ali shakouri

Upload: mikaela-mennen

Post on 30-May-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 Ali Shakouri

    1/58

    1

    A. Shakouri 12/16/2009

    Ali ShakouriDirector, Thermionic Energy Conv. Center

    Baskin School of EngineeringUniversity of California Santa Cruz

    Nanoscale optothermo electricenergy conversiondevices

    Acknowledgement: ONR,DARPA DSO, AFOSR, CEA,NSF,

    NASA/UCSC (ARP, BIN-RDI)National Semiconductor,

    Intel, Canon, SRC-IFC

    UC Santa Barbara; 16 December 2009

  • 8/14/2019 Ali Shakouri

    2/58

    2

    A. Shakouri 12/16/2009

    RejectedEnergy 61%

    Lawrence Livermore National Lab., http://eed.llnl.gov/flow

    Power ~3.3TW

    1.3TW

    A. Shakouri 2/13/2009

  • 8/14/2019 Ali Shakouri

    3/58

    3

    A. Shakouri 12/16/2009US Energy Flow 1950

    3

    LLNL

    EnergySources

    EnergyConsumption

    RejectedEnergy 49

    Total 31.8 QuadPopulation: 161M

  • 8/14/2019 Ali Shakouri

    4/58

    4

    A. Shakouri 12/16/2009

    Direct Conversion of Heat into ElectricityDirect Conversion of Heat into Electricity

    )()()( 2

    2

    tyconductivithermal tyconductivielectrical Seebeck

    Z

    k S

    Z

    =

    =

    V~ S T

    ElectricalConductor

    Hot Cold

    Efficiency function of thermoelectric figure-of-merit (Z)

    R load = R TE internal

    T V

    S =Seebeck coefficient(1821)

  • 8/14/2019 Ali Shakouri

    5/58

    5

    A. Shakouri 12/16/2009

    Power Generation Efficiencies of Different Technologies

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    400 600 800 1000 1200

    ZTm=0.5ZTm=1ZTm=2ZTm=3Carnot limit

    Thot (K)

    0.5EnergyConversio

    nEfficiency

    3

    1

    2

    Carnot

    Solar/ Rankine

    Geothermal/

    Organic Rankine

    ZTavg =20Coal/ Rankine

    Cement/ Org.Rankine

    Solar/ Stirling

    ZT=S 2 /

    Cronin Vining

  • 8/14/2019 Ali Shakouri

    6/58

    6

    A. Shakouri 12/16/2009

    Impact of temperature on ICperformance15 oC temperature increase:

    Interconnect delay (10-15%)Crosstalk noise increase (up to 25%)

    Leakage power exponential increasewith temperature

    60nm50-70% of total power Potential thermal runaway

    Lifetime exponential decrease withtemperature (x ) e.g.electromigration, oxide breakdown

    Clock gating and multithreshold CMOSincrease on-chip thermal variation

    Thermal integrity: a must for low-power-ICdigital design, EDN 15 Sept. 2005

    http://masc.cse.ucsc.eduFrancisco Mesa-Martinez, Jose Renau

    http://masc.cse.ucsc.edu/http://masc.cse.ucsc.edu/
  • 8/14/2019 Ali Shakouri

    7/587

    A. Shakouri 12/16/2009

    Electric

    Current

    Heating Cooling= ST c I

    Peltier Effect (1834)Peltier Effect (1834)

    Reverse of Seebeck effect (electric currentproduces cooling/heating)

  • 8/14/2019 Ali Shakouri

    8/588

    A. Shakouri 12/16/2009

    Maximum coolingtemperature

    Tmax = ZT c2

    Fraction of

    Carnot

    Efficiency

    0.1

    0.4

    0.3

    0.2

    ZT1 2 3 4

    Commercial TEs

    Typical CFC System

    Thermoelectric (Peltier) Coolers

    Conventional thermoelectricshave low efficiencies (COP of 0.5-1) and low cooling power density

  • 8/14/2019 Ali Shakouri

    9/589

    A. Shakouri 12/16/2009

    Recent Advances in Thermoelectrics

    Recent advances innanostructuredthermoelectric materialsled to a sudden increase in (ZT) 300K > 1

