  development  may  be  gauged  

4  

 

 

 

 Abstract  The  wetlands  of   the  Hudson-­‐James  Bay   Lowland   (HJBL)  are  a   vital  part  of  Ontario   (and   the  world)   covering  nearly  one-­‐third  of  Ontario’s  landmass  and  are  the  largest  source  of  freshwater  to  the  saline  James  Bay,  and  represent  a  significant  resource  (water,  traditional  foods)  for  First  Nation’s  communities.  Despite  these  facts,  little   scientific   information   exists   about   how   the   Lowland   functions   hydrologically,   ecologically,   and  biogeochemically,  largely  because  of  the  inaccessibility  of  the  region  and  its  low  population  density.  However,  with  the  discovery  of  many  mineral  rich  deposits  (e.g.,  Ring  of  Fire)  leading  to  resource  extraction,  as  well  as  a  changing  climate,  it  is  now  critical  to  understand  how  the  hydrology,  ecology,  and  chemistry  of  this  region  are  coupled,  and  how  these  changes  will  manifest  themselves  across  this  complex  ecosystem.  Unfortunately  the  time   to   collect   certain   kinds   of   baseline   data   (e.g.   pre-­‐climate   warming)   has   passed.   Contained   within  unpublished   government   initiatives   and   reports,   publically-­‐available   compliance   data   from  private   industry,  First  Nations  generated  reports  and  academic  resources,  important  historical  data  exist.  These  data  sets,  when  taken   individually,   would   appear   to   be   isolated   both   temporally   and   spatially,   unable   to   answer   regional  landscape  questions   concerning  baseline   conditions;   however,   if   all   of   these  data   sets  were   combined   they  could  be  used  to  establish  “snapshots”  of  the  lowlands  at  various  points  over  the  past  half  century  from  which  changes  may  be  detected.  2  SERC  Canadian  Network  for  Aquatic  Ecosystem  Services    The  project   is   largely  a  data  mining  exercise  attempting   to   find  and   then  synthesize  existing  hydrologic  and  simple  water  chemistry  data  from  Ontario’s  Far  north.    Specific  objectives  are:    

• Determine  the  extent  of  accessible  data  sets  for  water  quantity  (e.g.,  flow)  and  simple  water  chemistry  (e.g.,  temp,  Hg)  for  Ontario’s  Far  North    

• Synthesize  these  data  sets  and  offer  insight  into  the  changing  north.      Outcomes    Ontario’s  Far  North  is  undergoing  a  significant  increase  in  industrial  development  (e.g.,  Ring  of  Fire)  and  many  of   the   impact  assessments  and  guidelines  being  used  are  based  on  southern   standards  which  are   likely  not  applicable  to  northern  systems.   In  addition,   the  area   is  also  undergoing  considerable  change  due  to  climate  change   driver   and   thus   showing   that   non-­‐stationarity   (stationarity   is   loosely   that   the   past   can   be   used   to  predict  the  future)  is  occurring  will  be  important  for  informed  land-­‐use  and  planning  decisions.    

• Insight  into  the  changing  hydrological  regime  of  Ontario’s  Far  North    • Two  academically  peer-­‐reviewed  journal  articles.  

Theme 1, Project 1.1: A synthesis and analysis of existing hydrological, biological and chemical data for the Hudson Bay Lowlands

Pete  Whittington,  Post-­‐doctoral  Fellow    University  of  Western  Ontario  [email protected]      Project  Team:    Brian  Branfireun,  University  of  Western  Ontario,    supervisor  Pete  Whittington,  University  of  Western  Ontario    Brian  Branfireun,  University  of  Western  Ontario    Jim  Robertson,  Detour  Gold  

5  

 

 

 

 

 

 

 

 

 

Abstract  The  peatlands   of   the  Hudson  Bay   Lowlands   (HBL)   occupy  most   of  Ontario’s   Far  North   and   contribute   large  quantities  of   freshwater  and   solutes,   such  as  dissolved  organic  matter   (DOM)  and  mercury,   to  downstream  aquatic  ecosystems.  Despite  concerns  regarding  the  potential  increases  to  mercury  concentrations  in  surface  waters   and   fish   as   a   result   of   land-­‐use   changes   (mining   and   industrial   development),   comprehensive  water  quality  monitoring  programs  are  essentially  non-­‐existent  due  to  the  high  costs  associated  with  water  sampling  and   other   logistical   constraints   imposed   by   this   large   wetland   complex.   As   such,   high-­‐quality   and   high-­‐resolution  baseline  water  quality  data   is  scant,  and   it   is  difficult   to  predict  how  these  solutes  will  behave   in  response  to  the  unprecedented  climatic  and  land-­‐use  changes  already  occurring  and  forecasted  for  the  HBL,  which  will  have  an  impact  on  downstream  hydrological  and  biogeochemical  processes.    The  utilization  of  in  situ  water  quality  sensors  has  not  yet  been  implemented  in  northern  surface  waters  where  they  may  prove  to  be  a  valuable  alternative  strategy  to  monitoring  changes  to  water  quality  and  estimating  solute  fluxes.  Specifically,  measurements  of  the  optical  properties  of  DOM  (i.e.,  absorbance  and  fluorescence)  are  straightforward  and  less  expensive  than  standard  water  quality  analyses,  and  can  be  exploited  to  obtain  highly  accurate,  quantitative  estimates  of  dissolved  organic  carbon  (DOC),  and  in  some  cases,  can  be  used  as  a  proxy  for  total  (THg)  and  methylmercury  (MeHg).    Objectives:    

• To   improve   our   understanding   of   peatland   hydrological   connectivity   by   fingerprinting   sources   and  components   of   surface   water   DOM   via   excitation-­‐emission   matrix   (EEM)   spectroscopy   and  instrumental  analysis  throughout  the  ice-­‐free  season.    

• To  assess   the  effectiveness  of   in   situ   spectroscopic  measurements   as   proxies   for   the  measurements  indicated  in  (1)  and  for  THg  and  MeHg  in  surface  waters  of  the  HBL.    

Outcomes    In  situ  monitoring  has  the  potential  to  make  freshwater  research  more  accessible  and  open  the  door  for  more  extensive  water  quality  monitoring  programs  in  remote  regions  of  the  Far  North.  Initial  data  from  the  in  situ  loggers  reveals  changes  in  DOM  quality,  and  other  geochemical  parameters  (e.g.,  pH,  specific  conductivity)  in  response  to  hydrologic  regime.  This  is  indicative  of  the  temporal  variability  of  hydrological  connectivity  and  of  the  dominant  contributing  sources  of  peatland  surface  waters  (e.g.,  fen  peat  pore-­‐waters,  deep  groundwater,  smaller   tributaries)   over   the   course   of   the   ice-­‐free   season.   Such   substantial   datasets  may   prove   pivotal   in  enhancing  our  understanding  of  how  the  peatlands  of   the  HBL   transport  water  and  solutes   to   their  aquatic  environments  and  how  this  may  be  impacted  by  regional  and  local  environmental  change.    

Theme 1, Project 1.2a: Optical Measurements for Characterizing Dissolved Organic Matter in Northern Peatland Surface Waters

Tara  Despault,  MSc  Candidate    University  of  Western  Ontario    [email protected]    http://www.ecohydrology.ca      Project  Team:    Dr.  Brian  Branfireun,  UWO,  supervisor  Dr.  April  James,  Nipissing  University,  Project  1.2  Co-­‐investigator    Filippo  Resente,  UWO,  PhD  Student  (Project  1.2)    De  Beers  Victor  Mine,  Environment  Department,  Collaborators  

6  

 

 

•  

   

 

     

 

 

 

 

Abstract  

The  Hudson  Bay  Lowland  (HBL)  in  Ontario’s  far  north  contains  one  of  the  world’s  largest  peatland  complexes.  Northern   peatlands   are   wetland   ecosystems   that   act   as   shallow   freshwater   aquifers   and   are   important   in  sequestering   terrestrial   carbon.   Current   emphasis   on   peat   as   a   major   carbon   sink   that   is   susceptible   to  changes   in  climate,  has   triggered   the  need   for   further  understanding  of   the  hydrologic  processes  governing  peatlands  in  order  to  develop  better  carbon  storage  and  climate  change  monitoring  and  modeling  systems.  A  regional  hydrogeomorphic  classification  of  the  Attawapiskat  watershed  in  the  HBL  is  the  proposed  direction  of  this   study,   to   characterize   hydrologic   landscape   regions   and   evaluate   them   based   on   their   hydrologic  similarities  within  the  watershed,  specifically  between  the  distinct  Lowland  and  headwater  Shield  divide.    Keywords:  Hydrogeomorphic,  classification,  watershed  scale,  peat  systems  

Geographic  Location:    -­‐  Attawapiskat  River  watershed,  Hudson  Bay  Lowlands,  Ontario,  Canada  -­‐  De  Beers  Victor  Mine,  Attawapiskat  River  watershed,  Hudson  Bay  Lowlands,  Ontario,  Canada  

How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?    Given  the  limited  information  on  watershed  hydrology  in  Ontario’s  Far  North,  the  development  and  testing  of  catchment  classification  approaches  will  harness  existing  data   to   improve  understanding  of   the  hydrological  and   biogeochemical   processes   that   are   occurring   within   northern   aquatic   ecosystems   (e.g.   processes   of  delivery  of  carbon  and  contaminants  such  as  Hg  to  surface  waters)  and  the  distribution  of  those  contaminants  in  northern  aquatic  ecosystems.  Our  improved  understanding  of  hydrologic  and  biogeochemical  processes  is  foundational  for  making  sound  policy  decisions  concerning  land  use  and  climate  change  impacts  in  the  north.  Watershed   classification   across   the   HBL   will   be   essential   to   both   source   water   protection   planning   for  communities  and   industry-­‐based  development  planning,  as   they  assess  use  of   local  water   resources  against  environmental  regulations  such  as  meeting  minimum  baseflow  requirements.    This  approach  will  also  provide  a  basis  for  hydrologic  modeling  in  both  private  and  public  sectors.    

Theme  1,  Project  1.2:  Hydrogeomorphic  Classification  Approach  for  the  Hudson  Bay  Lowlands  in  the  Attawapiskat  Watershed  

Brittany  Germain,  MSc  Candidate  Nipissing  University    [email protected]    Project  team  April  James,  Nipissing  University,  supervisor  Brian  Branfireun,  Western  University,  supervisor  Jonathan  Price,  U  Waterloo,  co-­‐investigator  Brian  Steinback,  De  Beers,  partner  Kent  Todd,  Elizabeth  Phillips,  OMNRF,  collaborators      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract  

Benthic  invertebrate  RCA  bioassessments  are  generally  developed  using  reference  sites  within  a  localized  area  such  as  a  watershed  or  ecoregion.  If  such  reference  data  can  be  used  to  assess  test  sites  that  lie  outside  their  geographic  scope,  it  would  reduce  the  need  to  collect  time-­‐consuming  and  costly  reference  site  data.  In  this  study,  we  examined  invertebrate  and  environmental  data  to  assess  concordance  of  benthic  communities  and  develop  predictive  models   using  data   from   three   areas   in  Canada:   the  Attawapiskat  watershed   in  northern  Ontario,  the  Fraser  River  watershed  in  British  Columbia,  and  the  Yukon  River  watershed.  RCA  bioassessments  were  developed  based  on  reference  sites  from  the  individual  watersheds  and  on  pooled  data  from  the  three.  The  effectiveness  of  assessments  was  evaluated  using  a  common  set  of  artificially  impaired  sites.  The  results  of  this  study  reveal  that  assessments  using  reference  sites  from  other  watersheds  perform  similarly  to  those  using  only  local  reference  data,  suggesting  that  reference  sites  sampled  in  one  watershed  could  be  “exported”  for  effective  bioassessment  in  other  adjacent  or  more  distant  watersheds.  

