algorithms for the calculation of exact displacements...

87
Computers & Geosciences 33 (2007) 1064–1075 Algorithms for the calculation of exact displacements, strains, and stresses for triangular dislocation elements in a uniform elastic half space $ Brendan J. Meade Department of Earth and Planetary Sciences, Harvard University, 20 Oxford St., Cambridge, MA 02138, USA Received 5 August 2006; received in revised form 6 December 2006; accepted 10 December 2006 Abstract We present algorithms for analytically calculating the displacements, strains, and stresses associated with slip on a triangular dislocation element (TDE) in a homogeneous elastic half space. Following previous efforts, the solution is constructed as a dislocation loop where the deformation fields for each of the three triangle legs are calculated by the superposition of two angular dislocations. In addition to the displacements at the surface we derive the displacements and strains at arbitrary depth. We give explicit formulas for the strains due to slip on an angular dislocation, the calculation of angular dislocation slip components, a method for identifying observation coordinates affected by a solid body translation, and rules for internally consistent vertex ordering allowing for the superposition of multiple TDEs. Examples of surface displacements and internal stresses are given and compared with rectangular representations of geometrically complex fault surfaces. r 2007 Elsevier Ltd. All rights reserved. Keywords: Elastic dislocation; Faulting; Seismotectonics 1. Introduction Elastic dislocation theory is widely used for calculating the displacements, strains, and stresses associated with faulting from earthquake rupture to interseismic time scales (e.g., Burgmann et al., 2002; McGuire and Segall, 2003; Savage and Burford, 1973). Fault surfaces are often parameterized as a collection of point or rectangular sources due to the availability of analytic solutions for the deformation due to slip on dislocation elements of these shapes (e.g., Okada, 1985, 1992). However, some faults, such as those at subduction zones, may have geometries with substantial variations in both strike and dip. Rectangular parameterizations of complex fault surfaces exhibit geometric gaps due to the fact that it is often impossible to mesh non-planar surfaces exactly using rectangular elements. The effect of these gaps is to complicate the accurate calculation of displacements and stresses due to the effects of strain singularities at the edge of every dislocation element. These effects vanish, except exactly at element edges, with gap-free parameterizations of fault surfaces. With gap-free representations of fault surfaces these effects vanish ARTICLE IN PRESS www.elsevier.com/locate/cageo 0098-3004/$ - see front matter r 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.cageo.2006.12.003 $ Code available from server at http://www.iamg.org/ CGEditor/index.htm Tel.: +1 617 495 8921; fax: +1 617 495 8839. E-mail address: [email protected].

Upload: others

Post on 23-Jun-2020

6 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

Computers & Geosciences 33 (2007) 1064–1075

Algorithms for the calculation of exact displacements,strains, and stresses for triangular dislocationelements in a uniform elastic half space$

Brendan J. Meade�

Department of Earth and Planetary Sciences, Harvard University, 20 Oxford St., Cambridge, MA 02138, USA

Received 5 August 2006; received in revised form 6 December 2006; accepted 10 December 2006

Abstract

We present algorithms for analytically calculating the displacements, strains, and stresses associated with slip on a

triangular dislocation element (TDE) in a homogeneous elastic half space. Following previous efforts, the solution is

constructed as a dislocation loop where the deformation fields for each of the three triangle legs are calculated by the

superposition of two angular dislocations. In addition to the displacements at the surface we derive the displacements and

strains at arbitrary depth. We give explicit formulas for the strains due to slip on an angular dislocation, the calculation of

angular dislocation slip components, a method for identifying observation coordinates affected by a solid body translation,

and rules for internally consistent vertex ordering allowing for the superposition of multiple TDEs. Examples of surface

displacements and internal stresses are given and compared with rectangular representations of geometrically complex

fault surfaces.

r 2007 Elsevier Ltd. All rights reserved.

Keywords: Elastic dislocation; Faulting; Seismotectonics

1. Introduction

Elastic dislocation theory is widely used forcalculating the displacements, strains, and stressesassociated with faulting from earthquake rupture tointerseismic time scales (e.g., Burgmann et al., 2002;McGuire and Segall, 2003; Savage and Burford,1973). Fault surfaces are often parameterized as acollection of point or rectangular sources due to theavailability of analytic solutions for the deformation

due to slip on dislocation elements of these shapes(e.g., Okada, 1985, 1992). However, some faults,such as those at subduction zones, may havegeometries with substantial variations in both strikeand dip. Rectangular parameterizations of complexfault surfaces exhibit geometric gaps due to the factthat it is often impossible to mesh non-planarsurfaces exactly using rectangular elements. Theeffect of these gaps is to complicate the accuratecalculation of displacements and stresses due tothe effects of strain singularities at the edge ofevery dislocation element. These effects vanish,except exactly at element edges, with gap-freeparameterizations of fault surfaces. With gap-freerepresentations of fault surfaces these effects vanish

ARTICLE IN PRESS

www.elsevier.com/locate/cageo

0098-3004/$ - see front matter r 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.cageo.2006.12.003

$Code available from server at http://www.iamg.org/

CGEditor/index.htm�Tel.: +1 617 495 8921; fax: +1 617 495 8839.

E-mail address: [email protected].

Page 2: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

everywhere, except along dislocation edges, becauseeach singular boundary is matched exactly withanother. Gap-free tessellation of observationallyconstrained fault surface geometry can be achievedusing triangular meshes (e.g., Plesch et al., 2003)and we develop a solution for the static elasticresponse to slip on an arbitrary set of triangulardislocation elements (TDEs). These algorithmsfacilitate the accurate modeling of geometricallycomplex of fault zones and may be useful forCoulomb failure stress calculations, modeling geo-detic measurements, quasi-dynamic rupture simula-tions, and the assessment of the geometriccontinuity of active faults.

The concept of a TDE in a homogeneous elastichalf space is not a new one. Several studies over thelast 30 years have contributed to the development ofthe techniques that might be used to constructTDEs from primitive Green’s functions. Brown(1975) discussed the superposition of angular dis-locations to construct the sides of a polygon. Thisconstruction was enabled by the calculation ofGreen’s functions for an angular dislocation in auniform elastic half space given by Comninou(1973) and Comninou and Dunders (1975). BothComninou (1973) and Jeyakumaran et al. (1992)outlined the rotation and translation needed tomap an arbitrary dislocation leg into the angulardislocation coordinate system formalized by Com-ninou and Dunders (1975). Thomas (1993) extendedJeyakumaran et al.’s (1992) boundary elementformulation to arbitrary polygonal dislocationelements and noted typographical errors in theformulas for the displacements due to slip on anangular dislocation (Comninou and Dunders,1975). These algorithms have been used to studyfault interactions (Griffith and Cooke, 2004; Olsonand Cooke, 2005) and as the basis for the inversionof geodetic measurements for coseismic slip dis-tributions (Maerten et al., 2005). Despite thesecontributions the application of TDEs has not beenwidespread due to the fact that their constructionhas remained opaque.

Here, we present explicit algorithms to analyti-cally calculate the displacements and strains asso-ciated with slip on a TDE beginning with a reviewof the construction of a dislocation loop by meansof the superposition of angular dislocations. Wedetail the geometric transformations necessary tocalculate the angular dislocation geometries fromthe triangle vertices, and project the triangularelement slip vector into the slip vectors for each

angular dislocation element. Exact expressions forthe strains due to an angular dislocation in anelastic half space are presented (Appendix A). Thestrains and stresses at depth for a TDE are given bythe rotation and superposition of strains from eachangular dislocation. We develop an algorithm foridentifying observation coordinates below the sur-face of a TDE affected by a solid body offset. Thedeformation fields associated with multiple TDEsare readily constructed by superposition using avertex ordering scheme that is consistent fromelement to element. Comparisons between thedisplacement and stress fields for triangular andrectangular representations of non-planar faultsurfaces demonstrate the effects of alternate geo-metric parameterizations of fault surfaces.

2. Construction of TDEs

To calculate the displacements, u, at a point r, dueto slip, bi, on a dislocation element with a surface S,we can integrate the product of the displacementdiscontinuity and the stress produced at a point, r0,over the surface

uðrÞ ¼

ZS

biCijklnjqlukðr0 � rÞdS; (1)

where nj is a unit vector in the j direction, bi is theslip vector in the i direction, and umk is the tensorGreen’s function for the elastic displacements (e.g.,Hirth and Lothe, 1968). Assuming a homogeneouselastic body with Lame parameters, m and l, theelastic moduli tensor can be written as Cijkl ¼

mðdikdjl þ dildjkÞ þ ldijdkl (dij is Kronecker’s delta)(e.g., Malvern, 1969) and, along with Stokestheorem, Burgers (1939) demonstrated that (1) canbe rewritten in terms of contour integrals as

uðrÞ ¼bO4pþ

1

4p

IC

b� nl

jjr0 � rjjdl

þ1

4pð1� nÞr

IC

ðb� ðr0 � rÞÞ � nl

jjr0 � rjjdl; ð2Þ

where n ¼ m/2(l+m) is Poisson’s ratio. The firstterm in Eq. (2) gives the displacement discontinuity(solid angle offset) across the surface of thedislocation element, while the second and thirdterms are continuous and give the elastic effects asline integrals around the boundary of the disloca-tion surface serving as the foundation for theconcept of a dislocation loop (e.g., Hirth and Lothe,

ARTICLE IN PRESSB.J. Meade / Computers & Geosciences 33 (2007) 1064–1075 1065

Page 3: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

1968). Thus, to calculate the total deformationassociated with uniform slip on a single TDE we cancalculate the appropriate line integrals around theelement edges (legs) so that the total displacement isgiven by the sum of the displacements from each ofthe three legs (Fig. 1). The basic concept is to useangular dislocations to construct a solid prism, withthe TDE defining its top surface, which is displacedin the same direction as the TDE slip vector (Fig. 1).Internally consistent vertex ordering causes theelastic effects due to prism edges below the TDEsurface to vanish leaving only the elastic effectsassociated with the boundary of the TDE. Thisapproach is identical to that outlined in previousstudies of the construction of TDEs (Brown, 1975;Comninou, 1973; Jeyakumaran et al., 1992;Thomas, 1993).