    A. Majumdar, Science 303, 777 (2004)

  • 8/14/2019 Ali Shakouri

    10/5810

    A. Shakouri 12/16/2009

    Best Thermoelectric MaterialsBest Thermoelectric Materials

    SS 2

    Free carrier concentration

    ThermalConductivity

    Lattice contribution

    Electronic contribution

    Seebeck ElectricalConductivity

    Insulator Semiconductor Metal

    For almost all materials, if doping is increased, electrical conductivityincreases but Seebeck coefficient is reduced. Similarly

    ZT=S 2 /

  • 8/14/2019 Ali Shakouri

    11/58

  • 8/14/2019 Ali Shakouri

    12/5812

    A. Shakouri 12/16/2009Microrefrigerators on a chip

    Heterostructure Integrated Thermionic Coolers;A. Shakouri and John Bower, Appl. Phys. Lett. 1997

    Nanoscale heat transport and microrefrigerators on achip; A. Shakouri, Proceedings of IEEE , July 2006

    Featured in Nature Science Update, Physics Today, AIP April 2001

    1 m

    Hot Electron Cold Electron Monolithic integration on silicon Tmax ~4C at room temp. (7C at100C) Cooling power density > 500W/cm 2

  • 8/14/2019 Ali Shakouri

    13/5813

    A. Shakouri 12/16/2009

    100nsec ,time ,300nm spatial.0 1C temperature

    resolution

    Time ( s)

    J. Christofferson,Y. Ezzahri et al.SemiTherm 2009and MRS Spring2009

    1 10 100 1000

    ransient Thermal Imaging ofMicrorefrigerators

  • 8/14/2019 Ali Shakouri

    14/5814

    A. Shakouri 12/16/2009

    Metal film is heated by laser pulse and it acts both as a heatsource and a transducer (creates acoustic waves). It cancharacterize thermal interface resistances as well as interfacequality (acoustic mismatch).

    Time (ps)

    R(normalized)

    Thin Film ThermalCharacterization

    Thermal decay =>

    KSi/SiGe(30%) =8.1W/mKKSi/SiGe(60%) =2.8W/mK

    Acoustic echoes

    Y. Ezzahri et al. Appl.Phys. Letters 2005

  • 8/14/2019 Ali Shakouri

    15/5815

    A. Shakouri 12/16/2009

    p(t) p0

    t0

    p0 H(t)

    If the thermal RC network is composed of N pairs of RC port, the unit-stepresponse, a(t) , can be expressed as:

    ( )( ) ( )

    /

    0 1

    1 ii

    N t

    Thi

    T t a t R e

    == =

    Temperature

    Rise(K)

    Time (sec)

    Steady state

    Szekely et al. 1988,Micred Corp.

    hermal Step Function Excitation

  • 8/14/2019 Ali Shakouri

    16/5816

    A. Shakouri 12/16/2009

    The unit-step response, a(t) , can be expressed as:

    Logarithmic time scale

    with

    Time constant spectrum

    1 2 3

    R ( ) ( )/01

    1 ii

    N t

    Thi

    T t R e =

    = R( ) ( ) ( )( )( )0 1 exp / expT t R t d

    =

    ( )log =

    ( ) ( ) ( ) ( )( )( )0

    1 exp expT z

    a z R z d

    = = ( )log z t =

    Szekely et al. 1988

    etwork Identificat ion byDeconvolution

  • 8/14/2019 Ali Shakouri

    17/5817

    A. Shakouri 12/16/2009

    R thi C thi

    Cauer network

    R th1 R th2 R thi

    C thiC th2C th1

    R th1 R thn

    C thn

    R th2

    C th1 C th2

    Foster network

    -oster Cauer Network Transformation

  • 8/14/2019 Ali Shakouri

    18/5818

    A. Shakouri 12/16/2009

    30nm Al on top of 80nm superlattice (10W/mK) on Silicon substrate

    Layer Inputproperty

    NID

    R th (K/W) 25.5 22.3Cth (J/K) 4.2x10 -11 5x10 -11

    Rk=1e-8

    3e-9Rk=0 Km 2/W

    5e-9

    7e-9

    Y. Ezzahri and A. Shakouri, Rev. Sci. Instrument, 80 , 074903 (2009).

    pplication of NID to Transient.hermoreflect

  • 8/14/2019 Ali Shakouri

    19/5819

    A. Shakouri 12/16/2009

    A. A. Joshi and A. Majumdar; J. Appl. Phys. 74, p. 31 (1993)See also: G. Chen; Phys. Rev. Lett. 86, 2297 (2001)

    i ffusive or Bal l is t ic Propagation ofHeat

    Temperature (normalized)Tempera

    Distance (norm.)

    = /C

    L=0.1 m

    Diamond

    Fourier

    Hyperbolic Heat(Cattaneo)

    Boltzmann (EquationPhonon Radiative Transfer)

    Fourier

    Hyperbolic

    Boltzmann

    Fourier

    Hyperbolic

    Boltzmann

    =0.

    1

    =1

  • 8/14/2019 Ali Shakouri

    20/58

  • 8/14/2019 Ali Shakouri

    21/58

    21

    A. Shakouri 12/16/2009

    N 2: The Greens function of the total energy density propagation K(t,x) in a solid material when there is delta-function excitation P(t)

    q total relaxation time of energy carriers (funct. of wavevector q)DQ heat diffusion constantDC charge diffusion constant

    coupling factor betweencharge and energy density

    Z*

    high frequency limit of figure of merit

    *

    *1 Z T

    Z T =

    +

    ( ) ( )( )

    ( )

    ( ) ( )

    2 2

    22

    2 2 4

    ,,

    1Q q C

    q Q q C Q C

    K q i q N q M P

    D qM i i D q

    i iD q i iD q D D q

    = =

    = + = + + +

    B. S. Shastry, Rep, Prog, Phys72 , 016501, (2009)

    :hastry s formalism energy densitypropagation

    P(t)

    K(t,x)

  • 8/14/2019 Ali Shakouri

    22/58

    22

    A. Shakouri 12/16/2009

    Oscillations in the total energy density at the top free surface of the metal:due to Bragg reflection of ballistically accelerated electrons at the boundaries

    of the Brillouin Zone. Energetic analog of conventional Bloch Oscillations of electrons.

    2 3 (1 ) F

    a fs

    v = Damped oscillation of period

    independent of F

    and temperature

    Diffusivecontribution toenergy transport(heat propagation)

    Ballisticcontribution toenergy transport

    a : lattice constant.v F : Fermi velocity.

    Y. Ezzahri and A. Shakouri PRB, 79, 184303, (2009)

    nergetic Bloch Oscillations( )hastry Osci llations

  • 8/14/2019 Ali Shakouri

    23/58

    23

    A. Shakouri 12/16/2009

    Phonon minibands in SiGe superlattices

    Y. Ezzahri et al. Physical Review B, 2007

    Superlattice

    Pho

    Measuredphonon

    spectrum

    Calculation

    527GHz

  • 8/14/2019 Ali Shakouri

    24/58

    24

    A. Shakouri 12/16/2009Superlattice SiGe/Si vs. Bulk SiGe

    Younes Ezzahri et al.InterPACK07, THERMES 07

    Material

    Thermal

    Conductivity(W/mK)3 measurement

    Power

    factor S2

    (10 -3 W/K 2m)

    Figure-of-

    Merit,ZTSi0.8 Ge 0.2 alloy (Microrefrigerator Tmax =4.0K)

    5.9 1.6 0.08Superlattice Si/Si 0.75 Ge0.25 (3nm/12nm) (Microrefrigerator Tmax =4.2K)

    6.8-8.7 2.2 0.085

  • 8/14/2019 Ali Shakouri

    25/58

    25

    A. Shakouri 12/16/2009

    Thermal Conductivity of SiGesuperlattice vs. SiGe alloy

  • 8/14/2019 Ali Shakouri

    26/58

    26

    A. Shakouri 12/16/2009Thin Film Microrefrigerator Optimization

    Current SiGematerial

    Decrease thermalconductivity

    IncreaseSeebeck coef.