 

Keywords:   Bioassessment,   Benthic   invertebrates,   Reference   Condition   Approach,   predictive   modelling,  Canadian  Aquatic  Biomonitoring  Network,  CABIN  

Geographic  Location:  Attawapiskat  River  Basin,  Ontario,  Canada;  Yukon  River  Basin,  Yukon  Territory,  Canada;  Fraser  River  Basin,  British  Columbia,  Canada  

How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?    The  development  and  application  of  bioassessments  over   large  geographic   regions   in  Canada  enables  us   to  protect  and  monitor  Canadian  aquatic  ecosystem  services  that  are  important  to  us  as  a  society  such  as  clean  water  and  fish  resources.  

Nicole-­‐Marie  Novodvorsky,  MSc  Student  Laurentian  University    [email protected]  

Project  team  

Chantal  Sarrazin-­‐Delay,  Laurentian  University,  Technician  Stacey  Greene,  Laurentian  University,  Technician  Matthew  Heerschap,  Laurentian  University,  Technician  Michael  Ritchie,  Matawa  Tribal  Council,  Technician  Delaney  Baxter,  Marten  Falls  First  Nations,  Technician  Junior  Baxter,  Marten  Falls  First  Nations,  Technician  Isaiah  Hollander,  Attawapiskat  First  Nations,  Technician  Andrew  Sutherland,  Attawapiskat  First  Nations,  Technician  Dr.  John  Gunn,  Laurentian  University,  Supervisor    Dr.  John  Bailey,  Ontario  Ministry  of  the  Environment  and  Climate  Change  -­‐  Supervisor          

Theme 1, Project 1.3a: Geographic Extension of Benthic invertebrate RCA Bioassessments: How Far Can We Go?

 

 

 

 

 

 

 

 

 

 

 

 

Abstract  

With   anticipated   mining   development   in   the   “Ring   of   Fire”   area,   and   ongoing   climate   change,   current  limnological   data   are   needed   for   the   far   north   of   Ontario.     To   address   this   need,   water   chemistry   and  crustacean  zooplankton  surveys  of  northern   lakes  were  conducted  to  examine  regional  differences  between  the  Precambrian  Shield  and  Hudson  Bay  Lowlands,   focusing  on   the  RoF  area,  which  straddles   the  boundary  between  these  Physiographic  Regions.  Lakes  of  the  RoF  area  displayed  highly  variable  chemistry,  a  product  of  the  extensive  peatland  landscape  with  its  mix  of  bog  and  fen  watersheds.  This  peat  cover  appears  to  decouple,  to  varying  degrees,  the  lakes  from  the  influences  of  bedrock  and  surficial  geology.    Shield  lakes  in  the  western  portion  of  our  study  area  had  ion  concentrations  (Ca,  Mg)  markedly  higher  than  previously  studied  Shield  lakes  south  of  50°N,  likely  due  to  the  abundance  of  lacustrine  and  glacial  end-­‐moraine  deposits  throughout  western  Ontario  north  of  50°N.  The  zooplankton  species  collected  during   this   survey  were  generally  similar   to   those  reported  for  lakes  further  south  on  the  Canadian  Shield.  Zooplankton  assemblages  were  strongly  influenced  by  lake  depth,  with  higher  species  richness  in  the  deeper  Shield  lakes  than  in  the  shallower  Lowlands  lakes  which  offered  less  niche  space.    

 

Keywords:  lakes,  Hudson  Bay  Lowlands,  Canadian  Shield,  chemistry,  zooplankton  

Geographic   Location:   “Ring   of   Fire”   area   of   northwestern   Ontario(95   x   45   km   study   area);A   broad   survey  across  the  far  north  of  Ontario  above  50°  N  (740  x  420  km  study  area)  

 

How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?    

This   study   provides   current   information   on   the   chemistry   and   zooplankton   communities   of   lakes   in   the   far  north  of  Ontario.  This  baseline  knowledge  will  allow  future  assessments  of  change  to  these  ecosystems  and  their  food-­‐webs,  and  permit  evaluations  of  the  implications  of  changes  for  ecosystem  services.    

Josef  MacLeod,  MSc  Student  Laurentian  University    [email protected]    Project  Supervisors  

Dr.  John  Gunn,  Laurentian  University  Dr.  Bill  Keller,  Laurentian  University        

Theme 1, Project 1.3b: Lakes in the Far North of Ontario: Regional Comparisons and Contrasts.  

 

 

 

Collin  McCarter,  PhD  candidate  Univerisity  of  Waterloo    [email protected]  ca.linkedin.com/in/cprmccarter    Supervisor:    Dr.  Jonathan  Price,  University  of  Waterloo    

 

 

Abstract  

Remote   northern   communities   and   mining   operations   require   wastewater   treatment   for   the   discharge   of  residential   wastewater   into   aquatic   environments.   Elevated   levels   of   Nitrate   (NO3-­‐),   Ammonium   (NH4+)  (Phosphate   (PO33-­‐),   Sulfate   (SO2-­‐),   and   labile   carbon   are   usually   present   in   treated   and   untreated  wastewater,  typically  requiring  polishing  before  discharging  into  aquatic  environments.  Peatlands  are  used  for  wastewater   polishing;   however,   there   is   limited   information   of   the   transport   and   transformations   of   these  contaminants   in   sub-­‐arctic   peatlands   and   the   ability   of   these   systems   to   polish  wastewater.   Therefore   the  primary  objective  of  this  study  is  to  determine  the  transport  and  retardation  of  these  contaminants  in  a  sub-­‐arctic   fen   peatland   through   an   ecosystem   scale   experiment.   Initial   results   indicate   that   the   solute   plume  traveled  49  %  of  the  distance  of  the  experimental  site,  while  the  water  table  increased  across  the  entire  site.  Furthermore,   differential   transport   of   contaminants   was   observed   due   to   microtopographical   differences  within  the  experimental  site,  yet  vertical  transport  (downward)  was  limited  to  ~75  cm  from  the  surface.  This  is  the  first  experimental  release  of  simulated  wastewater  in  fen  peatlands  and  represents  a  unique  opportunity  to  determine  how  increased  development  pressures  from  both  industrial  and  northern  communities  will  alter  the   peatlands   in   the   sub-­‐arctic.   Furthermore,   understanding   how   fen   peatlands   transport   and   treat  wastewater   nutrients   will   allow   for   better   management   of   human   wastewater,   which   will   provide   the  maximum  anthropogenic  benefit  with  minimal  environmental  disturbance.

 Keywords:  peatlands,  wastewater,  solute  transport,  advection/dispersion,  retardation,  dual  porosity

Geographic   Location:   De   Beers   Group   of   Companies   Victor   Diamond   Mine,   Kenora   Unorganized,   Ontario,  Canada    How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?    Remote  northern  communities  rely  on  the  surrounding  aquatic  ecosystems  for  sustenance,  thus,  understanding  how  to  effectively   manage   wastewater   treatment   in   fen   peatlands   can   potentially   decrease   the   risk   of   contamination   in  northern   aquatic   ecosystems.   Furthermore,   this   project   will   directly   assess   the   ability   of   these   systems   to   treat  wastewater  and  the  associated  effects  on  aquatic  ecosystem  services.  

Theme 1, Project 1.4: Determining the biogeochemical and hydrological feedbacks in fen peatlands due to hydrological and treated wastewater additions

 

 

     

 

 

 

 

 

Abstract  

Resource  extraction  and  transportation  activities  in  the  Canadian  Boreal  zone  can  result   in  the  unintentional  release   of   contaminants   in   boreal   peatlands.   In   the   event   of   a   release,   a   thorough   understanding   of   flow  within   the   variably   saturated   acrotelm   is   necessary   to   predict   both   the   behaviour   of   the   plume,   and   the  potential   impacts   on   the   non-­‐vascular   moss   species   present.   The   implications   of   capillary   action   on   the  potential   removal   and   release   of   solute   in   the   unsaturated   zone,   and   on   the   potential   toxicity   to   surficial  mosses,  are  currently  unknown.  The  goal  of   this   study   is   to  better  understand  how  bog  peatland  hydrology  and   peat   structure   control   the   nature   and   extent   of   solute   transport   in   a   variably   saturated   system.   The  objectives   are   to   1)   determine   the   spatial   and   temporal   evolution   of   a   developing   solute   plume,   and   2)   to  relate  the  physical  structure  of  peat  to  the  plume’s  dispersion  throughout  the  peat  profile.  Relationships  and  results  obtained  from  this  experiment  can  be  used  to  predict   the  subsurface   flow  behaviour  of  a  real-­‐world  contaminant   spill   given   information   on   the   topography,   vegetation   community   distribution   and   basic  hydrology  of  the  system.    

 

Keywords:  hydrology,  contaminant  transport,  unsaturated  flow,  peatland  

Geographic  Location:  De  Beers  Victor  Diamond  Mine,  James  Bay  Lowlands,  Ontario,  Canada  

How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?  Peatlands,  characteristic  features  of  the  Canadian  Boreal  zone,  are  important  ecological  systems  which  act  as  natural   regulators   of   surface   and   groundwater   flow   quantity   and   quality.   Understanding   contaminant  transport  behaviour   in  peatlands   is  essential   to  mitigate   the  short   term  release  of  attenuated  pollutants,  as  well  as  a  long  term  decrease  in  surrounding  water  quality.  

 

Theme 1, Project 1.4: Subsurface Flow Behavior of a Continuous Solute Release in a Sub-Arctic Bog  

Nicole  Balliston,  MSc  candidate  University  of  Waterloo  [email protected]    http://www.wetlandshydrology.com/      Supervisor  Jonathan  Price,  University  of  Waterloo    

 

 

Alexandra  Sumner,  MSc  Candidate  Laurentian  University  [email protected]    www.linkedin.com/profile/edit?trk=hb_tab_pro_top      Supervisor:    Tom  Jonhston,  MNRF  John  Gunn,  Department  of  Biology,  Laurentian  University      Project  Team:    Gretchen  Lescord,  Laurentian  University,  PhD  candidate,  collaborator  Michelle  Gillespie,  Laurentian  University,  Lab  Manager  and  field  technician  

Abstract  Increasing   temperatures   in   Canada’s   subarctic   region   are   expected   to   alter   many   components   of   aquatic  ecosystems,   including   the   bioaccumulation   of   mercury   in   fish.     It   is   important   to   understand   how   climate  influences   the   concentration   of   this   neurotoxin   in   fish   in   order   to   assess   the   future   impacts   that   climate  change  might   have   on   the   safety   of   consuming   wild   fish   in   northern   Ontario.     To   better   understand   how  climate  influences  mercury  bioaccumulation,  I  am  investigating  patterns  in  fish  mercury  concentrations  across  a  climatic  gradient  in  Ontario.    Two  species  of  large-­‐bodied  fish,  walleye  and  white  sucker,  have  been  sampled  from  75  lakes  throughout  the  Near  and  Far  North  of  Ontario.    These  lakes  are  distributed  over  9.0°  of  latitude  and   represent   a   range   of   climatic   conditions   (annual   growing   degree   days   604   -­‐   1599).     Additionally,   fish  mercury  concentrations  are  being  analyzed  with  respect  to  chemical,  physical  and  biological  variables  known  to  be  influential,  such  as  lake  pH,  dissolved  organic  carbon  concentration  and  fish  trophic  positions  and  growth  rates.     The   results   of   this   study   will   address   important   gaps   in   our   current   understanding   of   how   climate  affects  fish  mercury  levels,  and  will  be  useful   in  assessing  reference  conditions  in  advance  of  further  climate  change.      Keywords:  mercury,  methylmercury,  bioaccumulation,  fish  Geographic  Location:    See  Excel  file  named  “ASumner_LakeCoordinates_CNAES2015.xlsx”    How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?    The  results  of  this  study  will  provide  current  information  on  fish  mercury  levels  in  Canada’s  sub-­‐arctic  and  help  update   and   refine   fish   consumption  guidelines.    We  will   also   gain   insight   into  how   fish  mercury   levels  may  change  with  a  changing  climate  and  the  implications  for  the  food  quality  of  fish  in  the  northern  diet.    