A TDE is geometrically defined by three vertices(p1,p2,p3) (Fig. 1) and for the purpose of thisapplication we define a vertex ordering system thatensures that the vertical legs of the angulardislocation elements cancel exactly. The vertexordering scheme we use here enforces a clockwisesense of circulation for triangle vertices whenviewed from above (Fig. 2). Triangle vertices aredefined as having a clockwise orientation if the z

component of the unit vector normal to the triangleface is positive, ððp2 � p1Þ � ðp3 � p1ÞÞz40. If thisquantity is negative then any two triangle verticescan be swapped and the triangle normal vector willthen be positive. With the vertices for all trianglesordered in a clockwise fashion the sense of slip andorientation of the unit vectors will be consistent

from one element to the next regardless of itsorientation. Using this vertex ordering system it isstraightforward to construct consistent representa-tions of geometrically complex surfaces using TDEsby superposition of individual elements.

The total deformation field for a TDE can becalculated by summing the deformation fields fromeach of the dislocation legs that defines theboundary of the element. Each of the three legscan be constructed by the superposition of twoangular dislocations between each set of trianglevertices (Fig. 3). We calculate the displacementfrom each leg, uk, by the superposition of deforma-tion fields from two angular dislocations (i.e., uk ¼

uð1Þk � u

ð2Þk ):

u ¼XN

j¼1

X3k¼1

uð1Þkj� uð2Þkj, (3)

where k and j are indices over the three legs of eachtriangle and each TDE respectively, and N is thenumber of TDEs (Comninou, 1973; Jeyakumaranet al., 1992). In constructing TDEs from angulardislocation legs there are two major tasks to enablethe summation in Eq. (3). The first is the calculationof the angular dislocation geometry in terms of the

ARTICLE IN PRESS

Fig. 2. Vertex ordering. (a) Clockwise vertex ordering where the

unit vector normal to the face has a positive (+) z component. (b)

Counter-clockwise vertex ordering where the unit vector normal

to the face has a negative (�) z-component.

Fig. 3. Construction of a single dislocation leg by means of

summation of two angular dislocations. Inclination of each

angular dislocation is given by a common inclination b while

vertices are buried to depths a1 and a2 respectively. Common,

dipping segment of each angular dislocation cancels after

summation.

Fig. 1. Triangular dislocation element and triangle leg geometry.

Arrows indicate sense of orientation of the slip components. Note

that vertical segments of each dislocation leg cancel exactly with

those of adjacent legs.

B.J. Meade / Computers & Geosciences 33 (2007) 1064–10751066

Page 4: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

TDE vertices and the second is the calculation of theappropriate slip vectors on each angular disloca-tion. The displacements scale linearly with themagnitude of slip.

Green’s functions for the surface and internaldisplacements due to slip on a buried angulardislocation, uk in Eq. (3), are known for both awhole space (Yoffe, 1960) and, most relevant togeophysical applications, a half space (Comninou,1973; Comninou and Dunders, 1975). These studiesgive exact expressions (not repeated here) for thesurface and internal displacements due to strike-,dip-, and tensile-slip on a buried angular dislocationin the x�z plane with a vertex located at the originin the x�y plane. The geometry of an angulardislocation is defined by an area of uniform slipalong a vertical surface in the plane bounded by twosemi-infinite line segments which meet at a pointbelow the free surface at a depth, a, where the caretdenotes the variable’s association with a particularangular dislocation. The geometry of an angulardislocation is further defined by the inclination, b,which can be written in terms of the leg dip, d, as

b ¼p=2� d if dX0;

�p=2� d if do0;

((4)

where the leg dip is given by tan d ¼Dpz=ðDpx cos aþ Dpy sin aÞ. Note that the differencein position, Dp ¼ pi+1�pi, of the leg endpoints (twoTDE vertices) depends on the vertex ordering.Additionally, to maintain a consistent sense of theorientation for the vertical segment of each angulardislocation we ensure that 0pbpp=2. If the firstangular dislocation lies in the x�z plane with avertex at a depth a and is inclined at an angle b(inclination) a second dislocation element with avertex along the non-vertical line segment (at adepth of a) and slip opposite to that of the firstangular dislocation will cancel all deformationexcept that due to the polygonal slip patch belowthe leg of the triangular element (Fig. 3). Note thatthere is no deformation for the b ¼ 0 case.

Transforming the TDE vertices to the Comninouand Dunders (1975) coordinate system for each ofthe angular dislocations requires that the coordi-nates for each leg are mapped as ðp1; p2Þ ! ðp1; p2Þ,ðp2; p3Þ ! ðp1; p2Þ, ðp3; p1Þ ! ðp1; p2Þ where thedepth, a, to each vertex is defined as positive andthe coordinates ðp1; p2Þ define the rotated leg end-points for each of the TDE legs. The transformbetween the two coordinate systems is given by a

rotation of coordinates, p ¼ xp, where the rotationmatrix, x, is a function of the strike, tan a ¼ Dy=Dx,of each dislocation leg,

x ¼

cos a sin a 0

�sin a cos a 0

0 0 1

0B@

1CA. (5)

The observation coordinates can also be trans-lated and rotated into the Comninou and Dunders(1975) coordinate system so that each angulardislocation lies in the x� z plane.

s ¼ xðs� pÞ (6)

Using these relations and Green’s functions fromComninou and Dunders (1975) we can calculateboth the internal and surface displacement fields foran angular dislocation. As an example, consider theangular dislocation shown in Fig. 4 with a vertex at(x ¼ �25; y ¼ 0; z ¼ a ¼ 0) aligned along the x-axis(a ¼ 0) and dipping at 451 so that b ¼ 45� with unitstrike-slip motion. The internal displacements areshown in the x�y plane (Figs. 4a, d). Note therelatively uniform slip over the dislocation surfacethat is parallel to the strike of the dislocationelement and not a function of its inclination, b.Observation coordinates are offset slightly in thepositive y direction to highlight the elastic effects.This gives rise to non-zero displacements outside ofthe angular dislocation patch because the observa-tion coordinates are not coincident with the x�z

nodal plane. The surface displacements show thebasic four-quadrant pattern of deformation asso-ciated with right-lateral strike-slip motion on avertical dislocation (Fig. 4d). A second angulardislocation in the same plane and with the sameinclination as the previous one can be defined with avertex at (x ¼ 25; y ¼ 0; z ¼ a ¼ 50). With unitright-lateral strike-slip the displacements are clearlyrelated to the faulting mechanism in the cross-sectional view (Fig. 4b), while the surface displace-ments show a rather more diffuse pattern ofdeformation due to the fact that the angulardislocation source is buried (Fig. 4e). The differencebetween the displacement fields from these twoangular dislocations gives the displacements asso-ciated with a dislocation leg, ul ¼ uð1Þ � uð2Þ, be-tween the two vertices. The cross-sectional view(Fig. 4c) shows resulting dislocation surface andthat the displacements between nearly vanishoutside of the boundary of these two surfaces

ARTICLE IN PRESSB.J. Meade / Computers & Geosciences 33 (2007) 1064–1075 1067

Page 5: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

four-quadrant pattern of deformation results at thesurface (Fig. 4f).

3. Slip components on the angular dislocations

To calculate the deformation associated withgeneralized slip in an arbitrary direction on aTDE we must convert the TDE Burgers vector intostrike-, dip-, and tensile-slip components on eachangular dislocation. Comninou (1973) and Jeyaku-maran et al. (1992) outlined a method based on theconstruction of rotation matrices as functions ofunspecified angles. We construct our solution byrelating the geometry of the TDE to that of eachangular dislocation using orthogonal unit vectors todescribe their respective orientations, and projectingthe slip vectors from the TDE on to each angular

dislocation patch. Using this method with the vertexordering scheme described above ensures thatcoordinate transforms are consistent from leg toleg and triangle to triangle.

Given component tensile-, strike-, and dip-slipcomponents of slip, s, on a triangular fault patch wewould like relate these to a total slip vector, vs. Wedo this by first projecting the Burgers vector intox,y,z coordinates by defining unit vectors normal tothe TDE face, one parallel to the direction of strikeand one down-dip. A unit vector normal to the faceof the triangle is given by, nt ¼ ðp1 � p2Þ=jjðp1 � p2Þjj, while one parallel to the strike of thepatch is ns ¼ ð�sin g; cos g; 0Þ, where g ¼ tan�1ðn

ðyÞt =

nðxÞt Þ. A third direction vector can be defined parallel

to the TDE dip as, nd ¼ nt� ns. The fault slip vectoris then calculated by dotting the slip components

ARTICLE IN PRESS

Fig. 4. Displacement fields for strike-slip motion on angular dislocations. (a) Cross-sectional view of displacement for an angular

dislocation with a vertex at zero depth and an inclination of 451. Displacements are non-zero off of the displacement surface due to the fact

that observation plane has been offset slightly from nodal plane along y ¼ 0 to highlight elastic effects. (b) Same as (a) only for a

dislocation with a vertex at a depth of 50 and offset in the positive y direction by 50 units. Thus dipping segment of angular dislocation

aligns with that from (a). (c) Displacements from dislocation leg calculated by subtracting (b) from (a). (d–f) Surface displacement fields

corresponding to dislocations shown in panels (a–c).

B.J. Meade / Computers & Geosciences 33 (2007) 1064–10751068

Page 6: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

into each unit vector:

vs ¼

vðxÞs

vðyÞs

vðzÞs

0B@

1CA ¼

nðxÞt nðxÞs n

ðxÞd

nðyÞt nðyÞs n

ðyÞd

nðzÞt nðzÞs n

ðzÞd

0BB@

1CCA

st

ss

sd

0B@

1CA. (7)

Note that neither vs nor the slip components oneach triangular patch are, in general, not the sameas the slip components on any angular dislocation.The slip vector must be projected into strike-, dip-,and tensile-slip components for each of the threedifferent dislocation legs. To do this we first find theorientation of unit normal vectors in the direction ofeach component of slip on each angular dislocation.The strike- and tensile-slip components are paralleland perpendicular to the strike of the dislocation legns ¼ ðcosðaÞ; sinðaÞ; 0Þ, nt ¼ ð�sinðaÞ; cosðaÞ; 0Þ, re-spectively, while the dip-slip unit vector is orthogo-nal to the plane defined by these two vectors,nd ¼ ns � nt. Due to the fact that ns and nt always liein the x� y plane the unit vector in the direction ofthe dip-slip on an angular dislocation is alwaysvertical, nd ¼ nðzÞ ¼ ð0; 0; 1Þ. For each angular dis-location we must resolve the slip vector into thecorresponding strike-, dip-, and tensile-slip compo-nents.

s ¼

st

ss

sd

0B@

1CA ¼

nðxÞt nðxÞs nðxÞd

nðyÞt nðyÞs nðyÞd

nðzÞt nðzÞs nðzÞd

0BB@

1CCA

vðxÞs

vðyÞs

vðzÞs

0B@

1CA, (8)

where the subscripts t, s, and d refer to the tensile-,strike-, and dip-slip components, respectively. Theprojection of the slip vector, vs, to slip componentson an angular dislocation depends only on the strikeof the angular dislocation, a, not on inclination ofthe angular dislocation, b. While the slip compo-nents on each angular dislocation are not a functionof the inclination, the displacements from each legare. With the slip components known for eachangular dislocation element we can calculate u

ð1Þ

and uð2Þ for each angular dislocation. These

displacement fields can then be rotated, uðiÞ ¼

x�1uðiÞ, and summed, as shown in Eq. (3), to givethe total displacement, u, associated with slip on aTDE.