    IncreaseSeebeck coef.

    Decrease thermalconductivity

    Younes Ezzahri et al. InterPACK07

    10 microns thick, 50x50 m 2 monolithic microrefrigerator

    with ZT~0.5 can cool a 1000W/cm2

    hot spot by >15C.

  • 8/14/2019 Ali Shakouri

    27/58

    27

    A. Shakouri 12/16/2009Silicide nanoparticles in SiGe

    300K0.8% nanoparticles

    Silicon

    Si 0.5 Ge 0.5Ge

    NiSi2

    ZT (300K) ~0.5

    ZT (900K) ~1.8

    Natalio Mingo et al. Nano Letters 2009

    Predictions:

  • 8/14/2019 Ali Shakouri

    28/58

    28

    A. Shakouri 12/16/2009

    Monte Carlo simulation of TE energy exchange

    InGaAs InGaAsP InGaAs

    Heat Sink Anode

    Bias

    Hot SourceCathode

    Cathodecontactlayer

    Anodecontactlayer

    Barrier (main-layer)

    Mona Zebarjadi, Keivan Esfarjani,Ali Shakouri (Phys. Rev. B 2006)

    LargeSeebeck

    Q =- S.T c .I

    electrons

    SmallSeebeck

    SmallSeebeck

    Q = S.T h.I

    A f l t /T (i

  • 8/14/2019 Ali Shakouri

    29/58

    29

    A. Shakouri 12/16/2009

    Average energy of electrons /T (i.e.local Seebeck coefficient) vs. distance

    Increasingvoltage

    200

    160

    120

    8040 mV

    Mona Zebarjadi, Keivan Esfarjani, A. Shakouri Applied Physics Letter 2007

    Large Seebeck Small Seebeck(contact)Small Seebeck

    (contact)

    Local Seebeckcoefficient( V/K)

    2E23

    B J)3

    52

    (ne

    m2e

    T5k e +++=

    O ti i TE Effi iOptimi e TE Efficienc

  • 8/14/2019 Ali Shakouri

    30/58

    30

    A. Shakouri 12/16/2009

    0

    1

    2

    3

    4

    5

    6

    7

    8

    -1

    0

    1

    2

    3

    4

    5

    0 2 4 6 8 10 12 14

    Z T

    ( E b ar r i er -E f

    ) / k BT

    Fermi Energy (eV)

    Conserved

    Non-conserved

    Optimize TE Efficiency:Optimize TE Efficiency:(Metal/Semiconductor Nanocomposites)(Metal/Semiconductor Nanocomposites)

    Assume: lattice =1W/mK, mobility ~10cm 2/Vs

    Even with only modestly low lattice thermal conductivity and electron

    mobility of typical metals, ZT > 5 is possible with hot electron filters

    Fermi energy eV ( free electronconcentration)

    Planar Barrier

    Metal/Semiconductor

    Nanostructure

    . . ,D Vashaee and A Shakouri . . .Phys Rev Lett 92 , / ( ).106103 1 2004

    Hot and coldelectrons inequilibrium

    Hotelectronfilter

    h i i C i C

  • 8/14/2019 Ali Shakouri

    31/58

    31

    A. Shakouri 12/16/2009

    Ali Shakouri , Director Thermionic Energy Conversion Center

    ONR (2003-), DARPA(2008-)

    4nm(Zr, W)N

    2nm ScN

    UCSC (Bian, Kobayashi), Berkeley (Majumdar), BSST Inc. (Bell), Delaware (Zide), Harvard (Narayanamurti), MIT (Ram), Purdue (Sands), UCSB

    (Bowers, Gossard)

    Engineering current andheat flow usingnanostructures Goal: direct conversionof heat into electricitywith > 20-30% efficiency(ZT>2.5)

    ErAs Semi metal Nanoparticles

  • 8/14/2019 Ali Shakouri

    32/58

    32

    A. Shakouri 12/16/2009

    ErAs Semi-metal Nanoparticlesimbedded in InGaAs Semiconductor Matrix

    Erbium is co-deposited at a growth rate which is a fixed fractionof the InGaAs growth rate (MBE growth, 60 microns thick films)Solubility limit is exceeded islands are formed