Theme 1, Project 1.5a: Potential effect of climate on the bioaccumulation of mercury in two large-bodied fish species in northern Ontario

 

 

 

 

                     

 

Abstract  

The   consumption   of   mercury   (Hg),   a   toxic   metal,   is   a   concern   for   both   wildlife   and   humans,  and  elevated  concentrations   of   Hg   in   freshwater   and  wildlife   have   been   reported   in   remote   regions   across  Canada.  The  main  goal  of  this  project   is  to  study  mercury  cycling  and  bioaccumulation  in  aquatic  biota  from  the  Attawapiskat  drainage  basin  in  Ontario’s  Far  North.  This  vast  watershed  begins  as  headwater  lakes  in  the  Boreal   Shield   and   transitions   into   shallow   lakes,   small   tributaries,   and   finally   the   Attawapiskat   River   in   the  Hudson  Bay  lowlands.  Lakes  located  in  the  shield  are  deeper,  more  oligotrophic,  and  have  markedly  different  water  chemistry  profiles  compared  to  lowland  lakes.  This  diverse  watershed  will  allow  us  to  better  understand  how   physical,   geological,   biological,   and   chemical   gradients   affect   Hg   concentrations   in   water,   sediments,  invertebrates,  and  fish  on  a  large  scale.  Sampling  areas  also  include  several  lakes  surrounding  the  mineral-­‐rich  area  known  as  the  “Ring  of  Fire,”  where  extensive  mining  development  is  expected  over  the  next  decade;  this  project  will  therefore  provide  vital  baseline  data  for  future  monitoring  programs  in  this  area.        

Keywords:  Mercury,  Far  North,  Subsistence  Fisheries,  Dissolved  Organic  Material  (DOM)  

Geographic  Location:  Attawapiskat  Drainage  Basin,  Kenora  District,  Ontario,  Canada    How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?    The  Boreal   Ecozone   is   facing  major   changes   in   the   coming  decades  due   to   climate   variability   and   industrial  development  and  the  data  generated  from  this  project  (and  others  like  it)  will  be  vital  in  properly  monitoring  these  systems  to  ensure  their  preservation,  the  conservation  of  their  species,  and  continued  traditional  use  by  First  Nation  community  members.  

Theme 1, Project 1.5: Modeling mercury (Hg) cycling and accumulation in aquatic biota across the Attawapiskat watershed; implications for subsistence fisheries and the Ring of Fire development in Ontario’s Far North

Gretchen  Lescord,  PhD  candidate  Laurentian  University  [email protected]  https://www.researchgate.net/profile/Gretchen_Lescord    Supervisor:    John  Gunn,  Laurentian  University  Tom  Johnston,  Ministry  of  Natural  Resources        

 

 

Theme  II  

Healthy  Forests,  Healthy  Aquatic  Ecosystems    

Forests   area   key   resource   industry   in   Canada,  and  aquatic  ecosystem  services  (AES)  should  be  a   central   component   of   forest   management  practices.  However,  poor  understanding  of  how  forest  ecosystems  attributes  regulate  these  AES,  an   increasing   shift     from   harvesting   for   wood  products   to   supplying   biofuels   to   meet  emerging   markets,   and   complexities   posed   by  predicted   changes   to  Canada’s   climate  have  all  hindered   formal   integration   of   AES   into   the  decision  making  progress.  A  comprehensive  understanding  of  the  controls  on   AES   in   forest   landscapes   via   hypothesis  testing   will   be   developed   using   data   collected  from   monitoring,   experimental   manipulation,  modeling,   and   scenario   planning.   Leveraging  previous   investments   in   catchment   studies   across   Canada   and   working   closely   with   our   partners,     a   predictive  understanding   of   the  multiple   stressors   associated  with   forest  management   and   explore   the   links   and   trajectories   of  process   controls   on   AES   will   be   developed.   This   will   underpin   evaluations   of   the   cumulative   effects   of   forest  management  on  these  services.  These  results  and  partner  participation  within  and  among  Themes  will  support  scenario  analyses   to   forecast   future   forest   conditions   and   explore   trade-­‐offs   between   ecological   and   socio-­‐economic   risks   in  order   to   identify   desired   futures   and   management   options   to   achieve   these   futures.   AES   indicators   along   with  cumulative  effect  stresses  and  responses  developed  through  the  research  will  be  used  to  evaluate  strategies  for  forest  protection,   and   compensation   and  mitigation   strategies   for   offsetting   impacts   of   disturbed   forest   lands   on   AES.   The  evaluation  will   result   in   a   framework   that   can  be   implemented  by  government  and   industry   to  develop  management  policies   and   practices   that   ensure   ongoing   provision   of   AES.   Forest  management  will   have   a   critical   influence   on   the  future  supply  of  AES  upon  which  many  communities  depend;  this  research  will  develop  strategies  for  ensuring  sustained  delivery  of  these  services  that  can  inform  policy  at  a  national  scale.        

 

 

       Key  Objectives:    Use  an  integrated  approach  to  explore  first  the  reference  condition  of  AES  and  then  the  effects  of  forest  management  practices,  specifically  forest  harvesting  on  AES  Determine  how  AES  responds  to  disturbance  by  measuring  targeted  and  rigorously  evaluated  indicators  of  the  structural  and   functional   integrity   of   the   catchments   (i.e.   health)   that   can   provide  meaningful   estimates   of   the   value   of   these  services  to  downstream  users  Integrate   catchment   studies   from   across   Canada   that   include   gradients   of   naturally   and   anthropogenically   disturbed  forest   catchments   to   address   how   underlying   differences   in   climate   geology,   topography,   soils,   forest   types   and  disturbance  regime  affect  the  sustainability  and  delivery  of  the  AES  water  purification,  storage  and  flood  control  Design   a   series   of   manipulative   experiments   to   test   hypotheses   about   the  mechanistic   interactions   among   physical,  chemical  and  biological  responses  to  forest  disturbance  and  how  these  affect  AES  Identify  the  driving  forces  that  influence  ecosystem  services  in  forested  aquatic  ecosystems,  define  critical  uncertainties  in  the  determination  of  these  drivers,  describe  major  characteristics  of  alternative  scenarios,  and  develop  logical  forest  management  policy  and  practice  options  and  an  associated  set  of  indicators  that  target  desired  future  forest  states  Integrate  the  theoretical  advancements  generated  by  network  researchers  and  partners  using  scenarios  associated  with  future  landscapes  Combine  ecological  and  socioeconomic  perspectives  in  assessing  the  best  combination  of  planning    versus  incentivized  approaches  to  managing  AES        

 

 

 

 

     

 

 

   

 

 

 

Abstract  

I   build   the   spatial   (GIS   and   remote   sensing)   databases   for   Theme   2   research   and  monitoring   projects   and  provide   technical   support  and   training   for   the   research  participants.     This   includes  development  of  GIS  and  remote   sensing   image   processing   methods   and   protocols.     In   addition,   I   developed   and   conducted   the  introductory  GIS  course  for  the  NSERC  CNAES  2nd  Annual  Meeting  &  HQP  Workshop  in  May  2014  in  Montreal.    

Keywords:  GIS,  remote  sensing,  data,  analysis,  training  

How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?      I   support   all   Theme   2   research   and  monitoring   projects   investigating   the   effects   of   disturbances   in   forest  ecosystems  on  aquatic  ecosystem  services.    

 

 

 

 

 

Theme 2, All Theme 2 research projects: Cross-Project Research Enterprises

David  Aldred,  MSc  Western  University    [email protected]     Supervisor  Dr.  Irena  Creed,  Western  University  

 

 

 

 

 

 

 

 

                             

Abstract  

I  provide  technical  and  administrative  support   for  Theme  2  research  operations.  This   includes  analyzing  and  interpreting   data,  writing   and   revising   reports   and  manuscripts,   and   facilitating   communication   among   the  Theme  2  investigators,  collaborators  and  HQP.  

 

Keywords:  data,  analysis,  reports,  communication,  organization  

 How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?      I  help  support  all  the  Theme  2  projects,  which  are  investigating  how  disturbances  in  forest  ecosystems  affect  aquatic  ecosystem  services.      

 

Theme 2, Project 2 cross: Cross-Project Research Enterprises

Johnston  Miller  [email protected]  https://www.linkedin.com/profile  /view?id=107619576&trk=spm_pic      Project  team  John  Richardson,  University  of  British  Columbia  Jim  Buttle,  Trent  University  Sarah  Gergel,  University  of  British  Columbia  Karen  Kidd,  University  of  New  Brunswick  Paul  Sibley,  University  of  Guelph  Dave  Kreutzweiser,  Canadian  Forest  Service  Marian  Weber,  University  of  Alberta    

 

 

 

 

 

 

     

Abstract  

 Oligotrophic  lakes  in  the  temperate  forests  of  eastern  North  America  appear  to  be  experiencing  an  increase  in  the   frequency   and   duration   of   algal   blooms.   This   has   been   the   focus   of   numerous   public   and   government  reports,  resulting   in  heightened  public  concern  and  reporting  of  algal  blooms.  We  are  conducting  a  detailed  historical   survey   of   numerous   lakes,   covering   large   spatial   scales   (the   scale   of   region,   province,   or   entire  country)  and  temporal  scales  (decades)  to  determine  if  public  observations  are  accurate.  We  used  a  remote  sensing  approach   to   (1)  develop   regression  models   that   relate   Landsat   imagery   reflectance   to   chlorophyll-­‐a  (Chl-­‐a)   as   a   proxy   of   algal   biomass   of   lakes;   and   (2)   apply   these  models   to   estimate   Chl-­‐a   in   lakes   at   the  northern  edge  of  the  temperate  forest  biome  in  central  Ontario  over  a  28-­‐year  period  (1984–2011).  The  linear  regression  model  was  built  using  the  normalized  exoatmospheric  reflectance  values  acquired  from  the  utility  of   Landsat   TM   and   ETM   imagery   and   in   situ  measurements.   Landsat   band   3   (red)   showed   the   strongest  correlation  with   in   situ   data,  explaining   84%  of   the   variance   in   Chl-­‐a   (r2   =   0.84,   p   <0.001).  We   applied   this  model  to  all   lakes  within  the  region  selected  from  atmospherically  corrected  Landsat  data  for  the  peak  algal  bloom  period  (late  July  to  early  November)  for  the  entire  28  years.  A  time  series  revealed  a  cyclic  stationary  pattern  in  the  average  Chl-­‐a.  This  pattern  followed  the  regional  patterns  of  major  droughts,  especially  for  the  first  part  of  the  time  period,  making  climate  a  major  driver  in  the  formation  of  algal  biomass  in  lakes  that,  in  turn,  can  lead  to  the  rise  of  algal  blooms.  However,  this  climate  driver  appeared  to  become  less  predictable  later  in  the  record,  with  elevated  algal  biomass  occurring  in  both  normal  and  drought  years,    Keywords:  biogeochemistry,  climate  change,  water  resources,  nutrient  cycling,  phytoplankton,  remote  sensing  applications  

Geographic  Location:  The  Algoma  Highlands/Temperate  Forest  Ecozone,  Ontario,  Canada    How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?    The  presence  of  phytoplankton  communities  and  algal  biomass  can  affect  several  aquatic  ecosystem  services,  including  fish  populations,  water  quality  and  tourism.  The  outcomes  of  the  project  will  identify  which  factors  are   associated   with   reported   algal   blooms   and   allow   researchers   to   target   monitoring   efforts   on   the  potentially  susceptible  lakes  throughout  Canada.  