The surface displacements for three legs of adipping TDE with a uniform strike-slip displace-ment discontinuity and the total displacement fieldshow how the deformation from individual legs sumto give the total displacement field (Fig. 5). Vertex

coordinates, inclination angles, normal vectors andslip components are given in Table 1. For the legparallel to the direction of TDE slip (Fig. 5a) theangular dislocation slip components are strike-sliponly while they are tensile-slip only for the legoriented perpendicular to the slip direction (Fig. 5c)and mixed for the obliquely oriented leg (Fig. 5b).Note that while slip on individual TDE legs mayyield symmetric displacements (Fig. 5a) the overalleffect of TDE dip is to generate an asymmetricdisplacement field where displacements are larger onthe hanging wall side (Fig. 5d) due the effects of thedipping legs (Figs. 5b, c).

4. Displacements at depth

The solution by summation of angular disloca-tions involves the displacement of the entire prismbelow the TDE in the direction of the displacementvector. By summing the angular dislocations theelastic effects of down-going dislocation segmentscancel and we are left with only the elastic effectsassociated with the triangular element. However,the displacements directly below the TDE seecontributions from not only the elastic effects ofthe TDE but also from the translation of the entireprism. This effect can be modeled by subtracting thedisplacement vector for observation points belowthe TDE.

For those observation points whose x–y coordi-nates lie within the projection of the TDE into thex–y plane we can determine which are below theTDE. If a line segment between the observationcoordinates, s, and a point sharing the same x,ycoordinates at the free surface intersects with theplane defined by the vertices of the TDE then theequations for the two will be equivalent at the pointof intersection. Using a parametric representationof both the plane and line segment we can solve fora single parameter, t, whose sign determines whe-ther or not the observation point is below the TDE:

t ¼ det

1 1 1 1

pðxÞ1 p

ðxÞ2 p

ðxÞ3 sðxÞ

pðyÞ1 p

ðyÞ2 p

ðyÞ3 sðyÞ

pðzÞ1 p

ðzÞ2 p

ðzÞ3 sðzÞ

����������

����������Cdet

1 1 1 0

pðxÞ1 p

ðxÞ2 p

ðxÞ3 0

pðyÞ1 p

ðyÞ2 p

ðyÞ3 0

pðzÞ1 p

ðzÞ2 p

ðzÞ3 sðzÞ

����������

����������,

(9)

where (p1,p2,p3) are the triangle vertices and s arethe observation coordinates (e.g., Tremblay, 2004).For observation points that are located within theprism and below the TDE the total displacement

ARTICLE IN PRESSB.J. Meade / Computers & Geosciences 33 (2007) 1064–1075 1069

Page 7: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

or's

pe

rson

al

copy

vector can be calculated by subtracting the slipvector vs:

u ¼u if t40;

u� vs if to0

((10)

assuming that the depth of the observation co-ordinate, s(z), is always positive. This correction

does not eliminate the singularities along the edgesof all angular dislocations which preclude displace-ment calculations directly below any TDE vertex.

5. Strains and stresses for a TDE

Similar to the displacements, the strains andstresses associated with a TDE can be calculated by

ARTICLE IN PRESS

Fig. 5. Surface displacement fields for individual dislocation legs and a complete triangular dislocation element. (a–c) Surface

displacement fields for three dislocation legs described in Table 1. (d) Total displacement field resulting from summation of displacement

fields from all three legs (a–c). Note that near-fault displacements are larger in hanging wall side than footwall side.

B.J. Meade / Computers & Geosciences 33 (2007) 1064–10751070

Page 8: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

summing the stresses from six separate angulardislocations. The expressions for the stresses froman angular dislocation in an elastic half space can bederived by differentiating Green’s functions givenby Comninou and Dunders (1975) and applying thedefinition of strain, e ¼ 1

2ðruþ ðruÞTÞ, where ru is

the deformation gradient tensor. The derivatives ofthe displacements are somewhat lengthy and werecalculated with symbolic algebra computer softwarein an effort to avoid human error (see Appendix A).The strains from each dislocation leg, el ¼ eð1Þ � eð2Þ,must be rotated about the z-axis and summed get totalstrain tensor:

e ¼X3k¼1

x�1k ðeð1Þk � eð2Þk Þxk, (11)

where the rotation matrix is given by Eq. (5). Oncethe strains have been summed the stresses can becalculated using Hooke’s law for a linear elasticsolid, s ¼ l trðeÞIþ 2me, where tr(e) is the trace ofthe strain tensor and I is the identity matrix.Analytic expressions for the strains are somewhatlengthy and are given in Appendix A of supple-mentary data (see Appendix A). In addition,MATLAB implementations of the complete set ofalgorithms for both the displacements and strainsare given in Appendix B of supplementary data (seeAppendix A).

6. Examples of displacement and stress fields

A few simple comparisons can be made betweenthe well-known solutions for the deformation fieldssurrounding a rectangular dislocation element(e.g., Okada, 1985) and those from two TDEscombined to form a rectangular dislocation element

(Fig. 6). Upon summation the common diagonallegs, lc, from each triangle cancel leaving only thecontributions from the perimeter legs (l1, l2, l3, l4). Ifwe construct a rectangular dislocation element fromtwo TDEs and compare the surface displacementsfor unit strike-slip on a vertical fault 20 km2, the twodisplacement fields agree to one part in 1015 which ison the order of double precision for values nearunity. This is in agreement with Jeyakumaranet al.’s (1992) finding that the case of two verticalTDEs (used to form a composite rectangle) yield asolution that is algebraically identical to thatpresented by Chinnery (1961) for a vertical strike-slip fault.

A second reference case is that developed byThomas’ (1993) consisting of a unit dip-slip on asingle 2� 2 km rectangular dislocation elementburied with its centroid at a depth of 2 km andinclined at 451. Similar to the construction shown inFig. 6 we can also calculate the deformationassociated with slip on this same dislocation patchby the superposition of two TDEs which divide thereference rectangle into two across a diagonal oflength 4=

ffiffiffi2p

km. For this problem we find that thedifference between surface displacement fields fromthe rectangular solution (e.g., Okada, 1985) and theTDE solution presented here differs by a maximumof one part in 1015 while Thomas (1993) reported aagreement at the level of one part in 104. Jeyaku-maran et al. (1992) give a maximum discrepancy ofone part in 103 for an unspecified dipping faultmodel.

Thus far we have considered TDEs dominatedby right and 451 angles. The displacements andstresses resulting from slip on an obliquely ori-ented, dipping and partially buried TDE highlightthe generality of the algorithms presented aboveand the complexity of the resulting deformationfields. Consider a TDE with vertices located at

ARTICLE IN PRESS

Table 1

Parameters for a simple triangular dislocation element

Quantity Leg 1 Leg 2 Leg 3

p1 (40,50,0) (60,50,0) (40,30,20)

p2 (60,50,0) (40,30,20) (40,50,0)

b 90 �tan�1ffiffiffi2p

45

a 180 45 �90

ns (�1,0,0) ðffiffiffi2p

=2;ffiffiffi2p

=2; 0Þ (0,�1,0)

nd (0,0,1) (0,0,1) (0,0,1)

nt (0,�1,0) ð�ffiffiffi2p

=2;ffiffiffi2p

=2; 0Þ (1,0,0)

ss �1ffiffiffi2p

=2 0

sd 0 0 0

st 0 �ffiffiffi2p

=2 1

Fig. 6. Representation of a rectangular dislocation element by

summation of two triangular elements. Common leg, lc, cancels if

vertex ordering is same for both triangles. This construction is

used for two of the examples in discussion.

B.J. Meade / Computers & Geosciences 33 (2007) 1064–1075 1071

Page 9: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

Autho

r's

pers

c

p1 ¼ ð20; 50; 5Þ, p2 ¼ ð80; 80; 0Þ, p3 ¼ ð50; 30; 20Þ(Fig. 7). The surface displacements for strike-, dip-, and tensile-slip are shown in Figs. 7a–c. Note againthe asymmetry across the strike of the dislocationplane where displacements are larger above thehanging wall than in the footwall. Contours of thesecond invariant of the stress tensor, I2 ¼

12ðr : r

�trðrÞ2Þ, on a horizontal plane cutting through theTDE at a depth of 10 km for the same three cases(Figs. 7d–f) show both the characteristic four-quadrant pattern of deformation and the commonlocations of the nodal surfaces emanating from theTDE edges.

As an example of the use of multiple TDEs weconsider the sub-vertical Whittier fault at theeastern edge of the Los Angeles basin. Plesch et al.(2003) constrained the location of the fault surfaceusing well logs, earthquake relocations, and high-

resolution seismic reflection data and parameterizedthis surface using a gap free triangular mesh of 2068elements (Fig. 8) and a six element rectangularrepresentation. The rectangular representation ofthe fault surface includes six elements with acharacteristic length scale of �10 km, somewhatsmaller than those typically used to study inter-seismic deformation at intermediate scales, butlarger than those commonly used to infer coseismicslip distributions. By assuming unit strike-slip on alldislocation elements we can calculate the deforma-tion fields exactly and determine the sensitivity tofault geometry parameterizations using triangulardislocations as a tool to calculate displacements andstresses from the triangular mesh. The surfacedisplacement fields from both the coarse rectangularand fine triangular parameterizations are character-ized by a macro-scale four-quadrant pattern of

ARTICLE IN PRESS

Fig. 7. Displacement and stress fields resulting from slip on an obliquely oriented, dipping, and buried triangular dislocation element.

(a–c) Surface displacements for strike-, dip, and tensile-slip. Arrows give horizontal displacements and contours show vertical

deformation. (d–f) Second invariant of stress tensor on a horizontal plane cutting through dislocation surface at a depth of 10 km. Note

that for every case a four-quadrant pattern of deformation is observed near intersection of observation plane and triangular dislocation

element.