    RandomErAsparticles~ 2-3 nm

    HAADF/STEM of ErAs Embedded

  • 8/14/2019 Ali Shakouri

    33/58

    33

    A. Shakouri 12/16/2009

    HAADF/STEM of ErAs EmbeddedNanoparticles in In 0.53 Ga 0.47 As

    ,n GasEr

    1nm

    Growth direction

    D. O. Klenov, D. C. Driscoll, A. C. Gossard, S. Stemmer, Appl.Phys. Lett. 86 , 111912 (2005)

    STEM: ErAs particles have rocksalt structure

    The As sublattice is continuousacross the interface

    Beating the Alloy Limit in ThermalBeating the Alloy Limit in Thermal

  • 8/14/2019 Ali Shakouri

    34/58

    34

    A. Shakouri 12/16/2009

    Temperature [K]

    0 200 400 600 800

    T h e r m a l

    C o n

    d u c t

    i v i t y

    [ W / m - K

    ]

    0

    3

    6

    InGaAs

    0.3% ErAs:InGaAs

    3% ErAs:InGaAs

    6% ErAs:InGaAs

    Beating the Alloy Limit in ThermalBeating the Alloy Limit in ThermalConductivity: Theory/ ExperimentConductivity: Theory/ Experiment

    W. Kim, et al. PhysicalReview Letters 2006

    Phonon scattering by ErAs nanoparticles 3-fold reduction in thermal conductivity beyond the alloy limit

    a k

    F r e q u e n c y

    Wavevector

    )(k

    Atoms/AlloysNanostructures

    a k

    F r e q u e n c y

    Wavevector

    )(k

    a k

    F r e q u e n c y

    Wavevector

    )(k

    Atoms/ AlloysAtoms/AlloysNanostructuresNanostructures

    M bili ( h )

  • 8/14/2019 Ali Shakouri

    35/58

    35

    A. Shakouri 12/16/2009

    Je-Hyeong Bahk, Mona Zebarjadi et al. submitted (2009)

    Mobility (Theory vs. Experiment)

    S b k ( h i )

  • 8/14/2019 Ali Shakouri

    36/58

    36

    A. Shakouri 12/16/2009

    Solid lines aretheoretical prediction (no f i t t ing)

    Seebeck (Theory vs. Experiment)

    Scattering

    mechanisms: Polar optical phononsAcoustic phononsIntervalley phononsImpurity

    Alloy scatteringNano particle scattering:

    (Born, Partial Wavetechnique)

    100

    120

    140

    160

    180200

    220

    240

    260

    300 400 500 600 700 800 900

    n-InGaAlAs (control)ErAs:InGaAlAs

    (b)

    S e e b e c

    k C o e

    f f i c i e n t

    ( V / K )

    T (K)

    . % :0 6 ErAs InGaAlAs

    Control( ,2E18 Si no

    )Er

    Je-Hyeong Bahk, Mona Zebarjadi et al. submitted (2009)

    Th l t i fi f it (ZT)

  • 8/14/2019 Ali Shakouri

    37/58

    37

    A. Shakouri 12/16/2009

    Thermoelectric figure-of-merit (ZT)

    J. Zide et al. submitted (2009)

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    1.6

    300 400 500 600 700 800

    n-InGaAlAs (control)ErAs:InGaAlAs

    Z T

    T (K)

    . % :0 6 ErAs InGaAlAs

    Refractory (Zr W)N/ScN Metal/SemiconductorRefractory (Zr W)N/ScN Metal/SemiconductorRefractory (Zr W)N/ScN Metal/SemiconductorRefractory (Zr W)N/ScN Metal/Semiconductor

  • 8/14/2019 Ali Shakouri

    38/58

    38

    A. Shakouri 12/16/2009

    4 nm (Zr,W)N

    2 nm ScN

    ZrN layers alloyed with W 2N Reduction in thermal conductivity Closer lattice match with ScN layer