Theme 2, Project 2.1:Susceptibility of oligotrophic lakes in Ontario to formation of algal blooms

Aleksey  Paltsev,  MSc  candidate  Western  University  [email protected]    Supervisor:    Dr.  Irena  Creed,  University  of  Western  

 

 

     

     

 

 

 

Abstract  

Models  can  be  used  to  forecast   large-­‐scale  ecological  change,  but  physical  processes  are  often  complex  and  contain  hidden  frequencies  at  different  times.  Our  goal  is  to  develop  models  that  characterize  water  discharge  across   time  and  space,  and  relate  observed  changes   to   large-­‐scale  natural  oscillations   including  the  El  Nino,  North  Atlantic,  Pacific  Decadal  and  Atlantic  Multidecadal  Oscillations,  which  may  be  affecting  water  discharge.  We   use  wavelet   analysis,  which   allows   us   to   understand   not   only  which   oscillations   are   occurring   but   also  when  they  are  occurring.  By  decomposing  water  discharge  time  series  into  frequency  and  time  sub-­‐space,  we  can   relate   causes   of   seasonality   to   large-­‐scale   oscillations.  We   know   of   no   other   study   that   evaluates   the  effects   of   these   oscillations   at   a   continental   scale.   By   conducting   a   large-­‐scale   study,   we   may   discover  differences  among  sites  that  may  have  otherwise  been  missed.    

 Keywords:  Discharge,  catchment,  wavelet  analysis,  time  series,  LTER.

Geographic  Location:Acadia  Research  Forest,  ME,  USA  Archer  Watershed,  NY,  USA  Baltimore  Ecosystem  Study,  MD,  USA  Bear  Brooke  Watershed,  ME,  USA  Coweeta,  GA/NC    Dorset  Research  Center,  ON,  CAN  Experimental  Lakes  Area,  ON,  CAN  Fernow  Experimental  Forest,  WV,  USA  Harvard  Forest,  MA,  USA  

Hermine,  QC,  CAN  Hubbard  Brook,  NH,  USA  Kejimikujik  National  Parks,  NS,  CAN  Lac  Clair,  QC,  CAN  Lac  Laflamme,  QC,  CAN  Lac  Tirasse,  QC,  CAN  Leading  Ridge,  PA,  USA  Marcell  Experimental  Forest,  MN,  USA  Mont  St-­‐Hilaire,  QC,  CAN  

Neversink  Research  Watershed,  NY,  USA  Noland  Divide,  TN/NC,  USA  Santee  Experimental  Forest,  SC,  USA  Sleepers  River  Watershed,  TN,  USA  Turkey  Lakes  Watershed,  ON,  CAN  Walker  Branch  Watershed,  TN,  USA  

     How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?     Aquatic   ecosystems   can   be   used   to   control   floods   and   by   characterizing   water   discharge.   We   have   the  potential  to  inform  effective  management  practices.  

Theme 2, Project 2.1: Elucidating climate forcing oscillations in water discharge across the temperate biome  

Chris  Brimacombe,  MSc  candidate  University  of  Western  Ontario  [email protected]      Supervisor:    Dr.  Irena  Creed,  University  of  Western  

 

 

 

 

 

     

 

 

 

 

Abstract  

 To  understand  the  effects  of  forest  management  activities  on  streamflow,  we  will  classify  streamflow  regimes  in  different  forest  landscapes  across  Canada  using  a  combination  of  empirical  analysis  of  existing  streamflow  records   and   water   balance   modeling.   First,   we   will   use   GIS   techniques   to   classify   hydrologically   similar  catchments   across   Canada   into   different   groups   and   analyze   how   forest   management   and   climate   change  affect  streamflow.  Then,  we  will  use  the  Regional  HydroEcological  Simulation  System  (RHESSys)  in  the  Turkey  Lake  Watershed  to  simulate  and  assess  our  state  of  knowledge  of  catchment  controls  on  water  quantity  and  quality.    Keywords: Forest  management,  hydrological  process,  hydrological  model,  watershed  managements

 Geographic  Location: Turkey  Lake  Watershed,  Batchawana,  Ontario,  Canada      How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?      The   objectives   of   the   project   are   to   define   landscapes   of   similar   hydrological   characteristics   using  GIS   and  remote  sensing  technology  and  simulate  the  impacts  of  spatial  and  temporal  forest  management  practices  on  aquatic   ecosystem   services   within   the   specified   hydrological   region   by   a   distributed   hydrological   model.  Outcomes  of  the  project  may  help  explain  how  aquatic  ecosystem  services  respond  to  disturbance.  

 

 

Theme 2, Project 2.1: Classifying streamflow regimes in different forest landscapes across Canada

Junting  Guo,  Postdoctoral  Research  Fellow University  of  Western  Ontario  [email protected]    Supervisor:    Dr.  Irena  Creed,  University  of  Western  James  Buttle,  Trent  University    

 

 

 

 

 

Alex  Yeung,  PhD  Student  University  of  British  Columbia  [email protected]    https://sites.google.com/site/yeungcheeyu/    Project  Team:  Collaborator:  Dave  Kreutzweiser,  Canadian  Forest  Service,  Natural  Resources  Canada  Technician:  Scott  Capell,  Canadian  Forest  Service,  Natural  Resources  Canada  Field  assistant:  Alexander  Potter,  Trent  University  John  Richardson,  Department  of  Forest  and  Conservation  Sciences,  University  of  British  Columbia,  supervisor        

Abstract  

Keeping  nitrate  concentrations  below  levels  that  cause  ecological  and  health  risks  is  a  vital  ecosystem  service  provided   by   the   stream   and   riparian   environment.   Watershed   disturbance,   particularly   forest   harvesting,  tends  to  enhance  stream  nitrate  concentrations  following  leaching  from  soil,  while  producing  variable  effects  on  dissolved  organic  carbon  (DOC)  input  to  streams.  With  DOC-­‐nitrate  ratio  known  to  be  negatively  related  to  microbially-­‐controlled   nitrate   production,   it   has   not   been   well   established   as   to   how   logging   influences  ecological  processes  controlling  this  ratio,  and  hence  stream  nitrate  levels.  This   research   investigates   logging-­‐associated   changes   in   selected   stream   and   riparian   biogeochemical  processes   that   can   control   stream   nitrification   rates.   Using   a   replicated   Before-­‐After-­‐Control-­‐Impact   (BACI)  approach,   it   examines   how   such   outcomes   vary   across   watersheds   with   contrasting   nutrient   retention  potentials,  which  are  within  two  distinct  forest  types  (deciduous  and  coniferous)  in  Canada.  Watersheds  with  higher  deciduous  cover  is  expected  to  leach  more  nitrates,  and  would  be  partly  contributed  by  increased  in-­‐stream  nitrification,  given  a  reduced  streamwater  DOC-­‐nitrate  ratio.    Results  will  help  identify  suitable  ecological  indicators  which  can  mechanistically  predict  the  extent  of  stream  nutrient  enrichment  after   forest  harvests.   Established   indicators  have   the  potential   to  be  applied   to   inform  pre-­‐logging  planning  of  harvesting  practice  and  post-­‐logging  implementation  of  water  monitoring  regime.    Keywords:    Nitrates;  forest  harvesting;  riparian;  biogeochemistry;  DOC;  nitrification

Geographic  Location:  -­‐  Malcolm  Knapp  Research  Forest,  Maple  Ridge,  British  Columbia,  Canada  (E10-­‐1;  R20-­‐4;  G-­‐4;  East  Creek;  Mike  Creek;  Spring  Creek)-­‐  Turkey  Lakes  Watershed,  Ontario,  Canada  (TLW34;  TLW96;  TLW97;  AY1-­‐1;  AY3-­‐1;  AY4-­‐1;  AY13)  

Theme 2, Project 2.2: Impacts of forest harvesting on stream nutrient processing mediated by organic carbon-nitrate  

stoichiometry  

 

 

S  

 

 

 

 

 

 

 

 

 

 

Abstract  

While   forestry   impacts   on   aquatic   ecosystem   services   (AES)   have   been   widely   studied,   few   studies   have   examined  impacts   under   operational   selective-­‐harvesting   procedures.   This   study   examines   the   effects   of   ongoing   forest  management   activities   on  AES   in  northern  hardwood   forest   headwater   catchments   in   central  Ontario.     The   following  research  questions  are  being  addressed:  

1. Does  operational  selective-­‐harvesting  impact  AES  in  terms  of  stream  hydrology  and  aquatic  ecology?  2. Can   benthic   community   structure   be   used   as   an   indicator   of   selective-­‐harvesting   impacts   on  AES   in   northern  

hardwoods?  And  3. Does  the  response  of  benthic  community  structure  to  selective-­‐harvesting  change  with  harvesting  intensity  and  

catchment  scale  in  this  landscape?  This  study  hopes  to  understand  any  potential   impacts  forest  management  activities  may  have  on  the  hydrological  and  biological  qualities  of  headwater  streams   in  central  Ontario.    This  study  may  find  a  correlation  between  the  quality  of  AES  and  forest  management  activities.    This  project  hopes  to  also  identify  key  macroinvertebrate  species  that  can  serve  as  indicators  of  impacts  of  forest  management  activities  on  AES.   Keywords:   Selective-­‐harvesting,   operational   procedures,   benthic   community   structure,   streamflow   response,  headwaters,  central  Ontario  

Geographic  Location:  Griffin  Lakes  Watershed,  Sault  Ste.  Marie,  Ontario,  Canada  

How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?    Understanding   the   effects   of   forest   harvesting   on   aquatic   ecosystem   services   is   an   important   aspect   of   forest  management.    While   forestry   impacts   on   AES   have   been   widely   studied,   few   studies   have   examined   impacts   under  operational  selective-­‐harvesting  procedures.  

 Alexander  Potter,  MSc  candidate  Trent  University  [email protected]        Project  team  

Paul  Sibley,  University  of  Guelph,  Co-­‐investigator  David  Kreutzweiser,  Canadian  Forest  Service,  Research  Scientist  Scott  Capell,  Canadian  Forest  Service,  Research  Technician  Kevin  Good,  Canadian  Forest  Service,  Research  Technician  Jim  Buttle,  Trent  University,  supervisor    

Theme 2, Project 2.2: Effects of operational harvesting practices on hydrological and biological indicators of aquatic ecosystem services in northern hardwoods of central Ontario.  

inland  lakes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract  

Currently,   it   is   unknown   how   forest   management   activities   influence   aquatic   ecosystem   services   (AES)   provided   by  streams.   An   emerging   paradigm   in   forest  management   proposes   the   application   of   emulation   of   natural   disturbance  (END)  principles  to  forested  watersheds,  based  on  the  premise  that  natural  disturbance  is  an  integral  part  of  sustaining  healthy  forests  and  retaining  natural  variation  in  forest  condition,  in-­‐stream  ecological  processes,  and  biodiversity;  all  of  which  underpin  many  AES.  The  primary  goal  of  this  research  is  to  advance  understanding  of  how  landscape  disturbance  influences  riparian  forest  condition,  eco-­‐hydrological  processes,  and  further  explore  organic  matter  decomposition  and  associated   invertebrate   communities   as   disturbance   bio-­‐indicators.   The   primary   objectives   of   this   project   are   to:   1)  measure   proposed   bio-­‐indicators   across   forest   catchments   with   disturbance   histories   including   logged   with   riparian  buffers,  forest-­‐fire,  and  not-­‐recently  disturbed  (at  least  50  years)  watersheds  within  the  White  River  forest  management  area   to   see   if   there  are   significant  differences  at  broad  geographic   scales  and  persisting  after   a  ~10-­‐20  year   recovery  time;   2)   conduct   landscape   and   stream-­‐level   habitat   analyses   to   determine   how   landscape   condition   is   affected   by  logging   in   comparison   to   natural   fire   disturbance;   3)   interpret   results   within   context   of   END   and   whether   forest  management  change  can  be  a  means  of  sustaining  AES.  