B.J. Meade / Computers & Geosciences 33 (2007) 1064–10751072

Page 10: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

's

pers

onal

co

py

ARTICLE IN PRESS

Fig. 8. Displacement and stress fields resulting from slip on different geometric representation of Whittier fault in Los Angeles Basin area

of southern California. Fault dips to north at its western end and progressively steepens to southeast. (a) Black arrows are horizontal

displacements from unit strike-slip motion on each of 2068 triangular elements shown in gray. (b) Horizontal displacements predicted by a

model of unit strike-slip motion across each of six rectangular dislocation elements representing fault surface. (c) Residual (triangular-

rectangular parameterizations) displacement field at five times scale of vectors in (a, b). Note that differential displacements are largest

near hanging wall side of fault where different geometric parameterizations are closest to free surface. (c–f) Same as (a–c) only showing

base 10 logarithm of absolute value of second invariant of deviatoric stress tensor on a horizontal surface cutting through fault plane at a

depth of 5 km. Dark and light areas denote high and low stresses, respectively. The multiple dark regions in rectangular case are due to

large stresses at gaps between rectangular dislocation elements. Note that these stress concentrations bulge outward away from fault and

have effect of propagating larger stresses farther away from main fault zone than gap-free triangular representation (d). Differential

stresses (f) show that largest mismatch between two parameterizations exists in hanging wall where fault surface is closest to observation

coordinates.

B.J. Meade / Computers & Geosciences 33 (2007) 1064–1075 1073

Page 11: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

compression and extension (Figs. 8a, b). Thedifferential surface displacement field (Fig. 8c)highlights the residual displacements (up to �40%at the given observation coordinates) of the calcu-lated model displacements. These effects are largestin the hanging wall block where the fault dip isshallowest and contributions from dislocation ele-ments at depths greater than a few kilometerscontribute significantly to the predicted displace-ments. The differences in predicted surface displace-ment may be large enough to use geodeticmeasurements to constrain the continuity of activefaults at depth.

The second invariant of the stress tensor, I2, atdepth shows significant differences between the twogeometric parameterizations. Most significantly therectangular parameterization shows the presence ofhigh magnitude stress concentrations around eachof the gaps between major segments (Figs. 8a–c).These excess stresses have the effect of adding to theoverall magnitude of I2 away from the fault zoneand introducing localized stress concentrations nearthe fault. Thus, while a gap-free representation offault surface may be considered more complex itmay lead to a somewhat smoother stress field.Similar calculations of Coulomb failure stressesmight be used to predict the locations of near-faultaftershocks.

A simple example of how rectangular approxima-tions converge toward the exact triangular solutionscan be seen by approximating a single vertical TDEwith a variable number of thin, vertical, rectangulardislocation elements. We define a vertical right TDEin the x–z plane with vertices at p1 ¼ ð40; 50; 0Þ,p2 ¼ ð60; 50; 0Þ, p3 ¼ ð60; 50; 20Þ with unit strike-slipmotion and calculate the stresses along a linealigned parallel to the dipping leg but offset in thepositive y direction by 1 km. The sxx components ofthe stress tensor for the exact triangular solutionwith 10 and 100 element rectangular discretizationsare compared in Fig. 9. Differences between theexact and discretized approximations are minimizedas the number of rectangular elements is increased,however at the coarsest 10 element discretization thestresses are, in general, lower than the exactsolutions with complex behavior in between elementedges. The bumps in the 10 element discretizationare a result of the high stresses generated by thestrain singularities at the base of the triangularapproximation where the rectangular elements donot meet exactly. These comparisons demonstratethe utility of using TDEs to calculate high-resolu-

tion displacement fields rather than having tonumerically integrate point sources or computeapproximate rectangular discretizations.

7. Conclusions

TDEs allow for the exact calculation of displace-ment strain and stress fields with gap-free represen-tations of fault surfaces. We have detailed thealgorithms necessary to carry out these calculations,including the calculation of angular dislocation slipcomponents, accounting for the solid body displa-cement below the TDE, exact expressions for thestrains, and defining a triangle vertex orderingscheme that enables the calculation of deformationfields from multiple TDEs in an internally consis-tent framework. These algorithms may find applica-tion in the analysis of geodetic data over inter-, co-,and post-seismic time scales as well is in thecalculation of Coulomb failure stresses and slipevolution modeling.

Acknowledgments

Discussions with Robert Simpson and WilliamStuart helped to focus this work on a cleardescription of the algorithmic details. Reviews byDavid Healy and an anonymous reviewer greatlyimproved the writing and content of this paper.

ARTICLE IN PRESS

Fig. 9. Stresses from a triangular dislocation element and

variable resolution rectangular approximations. Triangle lies in

y–z plane with a width and depth of 20 km. Stresses are calculated

along a set of observation coordinates parallel to dipping leg of a

triangular dislocation element and offset in y direction by 1 km.

Triangle surface is approximated using multiple rectangular

dislocations whose edges match exactly except along bottom

dipping leg of triangle. Stresses from rectangular approximations

of triangular dislocation converge as the number of rectangular

elements increases.

B.J. Meade / Computers & Geosciences 33 (2007) 1064–10751074

Page 12: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

Funding was provided by the Southern CaliforniaEarthquake Center and Harvard University.

Appendix A. Supplementary material

Supplementary data associated with this articlecan be found in the online version at doi:10.1016/j.cageo.2006.12.003.

References

Brown, R.L., 1975. A dislocation approach to plate interaction,

Ph. D. Dissertation, Massachusetts Institute of Technology,

Cambridge, MA, 449pp.

Burgers, J.M., 1939. Some considerations on the fields of stress

connected with dislocations in a regular crystal lattice I In:

Proceedings of the Koninklijke Nederlandse Akademie Van

Wetenschappen, vol. 42, pp. 293–325.

Burgmann, R., Ergintav, S., Segall, P., Hearn, E.H., McClusky,

S., Reilinger, R.E., Woith, H., Zschau, J., 2002. Deformation

during the 12 November 1999 Duzce, Turkey, earthquake,

from GPS and InSAR data. Bulletin of the Seismological

Society of America 92, 161–171.

Chinnery, M., 1961. The deformation of the ground around

surface faults. Bulletin of the Seismological Society of

America 51, 355–372.

Comninou, M., 1973. Angular dislocation in a half space. Ph.D.

Dissertation, Northwestern University, Evanston, Ill, 45pp.

Comninou, M., Dunders, J., 1975. Angular dislocation in a half

space. Journal of Elasticity 5, 203–216.

Griffith, W.A., Cooke, M.L., 2004. Mechanical validation of the

three-dimensional intersection geometry between the Puente

Hills blind-thrust system and the Whittier fault, Los Angeles,

California. Bulletin of the Seismological Society of America

94, 493–505.

Hirth, J.P., Lothe, J., 1968. Theory of Dislocations. McGraw-

Hill, New York, NY, 780pp.

Jeyakumaran, M., Rudnicki, J.W., Keer, L.M., 1992. Modeling

slip zones with triangular dislocation elements. Bulletin of the

Seismological Society of America 82, 2153–2169.

Maerten, F., Resor, P., Pollard, D., Maerten, L., 2005. Inverting

for slip on three-dimensional fault surfaces using angular

dislocations. Bulletin of the Seismological Society of America

95, 1654–1665.

Malvern, L.E., 1969. Introduction to the Mechanics of a

Continuous Medium. Prentice Hall, Upper Saddle River,

NJ, 713pp.

McGuire, J.J., Segall, P., 2003. Imaging of aseismic fault slip

transients recorded by dense geodetic networks. Geophysical

Journal International 155, 778–788.

Okada, Y., 1985. Surface deformation due to shear and tensile

faults in a half-space. Bulletin of the Seismological Society of

America 75, 1135–1154.

Okada, Y., 1992. Internal deformation due to shear and tensile

faults in a half-space. Bulletin of the Seismological Society of

America 82, 1018–1040.

Olson, E.L., Cooke, M.L., 2005. Application of three fault

growth criteria to the Puente Hills thrust system, Los Angeles,

California, USA. Journal of Structural Geology 27,

1765–1777.

Plesch, A., Shaw, J.H., SCEC CFM Working Group, 2003.

SCEC CFM—AWWW accessible community fault model for

southern California. Eos. Transactions of the American

Geophysical Union, 84.

Savage, J.C., Burford, R.O., 1973. Geodetic determination of

relative plate motion in central California. Journal of

Geophysical Research 78, 832–845.

Thomas, A., 1993. POLY3D: A three-dimensional, polygonal

element, displacement discontinuity boundary element com-

puter program with applications to fractures, faults, and

cavities in the Earth’s crust. M.Sc. Thesis, Stanford Uni-

versity, 69pp.

Tremblay, C., 2004. Mathematics for Game Developers. Thomp-

son, Boston, MA, 627pp.

Yoffe, E.H., 1960. The angular dislocation. Philosophical

Magazine 5, 161–175.

ARTICLE IN PRESSB.J. Meade / Computers & Geosciences 33 (2007) 1064–1075 1075

Page 13: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

1

Appendix A. Strains due to an angular dislocation in a uniform elastic halfspace Introduction Here we give the strains due to slip components, 1 2 3, ,B B B , on an angular dislocation

aligned along the 1y axis with a vertex located at a depth a below the origin in the 1 2y y− plane,

in a uniform elastic half space with Poisson’s ration ν . The strains are calculated at the

observation coordinates 1 2 3, ,y y y using the same coordinate system as Comninou and Dundurs

(1975). All strains are the result of differentiating the corrected form of the CD75 Green’s

functions for the displacements due to an angular dislocation in a half space. The differentiation

and algebraic manipulation was carried out using the MATLAB Symbolic Math Toolbox which

uses the Maple engine. In particular the CD75 displacements (v1, v2, v3) were differentiated

with respect to the observation coordinates (y1, y2, y3) and combined to form the components of

the strain tensor by the following sequence of operations:

% Take spatial derivatives with respect to the observation coordinates dv1dy1 = diff(v1, y1); dv1dy2 = diff(v1, y2); dv1dy3 = diff(v1, y3); dv2dy1 = diff(v2, y1); dv2dy2 = diff(v2, y2); dv2dy3 = diff(v2, y3); dv3dy1 = diff(v3, y1); dv3dy2 = diff(v3, y2); dv3dy3 = diff(v3, y3); % Calculate the components of the strain tensor e11 = dv1dy1 e22 = dv2dy2 e33 = dv3dy3 e12 = 1/2*(dv1dy2 + dv2dy1) e13 = 1/2*(dv1dy3 + dv3dy1) e23 = 1/2*(dv2dy3 + dv3dy2)

(See table A1 for notation information.)