    / ( , ) / HAADF STEM image of Zr W N ScN : superlattice Courtesy Joel Cagnon and

    ,Susanne Stemmer UCSB

    Refractory (Zr,W)N/ScN Metal/Semiconductor Refractory (Zr,W)N/ScN Metal/Semiconductor Superlattices for Higher Temperature OperationSuperlattices for Higher Temperature OperationRefractory (Zr,W)N/ScN Metal/Semiconductor Refractory (Zr,W)N/ScN Metal/Semiconductor Superlattices for Higher Temperature OperationSuperlattices for Higher Temperature Operation

    V. Rawat, T. Sands, J. Cagnon, S. Stemmer et al. 2008

    Thermal conductivity reduction in metal/Thermal conductivity reduction in metal/

  • 8/14/2019 Ali Shakouri

    39/58

    39

    A. Shakouri 12/16/2009

    Thermal conductivity reduction in metal/Thermal conductivity reduction in metal/semiconductor nitride superlatticessemiconductor nitride superlattices

    2-fold decrease in thermal conductivity of ZrN/ScN superlattices

    to

  • 8/14/2019 Ali Shakouri

    40/58

    40

    A. Shakouri 12/16/2009

    Cross-plane electrical conductivity

    0

    0.5

    1

    1.5

    2

    2.5

    3

    250 300 350 400 450 500

    ExperimentSimulation

    T (K)

    dEc=0.97 eV

    ElectricalConductivity(

    -1-cm-1)

    ScN(6 nm)/ZrN(4 nm)superlattice

    Fit to I-V-T yields barrier height of 280 meV

    Transport is thermionic

    S(300K) meas = 0.82 mV/K

    Purdue and UCSC

    M.Zebarjadi, V. Rawat et al. Journal of Electronic Materials 2009

    Z N/S N ZT di i

  • 8/14/2019 Ali Shakouri

    41/58

    41

    A. Shakouri 12/16/2009ZrN/ScN system: ZT prediction

    Model assumes 5 x 10 21 carriers/cm 3 in

    ZrN m* (ZrN) = 1.5 m 0 m* (ScN) = 0.2 m 0 100 periods of metal(4

    nm) / semiconductor(6nm)

    = 1.8 W/m-K Mobility from in-plane

    measurement of ScN k not conserved

    Electronic BTE using energy balance formulation

    .

    .

    .

    . . . .9 .9 .

    K K

    9 K9 K

    K K K K

    Z T

    dEc (eV)

    ZT

    Fit with experiment gives Ec of 0.97 eV and B = 0.28 eV

    Ec [eV]

    M.Zebarjadi, V. Rawat et al. Int. Thermoelectric Conf. 2008

    W f l d l f b i i

  • 8/14/2019 Ali Shakouri

    42/58

    42

    A. Shakouri 12/16/2009

    AlN_low pIate

    200 elements of p-ErAs array

    Wafer scale module fabrication

    AlN_upper plate

    200 elements of n-ErAs array

    AlN_low plate

    AlN_upper plate20 m elements

    400 element generator Gehong Zeng, John Bowers (UCSB)

  • 8/14/2019 Ali Shakouri

    43/58

    43

    A. Shakouri 12/16/2009Module Power generation results

    140 m/140 m AlN

    400 elements (10-20 microns ErAs:InGaAlAs thin films,120x120 m 2), array size 6x6 mm 2

    G. Zeng, J. Bowers, et al.(UCSB, UCSC) Appl. Physics

    Letters 2006

    0

    0.5

    1

    1.5

    2

    2.5

    3

    0 20 40 60 80 100 120 140

    10 m module

    20 m module

    O u t p u t

    P o w e r

    ( W / c m

    2 )

    T (K)

    Working with BSST on high power density moduledemonstration

    Mi i R f iMi i t R f i t

  • 8/14/2019 Ali Shakouri

    44/58

    44

    A. Shakouri 12/16/2009Miniature Refrigerator Miniature Refrigerator

    EntropyDecrease

    EntropyIncrease

    Cathode Barrier Anode

    Energy

    ConductionBand

    A. Shakouri, International Thermoelectric Conference Proceedings, 1998

    S d L f Th d i ?S d L f Th d i ?