Keywords:  Boreal  forest,  organic  matter  processing,  aquatic  invertebrates,  riparian  forest,  emulation  of  natural  disturbance,  forest  fires,  logging  

Geographic  Location:  White  River  Forest  Management  Area,  Ontario,  Canada    How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?    This  research  aims  to  help  identify  risks  and  recovery  rates  of  aquatic  ecosystem  services  (AES)  to  forest  catchment  disturbance,  and  to  understand  how  applying  emulation  of  natural  disturbance  principles  to  forest  management  planning  could  help  sustain  AES.  Natural  disturbance  processes  support  AES  through  the  retention  of  natural  variation  in  riparian  forest  condition,  in-­‐stream  ecological  processes,  and  biodiversity.  

Jordan,  Musetta-­‐Lambert,  PhD  Student  University  of  Guelph  [email protected]  

Project  team  

Dave  Kreutzweiser,  Canadian  Forest  Service,  Natural  Resources  Canada,  Co-­‐investigator  Irena  Creed,  Western  University,  Collaborator  John  Richardson,  University  of  British  Columbia  (Collaborator)  Karen  Kidd,  University  of  New  Brunswick  (Collaborator)  Scott  Capell,  Canadian  Forest  Service,  Natural  Resources  Canada  (Technician)  Dylan  Bowes,  University  of  Guelph  (Technician)Dr.  John  Bailey,  Ontario  Ministry  of  the  Environment  and  Climate  Change,  Supervisor  Paul  Sibley,  University  of  Guelph,  Supervisor          

Theme 2, Project 2.2: Conserving Aquatic Ecosystem Services through the Emulation of Natural Disturbance Paradigm for Sustainable Forest Management

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract  

Nearly   two-­‐thirds   of   Canada’s   land   base   is   forested,   and   this   forms   the   basis   of   one   of   Canada’s   most  important   resource   industries.  However,   forests   are   also   key   suppliers   of   aquatic   ecosystem   services   (AES);  thus,   it   is  critical  to  understand  the  relationship  between  forest  management  and  the  sustainability  of  these  services.   This   thesis   project   intends   to   address   this   by   accomplishing   two  main  objectives:   1)   to   study  how  forest   management   affects   food   web   structure   (via   stable   isotopes   and   ecological   stoichiometry   of  macroinvertebrates   and   their   food   resources)   in   headwater   streams   differing   in   degree   of   disturbance   and  consequent  forest  condition  in  Ontario,  British  Columbia  and  New  Brunswick.  2)  To  develop  indicators  of  AES  in  streams  to  understand  the  degree  to  which  forest  condition  (structure  and  species  composition)  influences  water   quality,   flow,   productivity   and   biodiversity.   This   objective   is   being   addressed   in   New   Brunswick   by  measuring   several   aquatic   endpoints   (macroinvertebrate   community   structure,   food   web   structure,   water  chemistry,   litter  decomposition  capacity,  sediment  transport,  discharge  and  temperature)  across  15  streams  ranging   in   area   of   the   watershed   that   has   been   logged.   These   in-­‐stream   indicators   of   aquatic   ecosystem  integrity  are  being  related  to  forest  condition  through  advanced  modeling  of  watershed  characteristics  using  high-­‐frequency  LiDAR  and  other  enhanced  forest  inventory  tools.      Keywords:  Headwater  stream,  food  web,  forestry,  ecological  stoichiometry,  macroinvertebrates,  stable  isotopes,  LiDAR  

Geographic   Location:     Black   Brook   Forestry   District,   Northern   New   Brunswick,   Canada;     Mount   Carleton  Provincial   Park,   Northern  New  Brunswick,   Canada;  White   River,   Ontario,   Canada;  Malcolm   Knapp   Research  Forest,  British  Columbia,  Canada    

How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?    

My   project   will   help   to   understand   how   forest   harvesting   (important   economic   activity   in   Canada)   affects  aquatic  ecosystem  services  such  as  biodiversity,  clean  water  supply  and  stream  productivity.  

Maitane  Erdozain,  PhD  Candidate  University  of  New  Brunswick  [email protected]  Project  team  

Dave  Kreutzweiser,  Canadian  Forest  Service,  co-­‐investigator  Paul  Sibley,  University  of  Guelph,  co-­‐investigator  John  Richardson,  University  of  British  Columbia,  collaborator  Alex  Yeung,  University  of  British  Columbia,  collaborator  Jordan  Musetta-­‐Lamber,  University  of  Guelph,  collaborator  Dean  Thompson,  Canadian  Forest  Service,  collaborator  Greg  Adams,  JD  Irving  Ltd.,  industrial  partner  Karen  Kidd,  University  of  New  Brunswick  and  Canadian  Rivers  Institute,  supervisor  

Theme 2, Project 2.2: Effect of forest condition on food web structure and other aquatic indicators in headwater streams in different regions of Canada.

 

 

 

     

 

 

 

 

 

 

 

 

Abstract  

Dissolved   organic   carbon   (DOC)   affects   nutrient   and   metal   cycles   by   controlling   their   water-­‐sediment  distribution,   bioavailability   and/or   toxicity.   These   effects   are   dependent   on   DOC   type,   concentration,   and  quality  (degree  of  humification).  We  aim  to  describe  how  DOC  quality  controls  primary  production,  food  web  structure  and  mercury  bioaccumulation  in  lacustrine  ecosystems  in  South-­‐Central  Ontario  by  focusing  on  four  main  questions:   (1)  How  do  type  and  age  of   forests  affect  DOC  quantity  and  quality   in   lake  ecosystems?  (2)  How  does  DOC  control  primary  production   in   lakes?  (3)  What  drivers  determine  food  chain   length?  (4)  How  does  DOC  affect  mercury  bioaccumulation?  Samples  of  organisms  (phytoplankton,  zooplankton  and  fish)  from  a  set  of   lakes  -­‐  selected  to  represent  a  gradient  of  organic  matter  and  phosphorus  content-­‐  will  be  analyzed  using   stable   isotope  analysis   and  elemental   analysis.   Stable   isotope  analysis  helps  define   the  position  of   an  organism   in   the   food   chain   and   the   dominating   primary   production   in   the   ecosystem.   Elemental   analysis  allows   us   to   trace   nutrients   and  metals   in   the   food  web.   Our   research   will   increase   the   knowledge   about  connectivity   between   forests   and   lakes   and  will   therefore   aid   the   development   of  management   plans   that  consider  aquatic  food  webs  and  ecosystem  services  Keywords:  Dissolved  organic  matter,  nutrients,  catchment,  primary  production,  food  web,  mercury,  fish  

Geographic   Location:   Temperate   forest   in   the   Canadian   Shield,   approximately   from   Kingston   to   Wawa.

How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?    Understanding  the  processes  regulating  the  length  and  complexity  in  aquatic  food  webs  will  help  us  define  the  links  between  forests  and  lakes,  as  well  as  the  drivers  of  mercury  accumulation  in  fish.  

Theme 2, Project 2.3: Dissolved organic matter controls on aquatic food webs and mercury accumulation in fish

Oscar  Senar,  PhD  candidate  University  of  Western  Ontario  [email protected]    Project  team  Dr.  Irena  Creed,  University  of  Western,  supervisor  Dr.  Karen  Kidd,  University  of  New  Brunswick,  supervisor    Dr.  Dave  Kreutzweiser  (Canadian  Forest  Services)  -­‐Collaborator  Dr.  John  Gunn  (Laurentian  University)  –Collaborator  Chris  Brimacombe  (Western  University)  –Technician  Jessica  Clapp  (Western  University)  –Technician  PhD.  Junting  Guo  (Western  University)  -­‐Technician  Jason  Igras  (Western  University)  -­‐Technician      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract  Truly   understanding   and   managing   aquatic   ecosystem   services   (AES)   requires   understanding   their   interactions,  feedbacks,  and  dynamics.  Yet,  most  research  into  ecosystem  services  takes  a  static,  one-­‐time  approach  to  measurement  that  is  poorly  suited  to  understanding  these  interactions.  To  better  understand  AES  dynamics,  we  synthesize  a  suite  of  approaches,   asking   three  main  questions:   (1)  How  dynamic  and   interrelated  are  AES  along   river-­‐floodplain  gradients?  We   integrate   GIS   and   aerial   photography   to   capture   relationships   among   floodplain   connectivity   (e.g.,   lateral,  longitudinal)  and  AES.  Long-­‐term  spatial  dynamics  will  be  addressed  using  historical   imagery.   (2)  How  do  AES  capacity  and  demand  differ   in   river-­‐floodplain   systems?  Using  participatory   approaches,  we  engage  with   communities   to  map  both   the   benefits   provided   by   and   demand   for   AES.   We   integrate   this   information   to   understand   the   community’s  priorities   and   behaviors   with   respect   to   management   of   AES   and   the   benefits   they   confer.   (3)   How   might   future  management  influence  AES  interactions  and  dynamics?  We  work  with  local  communities  to  develop  future  scenarios,  to  assess   the  potential   changes   in  AES   that  would   come  with   these   futures,   and   to  understand  how  communities  might  best  respond.  Pairing  spatially-­‐explicit  approaches  with  scenarios  and  long-­‐term  datasets  provides  a  unique  opportunity  to  explore  interactions  and  trade-­‐offs  among  AES  across  river-­‐floodplain  gradients.  

Keywords:  Landscape  position,  ecosystem  service  interactions,  landscape  history,  participatory  mapping,  floodplain,  rivers,  aerial  photography,  connectivity

Geographic  Location:  Batchawana  watershed,  Northern  Ontario,  Ontario,  Canada  How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?    Our   project   maps   Drawing   on   datasets   often   available   across   Canada   (aerial   photograph,   remote   sensing,   and   local  knowledge),  our  work  represents  a  case  study  approach  to  understanding  interactions  among  AES  important  in  a  local  and  Canada-­‐wide  context.    

Stephanie  Tomscha,  PhD  Candidate  University  of  British  Columbia  [email protected]        Project  team  Sarah  Gergel,  University  of  British  Columbia,  Supervisor  D  Irena  Creed,  Co-­‐supervisor  Elena  Bennett,  Co-­‐supervisor  Marian  Weber,  Co-­‐supervisor          

Theme 2, Project 2.3: Feedbacks and Dynamics of Aquatic Ecosystem Services in a Multi-use Watershed

 

 

 

Francesco  Accatino,  PhD  Politecnico  di  Milano  [email protected],  [email protected]  http://it.linkedin.com/pub/francesco-­‐accatino/85/570/715    Supervisor:    Irena  Creed,  University  of  Western  Ontario  Marian  Weber,  Alberta  Innovates      Abstract  

Wetlands   provide   a   number   of   ecosystem   services,   including   biodiversity   preservation,   water   purification,  flood  reduction,  and  human  use.   Increasing  urban  pressure  caused  a  progressive   loss  of  wetland  ecosystem  services  over  the   last   few  decades.   In  addition,   further  urban  expansion   is  predicted  to  occur  and  to   impact  existing   wetlands.   Policies   protecting   wetland   ecosystem   services   need   to   account   for   the   complexity   of  landscape   dynamics.   First,   urban   expansion   emerges   from   a   complex   interaction   between   individual  preferences  for  settling  and  accepting  payment  for  developing.  Second,  different  wetland  offset  schemes  can  drive  urban  development  in  different  ways,  and  they  have  different   impacts  on  wetland  ecosystem  services.  Third,  there  are  trade-­‐offs  between  different  ecosystem  services.  In  my  project,  I  use  an  agent-­‐based  approach  to  simulate  the  socio-­‐economical  interactions  at  the  landscape  scale  under  different  wetland  policy  scenarios.  In  these  models  I  also  account  for  the  feedbacks  between  wetland  ecosystem  services  and  socio-­‐economical  dynamics.  Major  aims  are  (i)  predicting  the  impact  of  different  policy  choices  on  wetland  ecosystem  services  and  urban  development,  and  (ii)  identifying  points  of  weakness  and  strength  in  different  wetland  management  policies.  