The relationship between the CD75 notation and the symbolic algebra notation is summarized in

the table below. Also a substitution scheme is used where the notation “%N” denotes a

subexpression where N is some integer. For example where the term “%1” appears in the

expression for 11ε component of the strain tensor “ 2 2 2 21 2 3 34 4y y y y a a+ + + + ” should be substituted.

The subexpressions are listed after the expression for each component of the strain tensor. In

Page 14: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

2

general the terms are somewhat lengthy so we complement the analytic expression here with a

numerical implementation in Appendix B. Note again that for the strains associated with a

triangular dislocation element these expressions must be summed for each of the six legs that

contribute the element.

Table A1. Notation comparison

Quantity CD75 notation Symbolic notation

Observation position along ‘x-axis’ 1y y1

Observation position along ‘y-axis’ 2y y2

Observation position along ‘z-axis’ 3y y3

Spanning angle β beta

Vertex depth a a

Poisson’s ratio ν nu

Magnitude of mode I component 1B B1

Magnitude of mode II component 2B B2

Magnitude of mode III component 3B B3

Table A2. Strain notation

Standard notation Symbolic notation

11ε e11

22ε e22

33ε e33

12ε e12

13ε e13

23ε e23

Page 15: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

3

Strains e11 = / | | / / | | | | | | | | | / | | | y2 y2 cos(beta) | B1 |1/8 |(2 - 2 nu) |2 ------------- - --------------- + | | | | / 2\ / 2 \ | | | | 2 | y2 | 2 | y2 | \ | | | y1 |1 + ---| %13 |1 + ----| | | | | 2| | 2| \ \ \ \ y1 / \ %13 / y2 sin(beta) y1 --------------------------------------------- 2 2 2 1/2 2 (y1 + y2 + y3 ) (y1 %13 + y2 cos(beta)) 2 2 2 1/2 \ y2 (y1 + y2 + y3 ) sin(beta) (2 y1 cos(beta) - y3 sin(beta))| - -----------------------------------------------------------------| 2 2 | (y1 %13 + y2 cos(beta)) / / 2 2 2 2 2\ / | y2 (y1 + y2 + y3 ) sin(beta) | / |1 + --------------------------------| / | 2 2 | \ (y1 %13 + y2 cos(beta)) / y2 cos(beta) - ------------------------------------------------- / 2 \ 2 | y2 | (y1 cos(beta) + %12) |1 + ---------------------| | 2| \ (y1 cos(beta) + %12) / 1/2 \ y2 sin(beta) y1 y2 %1 sin(beta) (2 y1 cos(beta) + %12)| --------------- - -----------------------------------------| 1/2 2 | %1 %16 %16 | + -----------------------------------------------------------| 2 2 | y2 %1 sin(beta) | 1 + ----------------- | 2 | %16 / / 1 1 \ - y2 |------------------------------ + ------------------------| - y1 | 2 2 2 1/2 1/2 1/2 | \(y1 + y2 + y3 ) (%8 - y3) %1 (%1 + y3 + 2 a)/ / y1 y1 y2 |- ------------------------------ - ---------------------------- | 2 2 2 3/2 2 2 2 2 \ (y1 + y2 + y3 ) (%8 - y3) (y1 + y2 + y3 ) (%8 - y3) / | |

Page 16: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

4

y1 y1 \ | - ------------------------ - ----------------------| - y2 cos(beta) | 3/2 1/2 1/2 2| | %1 (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) / \ sin(beta) y1 -------------------- - 1 2 2 2 1/2 (y1 + y2 + y3 ) %10 y1 ------------------------ - ----------------------- 2 2 2 1/2 2 2 2 3/2 (y1 + y2 + y3 ) %9 (y1 + y2 + y3 ) %9 sin(beta) y1 \ ------------ - 1 | 1/2 | %10 %7 %1 %6 y1 %6 %4 | - ------------------------ + ---------------- - -------- - ---------| 2 2 2 1/2 2 1/2 3/2 1/2 2| (y1 + y2 + y3 ) %9 %1 %2 %1 %2 %1 %2 / / | \ | / | | | | | | | | | | | | y2 |/(pi (1 - nu)) + 1/4 |(-2 + 2 nu) (1 - 2 nu) |------------- | | | / 2\ | | | 2 | y2 | | | |y1 |1 + ---| | | | | 2| / \ \ \ y1 / y2 cos(beta) - ------------------------------------------------- / 2 \ 2 | y2 | (y1 cos(beta) + %12) |1 + ---------------------| | 2| \ (y1 cos(beta) + %12) / 1/2 \ y2 sin(beta) y1 y2 %1 sin(beta) (2 y1 cos(beta) + %12)| --------------- - -----------------------------------------| 1/2 2 | %1 %16 %16 | + -----------------------------------------------------------| 2 2 | y2 %1 sin(beta) | 1 + ----------------- | 2 | %16 / 2 cot(beta) / / a \ \ | y1 |nu + -----| | | | 1/2| | |/ a \ \ %1 / | (1 - 2 nu) y2 ||1 - 2 nu - -----| cot(beta) - ----------------| y1 || 1/2| 1/2 | \\ %1 / %1 + y3 + 2 a/ - ------------------------------------------------------------------ 1/2 2 1/2 (%1 + y3 + 2 a) %1 / a | nu + -----

Page 17: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

5

| 1/2 |a y1 cot(beta) %1 + (1 - 2 nu) y2 |-------------- - ---------------- | 3/2 1/2 \ %1 %1 + y3 + 2 a 2 / a \ \ y1 |nu + -----| | | 1/2| 2 | \ %1 / y1 a | / + ------------------------- + ------------------------| / ( 1/2 2 1/2 1/2 3/2| / (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) %1 / 1/2 (1 - 2 nu) y2 cos(beta) cot(beta) %5 %4 %1 + y3 + 2 a) - --------------------------------------- 2 %2 (1 - 2 nu) y2 cos(beta) cot(beta) a y1 - -------------------------------------- 3/2 %2 %1 a y2 (y3 + a) cot(beta) y1 - 3 -------------------------- 5/2 %1 / / a \ \ | y1 |2 nu + -----| | | | 1/2| | | \ %1 / a y1| y2 (y3 + a) |(-1 + 2 nu) cot(beta) + ----------------- + ----| y1 | 1/2 %1 | \ %1 + y3 + 2 a / - ----------------------------------------------------------------- 3/2 1/2 %1 (%1 + y3 + 2 a) / / a \ \ | y1 |2 nu + -----| | | | 1/2| | | \ %1 / a y1| y2 (y3 + a) |(-1 + 2 nu) cot(beta) + ----------------- + ----| y1 | 1/2 %1 | \ %1 + y3 + 2 a / - ----------------------------------------------------------------- 1/2 2 %1 (%1 + y3 + 2 a) / a 2 / a \ | 2 nu + ----- y1 |2 nu + -----| | 1/2 | 1/2| | %1 \ %1 / + y2 (y3 + a) |---------------- - ------------------------- | 1/2 1/2 2 1/2 \%1 + y3 + 2 a (%1 + y3 + 2 a) %1 \ | 2 2| y1 a a a y1 | / 1/2 - ------------------------ + ---- - 2 -----| / (%1 1/2 3/2 %1 2 | / (%1 + y3 + 2 a) %1 %1 / 1/2 (%1 + y3 + 2 a))

Page 18: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

6

/cos(beta) %15 a (y3 + 2 a) cos(beta) cot(beta)\ y2 (y3 + a) |------------- - --------------------------------| y1 \ %2 %1 / - ----------------------------------------------------------------- 3/2 %1 %2 /cos(beta) %15 a (y3 + 2 a) cos(beta) cot(beta)\ y2 (y3 + a) |------------- - --------------------------------| %4 \ %2 %1 / - ----------------------------------------------------------------- 1/2 2 %1 %2 / cos(beta) %15 %4 / + y2 (y3 + a) |- ---------------- + cos(beta) | | 2 | \ %2 \ cos(beta) y1 %14 cot(beta) %3 a y1 cot(beta) -------------------------- + ----------------- 1/2 3/2 %1 %1 /sin(beta) y1 \ \ + (2 - 2 nu) |------------ - 1| cos(beta)|/(%2) | 1/2 | | \ %1 / / \ | | | | | a (y3 + 2 a) cos(beta) cot(beta) y1\ / 1/2 | + 2 -----------------------------------| / (%1 %2)|/(pi (1 - nu) 2 | / | %1 / | | | / \ | | | / / | | | | | | | | | / y1 )| + B2 |1/8 |(-1 + 2 nu) |------------------------------ | | | | 2 2 2 1/2 | \ \ \(y1 + y2 + y3 ) (%8 - y3) | | / y1 / %7 %4 \\ + ------------------------ - cos(beta) |---- + ----|| 1/2 1/2 \ %9 %2 /| %1 (%1 + y3 + 2 a) / / 1 1 \ + 2 y1 |------------------------------ + ------------------------| + | 2 2 2 1/2 1/2 1/2 | \(y1 + y2 + y3 ) (%8 - y3) %1 (%1 + y3 + 2 a)/ 2 / y1 y1 y1 |- ------------------------------ - ---------------------------- | 2 2 2 3/2 2 2 2 2

Page 19: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

7

\ (y1 + y2 + y3 ) (%8 - y3) (y1 + y2 + y3 ) (%8 - y3) y1 y1 \ - ------------------------ - ----------------------| 3/2 1/2 1/2 2| %1 (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) / / sin(beta) y1 \ %13 |-------------------- - 1| | 2 2 2 1/2 | cos(beta) %10 \(y1 + y2 + y3 ) / + ----------------------- + ------------------------------ 2 2 2 1/2 2 2 2 1/2 (y1 + y2 + y3 ) %9 (y1 + y2 + y3 ) %9 %13 %10 y1 %13 %10 %7 cos(beta) %6 - ----------------------- - ------------------------ + ------------ 2 2 2 3/2 2 2 2 1/2 2 1/2 (y1 + y2 + y3 ) %9 (y1 + y2 + y3 ) %9 %1 %2 /sin(beta) y1 \ (y1 cos(beta) + %12) |------------ - 1| | 1/2 | \ %1 / + --------------------------------------- 1/2 %1 %2 \ | | (y1 cos(beta) + %12) %6 y1 (y1 cos(beta) + %12) %6 %4| - -------------------------- - --------------------------|/(pi 3/2 1/2 2 | %1 %2 %1 %2 / / | | / 2 | |((2 - 2 nu) cot(beta) + nu) y1 (1 - nu)) + 1/4 |(1 - 2 nu) |------------------------------- | | 1/2 1/2 \ \ %1 (%1 + y3 + 2 a) / | 2 \ | ((2 - 2 nu) cot(beta) + 1) cos(beta) %4| | - ----------------------------------------| - (1 - 2 nu) | %2 | | / \ a y1 cot(beta) (-1 + 2 nu) y1 cot(beta) + nu (y3 + 2 a) - a + -------------- 1/2 %1 2 / a \\ / y1 |nu + -----|| | | 1/2|| | \ %1 /| / 1/2 2 1/2 | + ----------------| y1 / ((%1 + y3 + 2 a) %1 ) + (1 - 2 nu) | 1/2 | / | %1 + y3 + 2 a/ \ 2 a cot(beta) a y1 cot(beta) (-1 + 2 nu) cot(beta) + ----------- - --------------- 1/2 3/2 %1 %1