  • 8/14/2019 Ali Shakouri

    45/58

    45

    A. Shakouri 12/16/2009

    Cathode Barrier Anode

    Energy

    ConductionBand

    Second Law of Thermodynamics?Second Law of Thermodynamics?

    EntropyDecrease

    A. Shakouri, International Thermoelectric Conference Proceedings, 1998

    I j ti C t I t ll C l d Light E ittInjection Current Internally Cooled Light Emitter

  • 8/14/2019 Ali Shakouri

    46/58

    46

    A. Shakouri 12/16/2009

    Injection Current Internally Cooled Light Emitter Injection Current Internally Cooled Light Emitter

    n p

    Kevin Pipe, Rajeev Ram and Ali Shakouri, Photonic Techn. Lett., Apr. 2002

    0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0- 4 0 0

    - 2 0 0

    0

    2 0 0

    4 0 0

    6 0 0

    Joule

    Contact

    Conv. q Active

    ICICLE q Active

    Current Density (A/cm 2)

    q(W/cm

    2)

    0 1 2 3 4-2.2

    -2

    -1.8

    -1.6

    -1.4

    -1.2

    -1

    -0.8

    GaSb/GaInAsSb.

    Electrically pumpedoptical refrigeration

    Optimal Internal Cooling in Diodes

  • 8/14/2019 Ali Shakouri

    47/58

    47

    A. Shakouri 12/16/2009

    0 0.5 1 1.5 2

    -40

    -20

    0

    20

    40

    Temperature(K)

    6 10 5

    J = 8 10 5 A/cm 2

    5 10 54 10 5

    2 10 5

    Position (micron)

    Optimal Internal Cooling in Diodes

    Kevin Pipe, Rajeev Ram and Ali Shakouri, PRB 2002

    HgCdTe diode

    holes

    electrons

    NPIheat cool cool

    heatcool cool

    S t i bl E Ch ll

  • 8/14/2019 Ali Shakouri

    48/58

    48

    A. Shakouri 12/16/2009

    John Bowers, UCSB

    World Average

    Sustainable Energy Challenge

    A FRAMEWORK FOR PRO-ENVIRONMENTAL

  • 8/14/2019 Ali Shakouri

    49/58

    49

    A. Shakouri 12/16/2009

    A FRAMEWORK FOR PRO ENVIRONMENTALBEHAVIOURSDefra January 2008

    The headline behaviour goals

    -Install insulation; microgeneration-Increase recycling-Waste less (food)-More responsible water usage-Use car less for short trips; more efficient vehicles-Avoid unnecessary flights (short haul)-Buy energy efficient products-Eat more food that is locally in season-Adopt lower impact diet

    Elizabeth Shove, Sociology Department, Lancaster University, UKhttp://www.soe.ucsc.edu/classes/ee080j/Spring09/

  • 8/14/2019 Ali Shakouri

    50/58

    50

    A. Shakouri 12/16/2009

    A h a !

    Practicalconsciousness

    Awareness and choice

    Informs a lot of discussion about how to engender sustainabilityConsiders habits in isolationOften implausible in terms of daily routines e.g. comfort, cleanliness

    Elizabeth Shove, Spring 2009http://www.soe.ucsc.edu/classes/ee080j/Spring09/

  • 8/14/2019 Ali Shakouri

    51/58

    51

    A. Shakouri 12/16/2009

    choice, change, belief , attitude,

    information, behaviour

    But what if we see consumption as

    consequence of ordinary practice?What is required in order to be a normalmember of society?

    How does this change, and with whatconsequence for sustainability?