   Keywords:  Wetland,  ecosystem  services,  agent-­‐based  modelling,  socio-­‐economical  dynamics,  urban  expansion

 Geographic  Location:  *  Beaver  Hills  Initiative,  Alberta,  Canada      How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?    My  project  links  to  ecosystem  services  provided  by  wetlands,  and  in  particular  on  the  Alberta  wetland  policy.  

 

 

Theme 2, Project 2.4/2.5: Simulating wetland ecosystem services under different policy scenarios

 

 

 

Jacqueline  Serran,  MSc  Western  University    [email protected]      Supervisor:    Dr.  Irena  Creed,  Western  University        

Abstract  

Reliable  estimates  of  wetland  loss  require  improved  wetland  inventories  and  effective  monitoring  programs.   To   improve  upon   current  wetland   inventories,   a  novel  method   for  mapping  wetlands   using   an   automated   object-­‐based   approach   was   developed   for   a   regional   watershed   located   in  central  Alberta.  This  approach  used  digital   terrain  objects  derived  from  Light  Detection  and  Ranging   (LiDAR)  data   for  which  130,157  wetlands  were   identified.  Using   this   LiDAR  derived  wetland   inventory,  wetland   loss  estimates   (%  number   and  %  area)  were  obtained  by   applying   a  wetland  area   vs.   frequency   function   to   the  wetland   inventory   for   the  watershed.  Using   this  power   law,   it  was   found   that  historically,   there  has  been  a  69.3%   number   loss   and   a   9.96%   area   loss   when   we   accounted   for   mixed   pixels.   When   we   removed   any  wetland   less   than   the  estimated  minimum  mapping  unit   (0.02  ha),  a  16.17%  number  and  a  2.56%  area   loss  within   the   watershed   was   estimated.   This   wetland   loss   is   a   concern   as   it   is   concomitant   with   a   loss   of  ecosystem  services.  

 

Keywords: wetland,  object-­‐based  techniques,  area,  frequency,  Alberta  

 Geographic  Location:  Beaverhill  watershed,  Alberta,  Canada    How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?    My  project   links   to  Canadian  aquatic   ecosystem   services  by  mapping  wetlands   and  estimating  wetland   loss  rates  which  will  help  policy  makers  and  managers   to  better  develop  strategies   to  mitigate  wetland   loss  and  conserve  the  important  aquatic  ecosystem  services  wetlands  provide.  

 

Theme 2, Project 2.4/2.5: The Preferential Loss of Small Geographically Isolated Wetlands on Prairie Landscapes

 

 

 

Theme  III  

Quantitative  Indicators  &  Metrics  of  Ecosystems  Services,  Health  &  Function    

The   challenges   of   mapping   the   capacity   of   landscapes   to  deliver   aquatic   ecosystem   services   (AES)   are   extensive,  especially  considering  service  assessment  across  scales  varies  from   the   regional   to   national   levels.   Aquatic   ecosystems   are  hierarchically   organized,   and   thus   depend   on   processes   that  may  occur  far  beyond  the  sites  where  AES  are  delivered  (e.g.,  nutrient  distribution  across  watersheds  and  its  impact  on  local  lake   fish   productivity).   As   a   consequence,   we   need  quantitative  spatial  frameworks  to  generate  hydrological  data  at   several   scales   that   can   then   serve   as   predictors   against  known  values  of  AES,  which   in   turn  can  be  used  as  a  way   to  

predict  key  ecosystem  services.  

 

Key  Objectives:  

Utilize   and   further   develop   the   HydroSHEDS   database   (Lehner   et   al.   2008)     –     a   framework   to   generate  consistent   data   and   tools   at   multiple   spatial   scales   to   facilitate   eco-­‐hydrological   modelling   by   generating  information   regarding   watershed   boundaries,   drainage   directions,   flow   accumulation,   river   networks,   and  others  

Assess   effects   of   single   or   multiple   stressors   in   the   river   network   through   the   use   of   HydroSHEDS   model  environment  

Develop  quantitative  spatial  frameworks  to  generate  hydrological  data  at  several  scales  that  can  predict  key  ecosystem  services  

Development   of   a   Global   River   Classification   (GloRiC),   which   will   aim   to   derive   functional   ecosystem  classifications   based   on   physical   and   biological   parameters   at   global   and   regional   scales   in   order   to   better  understand  and  recognize  the  various  characteristics  of  habitats  and  their  inter-­‐connections  

 

 

 

     

 

 

 

 

 

 

Abstract  

In  order  to  plan  for  economic  development  while  minimizing  the  impact  on  the  provision  of  Aquatic  Ecosystem  Services  (AES),  it  is  critical  to  understand  (1)  what  and  where  ecosystem  services  are  provided  by  rivers  at  the  national  scale,  (2)  how  these  services  are  spatially  interlinked  over  large  distances,  and  (3)  how  to  ensure  the  lasting  quality  of  these  services  through  their  integration  into  sustainable  management  practices  of  freshwater  resources.   Addressing   such   questions   is   challenging,   in   part   because   aquatic   ecosystems   are   inherently  complex,  hierarchical  and  required  a   large-­‐scale  approach.  My  research  will  determine  “What   is   the  current  state  of  AES  in  Canada  and  how  can  they  be  integrated  to  sustainable  management  strategies  for  freshwater  resources?”  My   research  has   three   specific   goals:   (1)   to  develop  and  apply   a  novel,   holistic   and  multi-­‐scale  river   classification   scheme   as   a   mechanism   to   organize   the   heterogeneous   types   of   Canadian   rivers   at   a  national  scale,  (2)  to  map  provision  and  demand  of  Canadian  AES,  and,  ultimately,  (3)  to  create  guidelines  for  Environmental  Flow  (EF)  requirements  (quantity,  quality  and  timing  of  water  needed  by  ecosystems)  that  are  uniquely   tailored   to   Canadian   systems.   EF   can   be   an   integral   part   of   the   sustainable   management   of  freshwater  resources  to  maintain  good  ecological  status  of  ecosystems.      

Keywords:  River  classification,  Aquatic  Ecosystem  Services,  Canada,  Environmental  Flow  Requirement,    

Geographic  Location:  Include  all  locations  that  are  applicable  to  your  project,  in  bullet-­‐point  form.  Example:  Name  of  location/  field  site,  Region,  Province,  Country    

How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?      AES  of  Canadian  rivers  are  at  the  core  of  this  project.  I  will  use  river  classification  and  GIS  techniques  to  map  the  state  of  Canadian  AES  and  investigate  the  synergies  between  AES  and  EF  requirement.  

 

 

Theme 3, Project 3.1: Using the concepts of river classifications, environmental flow requirements, and aquatic ecosystem services to inform sustainable management strategies for large river basins with a focus on Canada

Camille  Ouellet  Dallaire,  PhD  student  McGill  University  [email protected]  http://wp.geog.mcgill.ca/hydrolab/people/camille-­‐ouellet-­‐dallaire/        Supervisor  Bernhard  Lehner,  McGill  University    

 

 

 

 

                   

 

Abstract  

The  analysis  of  wildlife  –  habitat   relationships  has  always  been  a  central   issue   in  ecology,  being  a   relatively  young  subject,  yet  big  accomplishments  were  achieved  in  the  field  in  these  last  six  decades.  It  has  become  a  relevant   tool   to   explore,   comprehend   and   satisfactorily   answer   specific   questions   about   the   intricacies   and  mechanisms   underlying   species   patterns.   The   savoir-­‐faire   generated   by   ecological   modelling   and   its  quantification   of   species-­‐environment   relationships   is   critical   for   conservation   planning   and  ecosystem/population  management.  I  propose:  (i)  the  development  a  quantitative  framework  based  on  GLMs  for  analysis  of  multispecies  data,  using  variation  partitioning  to  better  understand  the  different  contributions  of   group   of   variables;   (ii)   a   comparison   of   an   ensemble   of   species   distribution  modelling   approaches   to   be  applied  to  important  sport  fish  species  that  coexist  in  watersheds  of  Ontario,  in  order  to  understand  the  roles  of   different   abiotic   parameters   on   these   species,   and   also   study   how   the   introduction   of   biotic   factors   like  competition   interfere   with   SDM   modelling   predictability;   (iii)   the   investigation   of   how   to   relate   fish  productivity   to  SDMs,   since   this   information  can  be  useful   for   fisheries  management  of   stocks,  at   the   same  time  minimizing  data  gathering  costs.      

Keywords:  Ecological  modelling,  generalized  linear  models,  variation  partitioning,  species  distribution  models,  ensemble  methods,  fish  productivity.  

Geographic  Location:  Ontario  watersheds,  data  collected  from  MNR’s  Broad  Scale  Fish  Community  Monitoring  program.      How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?    The   study   of   quantitative  modelling   approaches   play   a   crucial   role   on   the   understanding   of   environmental  processes  that   influence  fish  distribution  and  potential  fish  production,  being  both  directly  related  to  fishing  practices,  which  consist  of  a  key  ecosystem  service.        

 

Theme 3, Project 3.2: Quantitative Frameworks to Improve the Analyses of Ecological Communities

Wagner  da  Costa  Moreira,  PhD  candidate  Université  du  Québec  à  Montréal.  [email protected]    br.linkedin.com/in/wagnermoreira    Supervisors:    Pedro  Peres-­‐Neto,  Université  du  Québec  à  Montréal.  Nigel  Lester,  Ontario  Ministry  of  Natural  Resources  and  Forestry  

   

 

 

 

 

 

Abstract  

Aquatic  ecosystems  are  complex  systems  that   include  numerous  small  tendrils  of  streams  flowing  into  ribbons  of  rivers   and   chains  of   lakes;  water   flows  are   filtered  by  wetlands,   interrupted  by  dams  and   reservoirs,   and   fed  by  precipitation  and  groundwater  inputs.  Aquatic  classifications  simplify  these  complex  systems  in  the  absence  of  data  on   every   lake,   river,   or   wetland   by   grouping   functionally   similar   aquatic   units   together   on   the   basis   of   current  knowledge  of  these  systems.  Watershed  boundaries  subdivide  continuous  aquatic  networks  and  their  contributing  land   areas   into   manageable   units   for   classification,   measurement,   comparison,   and   interpretation.   These  boundaries  are  based  on  topography  (changes  in  elevation)  and  the  direction  of  water  flow  to  a  specific  point  on  a  river,  lake,  wetland,  inlet  or  outlet.  Watersheds  are  also  referred  to  as  catchments,  basins,  or  drainage  areas.    

The  goal  of  this  research  is  to  determine  whether  watershed-­‐based  ecosystem  classification  can  be  used  to  predict  key  aquatic   services   like   the   safe  and  sustained  provision  of   food   fisheries.  The  concentration  and  movement  of  mercury  within  a  watershed  and  its  uptake  by  fish  are  affected  by  a  variety  of  complex  factors   including:  climate  and   thereby   fish   growth   rate;   landcover   (e.g.,   peatland   cover);   hydrology,   lake   size   and   position;   and   landuse  change  (e.g.,  forestry  and  mining).  The  ability  to  create  baseline  maps  of  expected  mercury  concentrations  for  food  fish  across  all  of  Ontario  and  Quebec  would  serve  the  interests  of  industry,  government,  First  Nations,  subsistence  and  recreational   fisheries.  Geostatistical  mapping  or  spatial   interpolation   is  an  established  method  used  to  make  continuous   predictions   of   environmental   variables   (e.g.,   of   expected   mercury   concentration)   at   unsampled  locations,   but   the   assumptions   of   this   method   are   violated   in   aquatic   systems   with   directional   flows   that   are  restricted   by   lake,   river,   and   watershed   boundaries.   Another   goal   of   this   research   is   to   compare   results   using  geostatistical  mapping  to  results  using  watershed-­‐based  classification(s).    