Page 20: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

8

/ a \ 3 / a \ y1 |nu + -----| y1 |nu + -----| | 1/2| | 1/2| \ %1 / \ %1 / + 2 ---------------- - ------------------------- 1/2 1/2 2 1/2 %1 + y3 + 2 a (%1 + y3 + 2 a) %1 \ | 3 | y1 a | / 1/2 - ------------------------| / (%1 + y3 + 2 a) + (1 - 2 nu) 1/2 3/2| / (%1 + y3 + 2 a) %1 / / a %6 \ / cot(beta) |(y1 cos(beta) + %12) cos(beta) - ---------------| %4 / | 1/2 | / \ %1 cos(beta)/ 2 %2 - (1 - 2 nu) cot(beta) / /sin(beta) y1 \ \ | a |------------ - 1| | | | 1/2 | | | 2 \ %1 / a %6 y1 | |cos(beta) - -------------------- + ---------------|/(%2) | 1/2 3/2 | \ %1 cos(beta) %1 cos(beta)/ / | 2 | a (y3 + a) cot(beta) a y1 (y3 + a) cot(beta) | - -------------------- + 3 ------------------------ - (y3 + a) | 3/2 5/2 | %1 %1 \ 2 / a \ \ y1 |2 nu + -----| | | 1/2| 2| (1 - 2 nu) y1 cot(beta) + a \ %1 / a y1 | 2 nu + --------------------------- - ------------------------ - -----| 1/2 1/2 1/2 3/2| %1 %1 (%1 + y3 + 2 a) %1 / / | | / 1/2 2 1/2 | y1 / ((%1 + y3 + 2 a) %1 ) + (y3 + a) | / | \ ((1 - 2 nu) y1 cot(beta) + a) y1 (1 - 2 nu) cot(beta) - -------------------------------- + -------------------- 3/2 1/2 %1 %1 / a \ 3 / a \ y1 |2 nu + -----| y1 |2 nu + -----| | 1/2| | 1/2| \ %1 / \ %1 / - 2 ------------------------ + ------------------------ 1/2 1/2 3/2 1/2 %1 (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) 3 / a \ y1 |2 nu + -----|

Page 21: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

9

| 1/2| 3 3 \ %1 / y1 a a y1 a y1 + ---------------------- + ---------------------- - 2 ----- + 3 ----- 1/2 2 2 1/2 3/2 5/2 %1 (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) %1 %1 \ | / | | | / 1/2 | | / (%1 + y3 + 2 a) - (y3 + a) cot(beta) |-cos(beta) sin(beta) | / | / \ / %3 %11\\ %6 |(2 - 2 nu) cos(beta) - ------|| a y1 (y3 + 2 a) \ %2 /| / 2 + --------------- + ----------------------------------| %4 / %2 + 3/2 1/2 | / %1 cos(beta) %1 / / | | 2 | a (y3 + 2 a) a y1 (y3 + 2 a) (y3 + a) cot(beta) |--------------- - 3 ---------------- | 3/2 5/2 \%1 cos(beta) %1 cos(beta) /sin(beta) y1 \ / %3 %11\ |------------ - 1| |(2 - 2 nu) cos(beta) - ------| | 1/2 | \ %2 / \ %1 / + -------------------------------------------------- 1/2 %1 / %3 %11\ %6 |(2 - 2 nu) cos(beta) - ------| y1 \ %2 / - ------------------------------------- 3/2 %1 / cos(beta) y1 %11 %3 %11 %4 %3 a y1 \\ \ %6 |- ---------------- + --------- + ------------------|| | | 1/2 2 3/2 || | \ %1 %2 %2 %2 %1 cos(beta)/| | + --------------------------------------------------------|/(%2)|/(pi 1/2 | | %1 / / \ / / sin(beta) y1 | | |-------------------- - 1 | | | 2 2 2 1/2 | | |(y1 + y2 + y3 ) (1 - nu))| + B3 |1/8 y2 sin(beta) |------------------------ | | | 2 2 2 1/2 / \ \(y1 + y2 + y3 ) %9 %10 y1 %10 %7 - ----------------------- - ------------------------ 2 2 2 3/2 2 2 2 1/2 2 (y1 + y2 + y3 ) %9 (y1 + y2 + y3 ) %9 sin(beta) y1 \ / ------------ - 1 | | 1/2 | | %1 %6 y1 %6 %4 | | + ---------------- - -------- - ---------|/(pi (1 - nu)) + 1/4 | 1/2 3/2 1/2 2| |

Page 22: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

10

%1 %2 %1 %2 %1 %2 / \ / / a \ | y2 |1 + -----| y1 | | 1/2| | \ %1 / y2 a y1 (1 - 2 nu) |- ------------------------- - ------------------------ | 1/2 2 1/2 1/2 3/2 \ (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) %1 \ | | y2 cos(beta) %5 %4 y2 cos(beta) a y1| + ------------------ + -----------------| 2 3/2 | %2 %2 %1 / / a 1 \ y2 (y3 + a) |---- + ----------------| y1 | %1 1/2 | \ %1 + y3 + 2 a/ + ---------------------------------------- 3/2 %1 / a y1 y1 \ y2 (y3 + a) |-2 ---- - -------------------------| | 2 1/2 2 1/2| \ %1 (%1 + y3 + 2 a) %1 / - ------------------------------------------------- 1/2 %1 /%3 %5 a (y3 + 2 a)\ y2 (y3 + a) cos(beta) |----- + ------------| y1 \ %2 %1 / - ----------------------------------------------- 3/2 %1 %2 /%3 %5 a (y3 + 2 a)\ y2 (y3 + a) cos(beta) |----- + ------------| %4 \ %2 %1 / - ----------------------------------------------- + y2 (y3 + a) 1/2 2 %1 %2 /cos(beta) y1 %5 %3 %5 %4 %3 a y1 a (y3 + 2 a) y1\ cos(beta) |--------------- - -------- - -------- - 2 ---------------| | 1/2 2 3/2 2 | \ %1 %2 %2 %2 %1 %1 / \ \ | | | | / 1/2 | | / (%1 %2)|/(pi (1 - nu))| / | | / / 2 2 2 2 %1 := y1 + y2 + y3 + 4 y3 a + 4 a 1/2 %2 := %1 - y1 sin(beta) + (y3 + 2 a) cos(beta) 1/2 %3 := %1 cos(beta) + y3 + 2 a y1

Page 23: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

11

%4 := ----- - sin(beta) 1/2 %1 a %5 := cos(beta) + ----- 1/2 %1 1/2 %6 := %1 sin(beta) - y1 y1 %7 := -------------------- - sin(beta) 2 2 2 1/2 (y1 + y2 + y3 ) 2 2 2 1/2 %8 := (y1 + y2 + y3 ) %9 := %8 - y1 sin(beta) - y3 cos(beta) 2 2 2 1/2 %10 := (y1 + y2 + y3 ) sin(beta) - y1 a %11 := 1 + --------------- 1/2 %1 cos(beta) %12 := (y3 + 2 a) sin(beta) %13 := y1 cos(beta) - y3 sin(beta) a %14 := (1 - 2 nu) cos(beta) - ----- 1/2 %1 %15 := %3 %14 cot(beta) + (2 - 2 nu) %6 cos(beta) 2 %16 := y1 (y1 cos(beta) + %12) + y2 cos(beta)

Page 24: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

12

e22 = / | | | / / y2 B1 |1/8 |(1 - 2 nu) |------------------------------ | | | 2 2 2 1/2 \ \ \(y1 + y2 + y3 ) (%5 - y3) y2 + ------------------------ 1/2 1/2 %1 (%1 + y3 + 2 a) / y2 y2 \\ / - cos(beta) |----------------------- + --------|| - 2 y2 | | 2 2 2 1/2 1/2 || | \(y1 + y2 + y3 ) %6 %1 %4// \ 1 1 ------------------------------ + ------------------------ 2 2 2 1/2 1/2 1/2 (y1 + y2 + y3 ) (%5 - y3) %1 (%1 + y3 + 2 a) / 1 1 \\ 2 / - cos(beta) |----------------------- + --------|| - y2 | | 2 2 2 1/2 1/2 || | \(y1 + y2 + y3 ) %6 %1 %4// \ y2 y2 - ------------------------------ - ---------------------------- 2 2 2 3/2 2 2 2 2 (y1 + y2 + y3 ) (%5 - y3) (y1 + y2 + y3 ) (%5 - y3) y2 y2 / - ------------------------ - ---------------------- - cos(beta) | 3/2 1/2 1/2 2 | %1 (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) \ y2 y2 y2 y2 \ - ----------------------- - --------------------- - -------- - ------| 2 2 2 3/2 2 2 2 2 3/2 2| (y1 + y2 + y3 ) %6 (y1 + y2 + y3 ) %6 %1 %4 %1 %4 / / | | / 2 \\ | |((2 - 2 nu) cot(beta) - nu) y2 ||/(pi (1 - nu)) + 1/4 |(1 - 2 nu) |------------------------------- || | | 1/2 1/2 // \ \ %1 (%1 + y3 + 2 a) / | 2 \ | ((2 - 2 nu) cot(beta) + 1 - 2 nu) cos(beta) y2| | - -----------------------------------------------| + (1 - 2 nu) | 1/2 | | %1 %4 / \ 2 / a \ y2 |nu + -----| | 1/2| / a \ \ %1 / y1 cot(beta) |1 - 2 nu - -----| + nu (y3 + 2 a) - a + ---------------- | 1/2| 1/2 \ %1 / %1 + y3 + 2 a