    Elizabeth Shove, Spring 2009http://www.soe.ucsc.edu/classes/ee080j/Spring09/

    Comfort and indoor environments

  • 8/14/2019 Ali Shakouri

    52/58

    52

    A. Shakouri 12/16/2009

    it is becoming normal to expect 22degrees C inside, all year round, allover the world and whatever theweather outside

    Cleanliness and showeringit is becoming normal to shower once or

    twice a day (in the UK, the amount of water used for showering is expected toincrease five fold between 1991-2021)

    LaunderingFrom once a week to once a day or more, but with lower temperatures thanever before

    Similar trends naturalisation of need

    but possibly differentdynamics

    and differentimplications for thefuture

    Comfort, cleanliness and convenience By Elizabeth Shove, 2003

    Comfort and indoor environments

    Thermal comfort research

  • 8/14/2019 Ali Shakouri

    53/58

    53

    A. Shakouri 12/16/2009

    Thermal comfort research

    Defining

    comfort

  • 8/14/2019 Ali Shakouri

    54/58

    54

    A. Shakouri 12/16/2009

    Reflexive/conspicuous consumption

    Routine/ordinary consumption

    Where mosteffort hasfocused

    Where the realchallenges lie

    Individual belief, attitude, behaviour,information, persuasion

    Practice, convention, routine, dynamicsof sociotechnical systems, structuring of options, standardisation, globalisation

    Elizabeth Shove, Spring 2009http://www.soe.ucsc.edu/classes/ee080j/Spring09/

    International Summer School in

  • 8/14/2019 Ali Shakouri

    55/58

    55

    A. Shakouri 12/16/2009Renewable Energies

    CA/Denmark Program

    UC Santa Cruz; UC Davis; UC MercedTech. University of Denmark; Aarhus;Copenhagen; Roskilde (2008)

    CurriculumGuest Lectures by Experts (technology,policy, business, social issues)

    Extensive Field trips; student projects

    Renewable Energy Microgrid /Sustainable

  • 8/14/2019 Ali Shakouri

    56/58

    56

    A. Shakouri 12/16/2009

    gy gCommunity Development at NASA Ames

    Ken Kay Associates,

    William Berry, UniversityAssociates LLC, et al.

    US-China Green Tech Conf.,Beijing, China, Nov. 2009

    (UCSC, NASA, Foothill/De Anza College, etc.)

    Summary

  • 8/14/2019 Ali Shakouri

    57/58

    57

    A. Shakouri 12/16/2009

    Metal / semiconductor nanocomposites can improve

    thermoelectric energy conversion Mid/long wavelength phonon scattering Hot electron energy filtering

    Micro Refrigerators on a Chip Localized cooling (10 150 m, 4-7C), based on SiGe, InP, > 500

    W/cm 2

    Fast transient thermal imaging using thermoreflectance Resolution: ~250nm, 0.01C, 100ns

    Network identification by deconvolution for transientthermal analysis; Ballistic/diffusive energy transport

    Renewable energy and sustainable developmenteducation and Research

    Summary

    Acknowledgement

  • 8/14/2019 Ali Shakouri

    58/58

    A. Shakouri 12/16/2009Acknowledgement

    Mona Zebarjadi (UCSC) - Material Research Society Gold Graduate StudentAward , Boston, MA 2007

    Yan Zhang, James Christofferson, et al. (UCSC/UCSB) IEEE Transactions onComponents and Packaging Best Paper Award 2006

    Je-Hyoung Park, Xi Wang, Yan Zhang (UCSC) - Student Award, AdvancedThermal Workshop International Microelect. Packaging Society , 2005-2009

    Daryoosh Vashaee (UCSC), Joshua Zide (UCSB) , Xiaofeng Fan (UCSB) -Goldsmid Award (Best Graduate Student Research) , International

    Alumni: Daryoosh Vashaee (Prof. Oklahoma State) , Yan Zhang(Tessera) , Rajeev Singh (Sun Power), Zhixi Bian (Adj. Prof. UCSC), James Christofferson (Res. Scientist UCSC), Kazuhiko Fukutani(Canon) , Javad Shabani (PhD student, Princeton), Younes Ezzahri (Prof.Univ. Poitier) , Mona Zebarjadi (MIT), Je-Hyoung Park (Samsung) ,Tammy Humphrey, Virginia Heriz, Travis Kemper

    Postdocs/Graduate Students: Helene Michel, Xi Wang, Kerry Maize, Hiro

    Onishi, Tela Favaloro, Paul Abumov, Phil Jackson, Oxana Pantchenko,Amirkoushyar Ziabari