Outcomes    

This  research  will  create  effective  scientific  communication  tools  (i.e.,  maps,  models,  and  research  papers)  that  will  help   describe   the   current   state   of   knowledge   about   aquatic   ecosystems   and   baseline   mercury   loadings   across  watersheds  in  the  Provinces  of  Ontario  and  Quebec.  The  work  will  draw  attention  to  various  issues:  the  distribution  of  safe  fish  for  consumption;  knowledge  gaps;  potential  high  risks  areas  in  northern  regions;  and  the  generation  of  working  hypotheses  about  how  these  aquatic  ecosystems  behave.    

Theme 3, Project 3.2: Can watershed-based classification help explain patterns in fish mercury concentrations across Ontario and Quebec?

Stephanie  Melles,  Post-­‐doctoral  Fellow  University  of  Toronto  [email protected]    http://scholar.google.ca/citations?hl=en&user=45XuCJMAAAAJ&view_op=list_works      Project  Team    Donald  Jackson,  University  of  Toronto,  supervisor    Nigel  Lester,  Ontario  Ministry  of  Natural  Resources  Pedro  Peres-­‐Neto,  Université  du  Québec  à  Montréal    Nicholas  Jones,  Ontario  Ministry  of  Natural  Resources    Cindy  Chu,  University  of  Toronto,  

 

 

 

S  

 

 

 

 

 

 

 

 

 

Abstract  

Freshwater  lakes  and  rivers  support  a  $234  million  commercial  fishery  and  a  $2.3  billion  recreational  industry  in  Ontario.  Habitat   degradation,   overexploitation,   contaminants   and   the   introduction   of   aquatic   invasive   species   threaten   the  health   of   Ontario’s   lakes   and   the   productivity   of   their   fisheries   resources.   In   2008,   the   Ontario   Ministry   of   Natural  Resources  initiated  the  Broad-­‐scale  Fish  Community  Monitoring  (BsM)  program.  This  long-­‐term  program  is  designed  to  sample  hundreds  of  lakes  in  Ontario  in  order  to  assess  the  status  and  trends  in  fisheries  resources  and  stressors  (habitat  degradation,   exploitation,   contaminants   and   aquatic   invasive   species)   over   time.   It   provides   a   unique   opportunity   to  assess  the  ecosystem  health  of  hundreds  of  Ontario's  inland  lakes.  This  research  is  scientifically  significant  because  it  will  provide  a  broad-­‐scale  assessment  of  the  ecosystem  health  in  Central  Canadian  lakes,  and  evaluate  the  potential  causes  of  ecosystem  health  differences:  climate,  habitat,  exploitation,  contaminants  and   invasive  species.   It  will:   (i)  provide  a  cost   efficient,   methodological   tool   to   assess   lake   fish   community   production   and   ecosystem   health,   (ii)   assess   the  relative  importance  of  difference  variables  (climate,  habitat,  exploitation,  contaminants  and  invasive  species)  on  aquatic  ecosystem  health  and  services,  and  (iii)  be  used  to  prioritize  research,  monitoring  and  restoration  efforts   in  e.g.,   lakes  identified  as  at  risk  or  lakes  with  degraded  ecosystem  health.  

Keywords:  lakes,  fish  communities,  ecosystem  health,  biomass  size  spectra,  environment,  anthropogenic  stress  

Geographic  Location:  721  lakes  throughout  Ontario,  Canada  

How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?    This   research   will:   (i)   provide   a   cost   efficient,   methodological   tool   to   assess   lake   fish   community   production   and  ecosystem   health,   and   (ii)   assess   the   relative   importance   of   difference   variables   (climate,   habitat,   exploitation,   and  invasive  species)  on  aquatic  ecosystem  health  and  services.   It  can  be  used  to   inform  management  decisions  for   inland  lakes  and  their  recreationally  important  fisheries.    

 Cindy  Chu  PhD  2009-­‐Trent  University  [email protected]  https://sites.google.com/site/cindychueco/      Project  team  

Brian  Shuter,  Adjunct  Faculty,  University  of  Toronto  Henrique  Giacomini,  University  of  Quebec,  Montreal,  collaborator  Don  Jackson,  University  of  Toronto,  supervisor  Nigel  Lester,  Ontario  Ministry  of  Natural  Resources  and  Forestry,  supervisor  

Theme 3, Project 3.3.1: Biomass size spectra as indicators of ecosystem health in Ontario’s inland lakes

 

 

 

     

 

 

 

 

 

 

 

Abstract  

The   relative   importance  of  environmental   temperature  and  prey  availability   in   shaping   somatic  growth   rate  and  reproductive  allocation  in  freshwater  fish  has  been  the  subject  of  much  recent  theoretical  and  empirical  work.   In   this   project,   we   use   extensions   of   the   biphasic   growth   model   of   Lester   et   al   (2004)   to   make   a  quantitative  assessment  of:  (i)  the  nature  of  the  constraints  that  the  seasonal  water  temperature  cycle  places  on   juvenile   somatic   growth   rate;   (b)   the   nature   of   the   constraints   that   the   prey   size   spectrum   places   on  reproductive   allocation   and   the   consequences   for   adult   somatic   growth   We   will   use   six   data   sets   that  document  continent-­‐wide  variation  in  the  life-­‐time  somatic  growth  patterns  of  2  cold  water  species  (lake  trout  in  North  America,  brown  trout  in  Europe),  3  cool  water  species  (walleye  and  yellow  perch  in  North  America,  European  perch  in  Europe)  and  1  warm  water  species  (smallmouth  bass  in  North  America).  This  comparative  analysis   will   test   predictions   of   optimal   life   history   theory   that   in   turn   will   allow   a   more   mechanistic  understanding  of  the  response  of  fish  populations  to  changes  in  climate  and  community  structure.  

Keywords:    

Size  spectrum,  life  history,  fish,  climate  change,  predation  

Geographic  Location:  Canada,  United  States,  Norway  

How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?    This  project  will  provide  subsidies  to  extend  the  theory  underlying  the  community  size  spectrum  models  used  in   Project   3.3.   More   specifically,   we   will   generate   and   test   predictions   about   intraspecific   variability   and  developmental  plasticity  in  the  size  distributions  of  important  fish  species  inhabiting  temperate  zones.  

 

Theme 3, Project 3.3.2: Expanding biomass size spectra models

Henrique  Correa  Giacomini,  Research  Associate  University  of  Toronto  [email protected]  https://www.researchgate.net/profile/Henrique_Giacomini    Project  team  Brian  J  Shuter,  Ontario  Ministry  of  Natural  Resources/University  of  Toronto,  supervisor    Cindy  Chu,  University  of  Toronto,  collaborator  Erin  S  Dunlop,  Ontario  Ministry  of  Natural  Resources,  collaborator  Ander  Finstad,  Norwegian  Institute  for  Nature  Research,  collaborator  Nigel  P  Lester,  Ontario  Ministry  of  Natural  Resources,  collaborator  

 

 

 

 

 

 

 

 

 

 

 

Abstract  

Considering   that   the   various   types   of   reservoirs   produce   changes   of   different   magnitudes   in   the   aquatic  environment,   the   use   of   the   size   distribution   models   will   allow   a   better   understanding   of   the   ecological  aspects   of   these   developments   and   how   their   construction   affects   the   structure   size   of   the   aquatic  communities.  The  aim  of   this   study   is   to  estimate   the   size   spectrum  slopes  of   fish  assemblages  at  different  type   of   reservoirs   in   Southeastern   Brazil.   The   comparative   analysis   of   this   information   in   several   sites   and  period   will   allow   evaluating   the   effect   of   different   type   of   reservoirs   in   the   structuring   of   the   size   of   fish  communities.  To  reach  this  goal,  twelve  samplings  were  carried  out  quarterly  over  three  years.  Six  reservoirs  of   different   sizes  were   selected.   Samples  were  obtained   in   three  different   compartments   of   each   reservoir  (lotic,  intermediate,  and  lentic).  Large  fish  were  collected  with  gill  nets,  whereas  small  fish  were  sampled  with  trawl   nets.   Concomitantly   to   the   fish   sampling,   data   of   16   limnological   variables   were   taken.   To   test   the  project  hypotheses  and  whether  there  is  any  association  between  the  abiotic  components  with  the  patterns  obtained,   a   size   spectrum   gradient   estimated   by   maximum   likelihood   estimator   (EMV)   of   the   Pareto  distribution  type  1will  be  used.  

 Keywords:  Allometry,  size  diversity,  environmental  assessment,  Dams,  Upper  Paraná  Basin,  Brazil.

Geographic  Location:  Hydroelectric  Reservoirs  of    São  Paulo  State,  Brazil.    How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?    This   research   is   scientifically   significant   because   it   will   provide   a   new   understanding   of   the   ecological  functioning  of  different  types  of  hydroelectric  reservoirs.  This  understanding  will  serve  to  improve  concepts  of  reservoir  projects,  becoming  a  new  and  powerful  tool  for  the  assessment  of  its  viability.  

This   research   will   also   provide   new   insights   for   supporting   decisions   in   energy   policy,   allowing   proper  management  of  multiple  types  of  hydroelectric  reservoirs.  

 

Theme 3, Project 3.3.3: Size spectra of fish assemblages: longitudinal and temporal variation in neotropical reservoirs

 

Mateur  Ferrareze,  Postdoctoral  Fellow  University  of  Toronto  [email protected]      Supervisor:    Dr. Donald A. Jackson,  University  of  Toronto  Dr. Brian J. Shuter, University  of  Toronto    

 

 

 

 

 

     

 

 

 

 

 

 Abstract  

The  size  spectrum  is  the  distribution  of  organisms  across  a  range  of  organism  size.    It  reflects  size-­‐dependent  ecological  and  physiological  processes  that  govern  the  energy  flow  and  biomass  distribution  in  aquatic  ecosystems.    Perturbations,  such  as  overharvesting  fish  populations  and  eutrophication,  which  alter  the  flow  of  energy  within  a  community  should  be  captured  by  the  parameters  that  describe  the  shape  of  the  community  size  spectrum.    Zooplankton  are  an  important  link  between  primary  phytoplankton  production  and  fish  in  lakes.    Thus,  the  zooplankton  community  size  spectrum  has  the   potential   to   be   used   as   an   indicator   of   environmental   perturbations   affecting   higher   and   lower   trophic   levels.    Zooplankton  size  spectral  parameters  from  640  lakes  across  Ontario  will  be  linked  to  data  on  climate,  invasive  species,  basin   morphometry,   productivity,   contaminant   accumulation   levels,   and   fish   harvest   rates.   Multi-­‐frequency  hydroacoustic  surveys  are  being  evaluated  as  an  alternative  method  of  characterizing  zooplankton  size  spectra   that   is  more   time   and   cost   effective   than   traditional   sampling   approaches.     Characterization   of   lake   ecosystems   by   their  zooplankton  size  spectra  could  provide  a  comprehensive  and  robust  tool  to  monitor  the  health  of  aquatic  ecosystems.

Keywords: size   spectrum,   parameters,   zooplankton,   hydroacoustic,   perturbation,   lake   characteristics,  indicator.

Geographic  Location:  640  lakes  across  Ontario,  Canada

How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?  If  zooplankton  size  spectral  parameters  respond  in  a  consistent  and  predictable  manner  to  environmental  perturbations,  they   can   be   used   as   a   tool   to   detect   changes   in   the   capacity   of   lake   ecosystems   to   deliver   services   such   as   the  sustainable  harvests  of  fish  that  support  recreational  and  commercial  fisheries.  