Page 25: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

13

\ / | | | | | / 1/2 2 1/2 |a y1 cot(beta) y2 | y2 / ((%1 + y3 + 2 a) %1 ) - (1 - 2 nu) |----------------- | / | 3/2 / \ %1 / a \ 3 / a \ y2 |nu + -----| y2 |nu + -----| | 1/2| | 1/2| \ %1 / \ %1 / + 2 ---------------- - ------------------------- 1/2 1/2 2 1/2 %1 + y3 + 2 a (%1 + y3 + 2 a) %1 \ | 3 | y2 a | / 1/2 - ------------------------| / (%1 + y3 + 2 a) 1/2 3/2| / (%1 + y3 + 2 a) %1 / / a \ (1 - 2 nu) %2 cot(beta) |cos(beta) + -----| y2 | 1/2| \ %1 / + ---------------------------------------------- 2 1/2 %4 %1 (1 - 2 nu) %2 cot(beta) a y2 a y2 (y3 + a) cot(beta) y1 + ---------------------------- + 3 -------------------------- - 3/2 5/2 %4 %1 %1 / | | | (y3 + a) | | \ 2 / a \ y2 |2 nu + -----| | 1/2| 2 (1 - 2 nu) y1 cot(beta) - a \ %1 / a y2 -2 nu + --------------------------- + ------------------------ + ----- 1/2 1/2 1/2 3/2 %1 %1 (%1 + y3 + 2 a) %1 \ / | | | | | / 1/2 2 1/2 | | y2 / ((%1 + y3 + 2 a) %1 ) + (y3 + a) | | / | / \ / a \ y2 |2 nu + -----| | 1/2| ((1 - 2 nu) y1 cot(beta) - a) y2 \ %1 / - -------------------------------- + 2 ------------------------ 3/2 1/2 1/2 %1 %1 (%1 + y3 + 2 a) 3 / a \ 3 / a \ y2 |2 nu + -----| y2 |2 nu + -----|

Page 26: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

14

| 1/2| | 1/2| \ %1 / \ %1 / - ------------------------ - ---------------------- 3/2 1/2 1/2 2 %1 (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) \ | 3 3| y2 a a y2 a y2 | / 1/2 - ---------------------- + 2 ----- - 3 -----| / (%1 + y3 + 2 a) 2 1/2 3/2 5/2| / %1 (%1 + y3 + 2 a) %1 %1 / / | | | 2 (1 - 2 nu) %2 cot(beta) + a cos(beta) - (y3 + a) |cos(beta) - ------------------------------------- | 1/2 \ %1 2 2 a %2 cot(beta) %3\ y2 cos(beta) - -----------------| 1/2 | a (y3 + 2 a) %2 cot(beta) %1 | + ------------------------- - ----------------------------------| y2 3/2 1/2 | %1 %1 %4 / / | | / 2 1/2 | / (%4 %1 ) + (y3 + a) | / | \ ((1 - 2 nu) %2 cot(beta) + a cos(beta)) y2 ------------------------------------------ 3/2 %1 a (y3 + 2 a) %2 cot(beta) y2 - 3 ---------------------------- 5/2 %1 / 2 2 a %2 cot(beta) %3\ |y2 cos(beta) - -----------------| y2 | 1/2 | \ %1 / + --------------------------------------- 3/2 %1 %4 / 2 2 a %2 cot(beta) %3\ |y2 cos(beta) - -----------------| y2 | 1/2 | \ %1 / + --------------------------------------- - 2 %1 %4 2 a %2 cot(beta) %3 y2 a %2 cot(beta) cos(beta) y2\ 2 y2 cos(beta) + -------------------- - ---------------------------| 3/2 %1 | %1 | --------------------------------------------------------------------|/ 1/2 | %1 %4 /

Page 27: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

15

/ | | / / \ \ | | | | | | | | | | | | | | | | | | 2 (%4)|/(pi (1 - nu))| + B2 |1/8 |(2 - 2 nu) |- ------------ | | | | | / 2\ / / | | | | y2 | | | | y1 |1 + ---| | | | | 2| \ \ \ \ y1 / / 2 2 2 1/2 1 |(y1 + y2 + y3 ) sin(beta) + -------------- + |------------------------------ / 2 \ | %13 | y2 | \ %12 |1 + ----| | 2| \ %12 / 2 y2 sin(beta) + ------------------------ 2 2 2 1/2 (y1 + y2 + y3 ) %13 2 2 2 2 1/2 \ / y2 (y1 + y2 + y3 ) sin(beta) cos(beta)| / | - 2 --------------------------------------------| / | 2 | / | %13 / \ 2 2 2 2 2\ y2 (y1 + y2 + y3 ) sin(beta) | 1 1 + --------------------------------| + ------------ 2 | / 2\ %13 / | y2 | %2 |1 + ---| | 2| \ %2 / 1/2 2 2 1/2 \ %1 sin(beta) y2 sin(beta) y2 %1 sin(beta) cos(beta)| --------------- + ------------- - 2 -----------------------------| %11 1/2 2 | %1 %11 %11 | + -----------------------------------------------------------------| 2 2 | y2 %1 sin(beta) | 1 + ----------------- | 2 | %11 / / 1 1 \ + y1 |------------------------------ + ------------------------| + y1 | 2 2 2 1/2 1/2 1/2 | \(y1 + y2 + y3 ) (%5 - y3) %1 (%1 + y3 + 2 a)/ / y2 y2 y2 |- ------------------------------ - ---------------------------- | 2 2 2 3/2 2 2 2 2 \ (y1 + y2 + y3 ) (%5 - y3) (y1 + y2 + y3 ) (%5 - y3) y2 y2 \ - ------------------------ - ----------------------| 3/2 1/2 1/2 2| %1 (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) /

Page 28: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

16

%12 %2 / - ----------------------- - -------- - y2 | 2 2 2 1/2 1/2 | (y1 + y2 + y3 ) %6 %1 %4 \ %12 y2 %12 y2 %2 y2 %2 y2 \ - ----------------------- - --------------------- - -------- - ------| 2 2 2 3/2 2 2 2 2 3/2 2| (y1 + y2 + y3 ) %6 (y1 + y2 + y3 ) %6 %1 %4 %1 %4 / / | \ | / | | | | | | | | | | | | 1 |/(pi (1 - nu)) + 1/4 |(2 - 2 nu) (1 - 2 nu) |- ------------ | | | / 2\ | | | | y2 | | | | y1 |1 + ---| | | | | 2| / \ \ \ y1 / 1 + ------------ / 2\ | y2 | %2 |1 + ---| | 2| \ %2 / 1/2 2 2 1/2 \ %1 sin(beta) y2 sin(beta) y2 %1 sin(beta) cos(beta)| --------------- + ------------- - 2 -----------------------------| %11 1/2 2 | %1 %11 %11 | + -----------------------------------------------------------------| 2 2 | y2 %1 sin(beta) | 1 + ----------------- | 2 | %11 / 2 cot(beta) / / a \ \ | y1 |nu + -----| | | | 1/2| | |/ a \ \ %1 / | (1 - 2 nu) ||-1 + 2 nu + -----| cot(beta) + ----------------| || 1/2| 1/2 | \\ %1 / %1 + y3 + 2 a/ + ------------------------------------------------------------- 1/2 %1 + y3 + 2 a / / a \ \ | y1 |nu + -----| | | | 1/2| | 2 |/ a \ \ %1 / | (1 - 2 nu) y2 ||-1 + 2 nu + -----| cot(beta) + ----------------| || 1/2| 1/2 | \\ %1 / %1 + y3 + 2 a/ - ----------------------------------------------------------------- 1/2 2 1/2 (%1 + y3 + 2 a) %1 / / a \

Page 29: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

17

| y1 |nu + -----| y2 | | 1/2| | a y2 cot(beta) \ %1 / + (1 - 2 nu) y2 |- -------------- - ------------------------- | 3/2 1/2 2 1/2 \ %1 (%1 + y3 + 2 a) %1 \ | | y2 a y1 | / 1/2 - ------------------------| / (%1 + y3 + 2 a) 1/2 3/2| / (%1 + y3 + 2 a) %1 / 2 (1 - 2 nu) cot(beta) %7 (1 - 2 nu) y2 cot(beta) %7 - ----------------------- + --------------------------- %4 2 1/2 %4 %1 2 (1 - 2 nu) y2 cot(beta) a a (y3 + a) cot(beta) + -------------------------- - -------------------- 3/2 3/2 %4 %1 cos(beta) %1 2 a y2 (y3 + a) cot(beta) (y3 + a) %10 + 3 ------------------------ + ------------------------ 5/2 1/2 1/2 %1 %1 (%1 + y3 + 2 a) / | 2 2 | y2 (y3 + a) %10 y2 (y3 + a) %10 | - ------------------------ - ---------------------- + y2 (y3 + a) | 3/2 1/2 1/2 2 | %1 (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) \ nu y1 y2 a y1 %9 y2 2 ------------------------- + ---------- 1/2 2 1/2 3/2 (%1 + y3 + 2 a) %1 %1 / y2 y2 \\ a y1 |- ----- - -------------------------|| | 3/2 1/2 2 1/2|| \ %1 (%1 + y3 + 2 a) %1 /| / 1/2 - ------------------------------------------| / (%1 1/2 | / %1 / 1/2 (y3 + a) cot(beta) %8 (%1 + y3 + 2 a)) + --------------------- 1/2 %1 %4 2 2 y2 (y3 + a) cot(beta) %8 y2 (y3 + a) cot(beta) %8 - ------------------------- - ------------------------- + y2 (y3 + a) 3/2 2 %1 %4 %1 %4 cot(beta) /cos(beta) y2 %7 %3 %7 y2 %3 a y2 a (y3 + 2 a) y2\ |--------------- - --------- - ------------------ - 2 ---------------| | 1/2 2 1/2 3/2 2 | \ %1 %4 %4 %1 %4 %1 cos(beta) %1 cos(beta) /