 

Theme 3, Project 3.3.4: Calibrating the zooplankton body-size spectrum to serve as an indicator of lake characteristics and environmental perturbations

Lauren  Barth,  PhD  Student  University  of  Toronto  [email protected]    Project  team  Brian,  Shuter,  University  of  Toronto,  supervisor  Gary,  Sprules,  University  of  Toronto,  supervisor  Nigel,  Lester,  ONMR,  collaborator  Paul,  Blanchfield,  DFO,  collaborator  Shelley,  Arnott,  Queens  University,  collaborator  Don,  Jackson,  University  of  Toronto,  co-­‐investigator  Cindy,  Chu,  University  of  Toronto,  co-­‐investigator  Claudiu  Tudorancea,  independent  contractor,  technician  James  Rusak,  Dorset  Environmental  Science  Centre,  collaborator  Scott,  Milne,  Milne  Technologies,  collaborator      

 

 

 

 

 

   

 

 

 

 

 

Abstract  

Resilience   is   a   term   that   is   commonly   used   to   describe   how   ecosystems   respond   to   disturbance,   but   the  methods  for  measuring  or  quantifying  ecological  resilience  are  generally  lacking.  We  are  investigating  the  use  of   various   statistical   methods   to   quantify   the   ecological   resilience   of   aquatic   communities   that   have  experienced  various  environmental  perturbations.  The  primary  objectives  of  this  project  are  therefore  to:  1)  review   previous   methods   for   quantifying   ecological   resilience,   2)   develop   a   novel   metric   of   ecological  resilience  and  compare  this  metric  to  previously  develop  metrics  using  simulations,  3)  evaluate  the  ecological  resilience   of   south-­‐central   Ontario   freshwater   zooplankton   communities,   and   4)   bridge   the   gap   between  ecosystem  services  and  ecological   resilience   theory  with  a  novel  aquatic  ecosystem  management  approach.  We  expect  that  this  research  will  further  the  field  of  ecological  resilience,  providing  a  novel  tool  to  evaluate,  manage,  and  enhance  the  ecological  resilience  of  aquatic  ecosystems.      Keywords:  Ecological  resilience,  ecosystem  services,  multivariate  statistics,  aquatic  ecosystem  management  

Geographic  Location:    

Lakes  in  the  District  Municipality  of  Muskoka,  Ontario,  Canada  Lakes  in  Haliburton  County,  Ontario,  Canada  Lakes  in  the  Sudbury  District,  Ontario,  Canada  

How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?      Understanding   and   preserving   the   ecological   resilience   and   ecosystem   services   of   Canadian   aquatic  ecosystems   are   two   fundamental,   interconnected   strategies   for   ecosystem   management.   In   my   thesis  research,  my   final   chapter   looks   to  bridge   the  gap  between   these   two  disciplines,  and  will  provide  a  hybrid  resilience/ecosystem  services  management  scheme  useful  for  aquatic  ecosystem  management.        

Theme 3, Project 3.4: Evaluating ecosystem condition by quantifying ecological resilience

Karl  Lamothe,  PhD  student  University  of  Toronto  [email protected]  http://karllamothe.wordpress.com/    Project  team    Don  A.  Jackson,  University  of  Toronto,  supervisor  Keith  M.  Somers,  Dorset  Environmental  Science  Centre,  supervisor  Marie-­‐Josée  Fortin,  University  of  Toronto,  collaborator  Brian  Shuter,  University  of  Toronto,  collaborator  W.  Bill  Keller,  Laurentian  University,  collaborator  Pedro  Peres-­‐Neto,  Université  du  Québec  à  Montréal,  collaborator    

 

 

 

 

 

                   

Abstract  

Aquatic   ecosystem   integrity   is   essential   for   fisheries,   recreation,   flood   control,   and   biodiversity.   While  ecosystem  integrity  can  be  affected  by  both  natural  dynamics  and  human  pressures,  increased  infrastructure  development  and  land-­‐use  changes  further  exacerbate  these  adverse  effects  on  aquatic  ecosystems  globally.  Yet   aquatic   ecosystems   are   also   complex   due   to   highly   dynamic   variations   both   spatially   and   temporally.  Furthermore,  species  community  responses  to  aquatic  ecosystem  changes  vary  according  to  spatio-­‐temporal  scales.   Species   in   certain   functional   groups  within   aquatic   ecosystems   are  more   sensitive   to   anthropogenic  development   upstream   and   pollution   within   a   watershed,   which   are   cumulative   downstream.   Pulse  disturbances   from   landscape  pressures  on  species  communities   first   require   identifying  key   spatio-­‐temporal  scales   to   improve   predictions   of   the   aquatic   ecological   response   to   stressors.   Press   disturbances,   such   as  obstacles   and   culverts   in   stream  networks,   negatively   reduce   connectivity   for   diadromous   fish   species   that  must  migrate  through  both  marine  and  freshwater  habitats  to  complete  their  lifecycle.  My  research  therefore  aims  to  quantify  species  community  responses  within  key  spatio-­‐temporal  scales  of  analysis  of  the  press  and  pulse  disturbances  at  the  watershed  level.  This  research  will  be  critical  to  maintain  healthy  ecosystem  integrity  by  determining  areas  vulnerable  to  anthropogenic  impact  and  potentially  to  Canadian  health.  

Keywords:   connectivity,   estuaries,   fish   community,   functional   group,   indicator   species,   migratory   fish,  watersheds  

Geographic   Location:   Ontario   watersheds,   Ontario,   Canada,Miramichi   River,   New   Brunswick,   Canada,  Northumberland  Strait  watersheds,  New  Brunswick,  Canada  

 How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?    Policy   targets   based   on   these   improved   predictions   of   species   community   responses   will   aid   in   the  conservation  of  aquatic  ecosystems  services  and  human  health  in  Canada.  

Theme 3, Project 3.5: Fish community responses to spatio-temporal effects of global change in aquatic ecosystems

Andrew  Chin,  PhD  candidate  University  of  Toronto  [email protected]    Project  team  Marie-­‐Josée  Fortin,  University  of  Toronto  –  Supervisor  Julia  Linke,  University  of  Toronto,  Co-­‐investigator  Roland  Cormier,  Eco-­‐Risk,  Collaborator  Nigel  Lester,  Ontario  Ministry  of  Natural  Resources,  Collaborator  Keith  Somers,  Ontario  Ministry  of  the  Environment,  Collaborator  

   

 

 

 

 

                 Abstract  Habitat  quality  of  aquatic  ecosystems  is  influenced  by  direct  and  indirect  pressures  across  multiple  spatial  and  temporal   scales.     Northeast   New   Brunswick   has   been   host   to   a   variety   of   extensive   direct   pressures   (e.g.  forestry,  agriculture,  roads)  across  space  and  time,  while  also  supporting  a  vast  network  of  streams  and  rivers  draining   into   the  Northumberland  Straight.  To  support   the  active  management  of  aquatic  ecosystems,   their  vulnerabilities   and   risks   need   to   be   assessed   not   solely   at   the   regional   watershed   level,   but   across   the  multitude  of  finer  scales  that  they  may  operate  under,  requiring   in  turn  the  acquisition  and  development  of  spatio-­‐temporally  explicit  data  and  techniques.    The  primary  goal  of  this  research  is  to  determine  the  relative  ecosystems.   We   focus   on   (1)   estuarine   nekton   communities   and   water   quality   and   (2)   juvenile   salmon  abundance  in  headwaters  and  how  both  of  these  system  components  are  a)  linked  to  upstream  water  quality  and  b)   impacted  by  “upstream”  pressures  across  New  Brunswick  Northumberland  Straight  watersheds.    The  methods   and   models   developed   within   the   scope   of   this   project   will   be   applicable   most   environmental  sciences   dealing   with   spatial   data   and   will   help   developing   new   expertise   for   managing   spatially   dynamic  aquatic   ecosystems.importance,   and   the   key   spatial   scales,   at   which   various   pressures   influence   the  vulnerability  of  these  riverine      Keywords:   estuary,   forestry,   juvenile   salmon,   landscape   mapping   and   monitoring,   nekton   communities,  Northumberland  Straight,  spatial  statistics      Geographic   Location:   Northumberland   Straight   Study   Region,   New   Brunswick,   Canada:   the   study   region  covers  3.5  mha  across  all  New  Brunswick  watersheds  that  drain  into  the  Northumberland  Straight.  How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?    This   project   works   on   developing   techniques   to   assess   and   better   understand   the   cumulative   effects   of  pressures  on  indicator  species  and  attributes  of  aquatic  ecosystems  (e.g.  water  quality,  nekton  communities,  salmon  populations),  whereby  the  state  of  these  populations  and  attributes  in  turn  impacts  various  ecosystem  services   (e.g.   provision   service:   drinking   water;   supporting   service:   water   purification;   cultural   service:  recreational  fishing).    As  land-­‐use  management  can  mainly  control  direct  pressures  through  policy,  approaches  to   better   understand   their   relative   impacts   on   ecosystem   components   will   subsequently   enter   into   the  improved  understanding  of  the  services  they  provide.    

Theme 3, Project 3.5: Geospatial Risk Mapping - Relating Downstream Aquatic Species and Communities to Upstream Water Quality and Land Use in the New Brunswick Northumberland Straight Region

Julia  Linke,  Post  Doctoral  fellow  University  of  Toronto  [email protected]    Project  team  Marie-­‐Josée  Fortin,  University  of  Toronto  –  Supervisor  Andrew  Chin,  PhD  Student,  University  of  Toronto  –  co-­‐investigator Roland  Cormier,  Eco-­‐Risk,  Collaborator  Nigel  Lester,  Ontario  Ministry  of  Natural  Resources,  Collaborator  Keith  Somers,  Ontario  Ministry  of  the  Environment,  Collaborator      

 

 

   

 

 

 

 

 

 

 

 

 

Abstract  

Nearly  all  forests  are  on  Vancouver  Island,  BC  are  managed  for  timber  production  with  wide-­‐spread  impacts  on   non-­‐timber   benefits   people   derive   from   these   forests.   I  estimate   the   long   term   recovery   of   a   forest’s  capacity   to   provide   ecosystem   services,   including:   timber,   carbon   storage,   edible   berries,   habitat   for   an  endangered  sea  bird  (marbled  murrelet),  botanical   forest  products,  regulation  of  aquatic  environments,  and  the   large   cedar   used   traditionally   by   First   Nations.   I   use   two   approaches.   First,   I   estimate   the   recovery  trajectories  of  these  ecosystem  services  over  a  215  year  period  using  generalized  additive  modelling  based  on  data  from  a  forest  chronosequence.  Second,  I  contrast  the  ecosystem  services  provided  by  second-­‐growth  and  old-­‐growth  forests  in  two  different  ecosystems:  a  high-­‐productivity  riparian  forest  and  a  medium-­‐productivity  forest  located  on  mountain  slopes.  I  collected  the  data  for  the  second  chapter  using  field  sampling  in  August  2014  at  Clayoquot  Sound  with  help  from  local  First  Nations.  A  key  methodology  I  have  developed  and  which  I  use  in  both  chapters  is  the  use  of  forest  stand  structural  features  (eg,  trees,  logs,  understory  plants  and  forest  floor  thickness)  as  biophysical  indicators  to  estimate  capacity  of  different  ecosystem  services.    

Geographic  Location:    Tofino  Study  area,  BC,  Canada  Vancouver  Island,  BC,  Canada    

How  does  your  project  link  to  Canadian  aquatic  ecosystem  services?    

I   study   the   temporal   dynamics   of   tradeoffs   from   logging,   including   terrestrial   forest   harvesting   interactions  with   aquatic   ecosystem   services.   I   am   also   leading   a  multi-­‐author   CNAES   collaboration,   the   RegES   project,  which   seeks   to   conceptualize  how   regulating   services   interact   to  maintain   the  quality  of   aquatic   ecosystem  services  in  face  of  external  pressures.      

Ira  Sutherland,  MSc  Candidate  McGill  University    [email protected]  http://www.ecohydrology.ca    Supervisor:    Elena  Bennett,  McGill  University,  co-­‐supervisor    Project  Team:  Sara  Gergel,  UBC,  co-­‐supervisor  Alex  Yeung,  PhD  candidate,  field  technician    

Theme 3, Project 3.6: Understanding the trade-offs among ecosystem services along disturbance gradients