Page 30: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

18

\ \ | | | | | | / | | | | | | / 1/2 | | | / / (%1 %4)|/(pi (1 - nu))| + B3 |1/8 | / | | | | | | \ \ | | | | / / / y2 y2 \ (1 - 2 nu) sin(beta) |----------------------- + --------| | 2 2 2 1/2 1/2 | \(y1 + y2 + y3 ) %6 %1 %4/ / 1 1 \ 2 - 2 y2 sin(beta) |----------------------- + --------| - y2 sin(beta) | 2 2 2 1/2 1/2 | \(y1 + y2 + y3 ) %6 %1 %4/ / y2 y2 y2 y2 |- ----------------------- - --------------------- - -------- - ------ | 2 2 2 3/2 2 2 2 2 3/2 2 \ (y1 + y2 + y3 ) %6 (y1 + y2 + y3 ) %6 %1 %4 %1 %4 / / | | | | \\ | | sin(beta) y2 ||/(pi (1 - nu)) + 1/4 |(1 - 2 nu) |- ------------ || | | 1/2 // \ \ %1 %4 / a \ y2 |1 + -----| y1 | 1/2| \ %1 / y2 a y1 + ------------------------- + ------------------------ 1/2 2 1/2 1/2 3/2 (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) %1 / a \ \ %2 |cos(beta) + -----| y2 | | 1/2| | \ %1 / %2 a y2 | - ------------------------- - --------| 2 1/2 3/2| %4 %1 %4 %1 / / a 1 \ y2 (y3 + a) |---- + ----------------| y1 | %1 1/2 | \ %1 + y3 + 2 a/ - ---------------------------------------- 3/2 %1 / a y2 y2 \ / y1 (y3 + a) |-2 ---- - -------------------------| | | 2 1/2 2 1/2| | \ %1 (%1 + y3 + 2 a) %1 / | + ------------------------------------------------- + (y3 + a) | 1/2 | %1 \ / a (y3 + 2 a)\

Page 31: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

19

%2 |1 + ------------| / a \ \ %1 / sin(beta) |cos(beta) - -----| + --------------------- | 1/2| 1/2 \ %1 / %1 2 a %2 %3\ / y2 cos(beta) sin(beta) - -------| | 1/2 | | %1 | / 2 1/2 | - ---------------------------------| y2 / (%4 %1 ) - (y3 + a) | 1/2 | / | %1 %4 / \ / a (y3 + 2 a)\ %2 |1 + ------------| y2 sin(beta) a y2 \ %1 / %2 a (y3 + 2 a) y2 -------------- - ------------------------ - 2 ------------------ 3/2 3/2 5/2 %1 %1 %1 / 2 a %2 %3\ |y2 cos(beta) sin(beta) - -------| y2 | 1/2 | \ %1 / + -------------------------------------- 3/2 %1 %4 / 2 a %2 %3\ |y2 cos(beta) sin(beta) - -------| y2 | 1/2 | \ %1 / + -------------------------------------- 2 %1 %4 a %2 %3 y2 a %2 cos(beta) y2\ \ 2 y2 cos(beta) sin(beta) + ---------- - -----------------| | 3/2 %1 | | %1 | | - ---------------------------------------------------------|/(%4)|/( 1/2 | | %1 %4 / / \ | | | pi (1 - nu))| | / 2 2 2 2 %1 := y1 + y2 + y3 + 4 y3 a + 4 a %2 := y1 cos(beta) + (y3 + 2 a) sin(beta) 1/2 %3 := %1 cos(beta) + y3 + 2 a 1/2 %4 := %1 - y1 sin(beta) + (y3 + 2 a) cos(beta) 2 2 2 1/2 %5 := (y1 + y2 + y3 ) %6 := %5 - y1 sin(beta) - y3 cos(beta) a

Page 32: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

20

%7 := 1 + --------------- 1/2 %1 cos(beta) %3 %7 a (y3 + 2 a) %8 := (-2 + 2 nu) cos(beta) + ----- + ------------ %4 %1 cos(beta) 1 1 %9 := ----- + ---------------- 1/2 1/2 %1 %1 + y3 + 2 a nu y1 a y1 %9 %10 := (1 - 2 nu) cot(beta) - 2 ---------------- - ------- 1/2 1/2 %1 + y3 + 2 a %1 2 %11 := y1 %2 + y2 cos(beta) %12 := y1 cos(beta) - y3 sin(beta) 2 %13 := y1 %12 + y2 cos(beta)

Page 33: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

21

e33 = / | / / | | | | | | | | y3 2 y3 + 4 a | B1 |1/8 y2 |- -------------------- + 1/2 ---------- - cos(beta) | | | 2 2 2 3/2 3/2 | | \ (y1 + y2 + y3 ) %1 \ | | \ cos(beta) y3 -------------------- - 1 2 2 2 1/2 (y1 + y2 + y3 ) %11 y3 ------------------------ - ------------------------ 2 2 2 1/2 2 2 2 3/2 (y1 + y2 + y3 ) %10 (y1 + y2 + y3 ) %10 %11 %9 %6 %3 (2 y3 + 4 a) - ------------------------- - -------- + 1/2 --------------- 2 2 2 1/2 2 1/2 3/2 (y1 + y2 + y3 ) %10 %1 %2 %1 %2 / / / \\ | | | || | | | || | | | %3 %4 || | | | + ---------||/(pi (1 - nu)) + 1/4 |(2 - 2 nu) |(1 - 2 nu) | 1/2 2|| | | | %1 %2 // | | | | | | | | | \ \ \ y2 sin(beta) - ------------- / 2\ 2 | y2 | %7 |1 + ---| | 2| \ %7 / 1/2 2 \ y2 sin(beta) (2 y3 + 4 a) y2 %1 sin(beta) y1| 1/2 ------------------------- - ----------------------| 1/2 2 | %1 %8 %8 | + ------------------------------------------------------| cot(beta) 2 2 | y2 %1 sin(beta) | 1 + ----------------- | 2 | %8 / / a \ y2 |2 nu + -----| %14 | 1/2| \ %1 / y2 a (2 y3 + 4 a) - --------------------- - 1/2 ------------------------ 1/2 2 1/2 3/2 (%1 + y3 + 2 a) (%1 + y3 + 2 a) %1 \ |

Page 34: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

22

| | y2 cos(beta) %5 %4 y2 cos(beta) a (2 y3 + 4 a)| + ------------------ + 1/2 ---------------------------| 2 3/2 | %2 %2 %1 | | | / / nu a \ y2 |2 ---------------- + ----| | 1/2 %1 | \ %1 + y3 + 2 a / + ------------------------------ 1/2 %1 / nu a \ y2 (y3 + a) |2 ---------------- + ----| (2 y3 + 4 a) | 1/2 %1 | \ %1 + y3 + 2 a / - 1/2 ---------------------------------------------------- 3/2 %1 / nu %14 a (2 y3 + 4 a)\ y2 (y3 + a) |-2 ------------------- - --------------| | 1/2 2 2 | \ (%1 + y3 + 2 a) %1 / + ----------------------------------------------------- 1/2 %1 / %3 %5 a (y3 + 2 a)\ y2 cos(beta) |1 - 2 nu - ----- - ------------| \ %2 %1 / + ---------------------------------------------- - 1/2 1/2 %1 %2 / %3 %5 a (y3 + 2 a)\ y2 (y3 + a) cos(beta) |1 - 2 nu - ----- - ------------| (2 y3 + 4 a) \ %2 %1 / -------------------------------------------------------------------- 3/2 %1 %2 / %3 %5 a (y3 + 2 a)\ y2 (y3 + a) cos(beta) |1 - 2 nu - ----- - ------------| %4 \ %2 %1 / - ---------------------------------------------------------- + y2 1/2 2 %1 %2 / %6 %5 %3 %5 %4 %3 a (2 y3 + 4 a) a (y3 + a) cos(beta) |- ----- + -------- + 1/2 ----------------- - ---- | %2 2 3/2 %1 \ %2 %2 %1 \ \ | | / | | | | | | a (y3 + 2 a) (2 y3 + 4 a)\ / 1/2 | | | + -------------------------| / (%1 %2)|/(pi (1 - nu))| + B2 |1/8 2 | / | | | %1 / | | \ | | | | / /

Page 35: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

23

/ | | | /%9 %4 \ |(-1 + 2 nu) sin(beta) |--- - ----| | \%10 %2 / \ / y3 2 y3 + 4 a\ - y1 |- -------------------- + 1/2 ----------| | 2 2 2 3/2 3/2 | \ (y1 + y2 + y3 ) %1 / / cos(beta) y3 \ %12 |-------------------- - 1| | 2 2 2 1/2 | sin(beta) %11 \(y1 + y2 + y3 ) / - ------------------------ + ------------------------------ 2 2 2 1/2 2 2 2 1/2 (y1 + y2 + y3 ) %10 (y1 + y2 + y3 ) %10 %12 %11 y3 %12 %11 %9 sin(beta) %3 - ------------------------ - ------------------------- - ------------ 2 2 2 3/2 2 2 2 1/2 2 1/2 (y1 + y2 + y3 ) %10 (y1 + y2 + y3 ) %10 %1 %2 \ | | %7 %6 %7 %3 (2 y3 + 4 a) %7 %3 %4 | - -------- + 1/2 ------------------ + ---------|/(pi (1 - nu)) + 1/4 1/2 3/2 1/2 2| %1 %2 %1 %2 %1 %2 / / | | | / %14 cos(beta) %4\ |(-2 + 2 nu) (1 - 2 nu) cot(beta) |---------------- - ------------| | | 1/2 %2 | \ \%1 + y3 + 2 a / / a \ (2 - 2 nu) y1 |2 nu + -----| %14 | 1/2| \ %1 / (2 - 2 nu) y1 a (2 y3 + 4 a) + -------------------------------- + 1/2 ---------------------------- 1/2 2 1/2 3/2 (%1 + y3 + 2 a) (%1 + y3 + 2 a) %1 (2 - 2 nu) sin(beta) %5 (2 - 2 nu) %7 %5 %4 + ----------------------- - ------------------- %2 2 %2 (2 - 2 nu) %7 a (2 y3 + 4 a) - 1/2 ---------------------------- 3/2 %2 %1 nu y1 a y1 (1 - 2 nu) cot(beta) - 2 ---------------- - ---- 1/2 %1 %1 + y3 + 2 a + ------------------------------------------------ - 1/2 (y3 + a) 1/2 %1 / nu y1 a y1\ / |(1 - 2 nu) cot(beta) - 2 ---------------- - ----| (2 y3 + 4 a) /

Page 36: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

24

| 1/2 %1 | / \ %1 + y3 + 2 a / / nu y1 %14 a y1 (2 y3 + 4 a)\ / (y3 + a) |2 ------------------- + -----------------| | | 1/2 2 2 | | 3/2 \ (%1 + y3 + 2 a) %1 / | %1 + ---------------------------------------------------- - | 1/2 | %1 \ %3 cot(beta) %13 cos(beta) sin(beta) + ---------------- 1/2 %1 / (y3 + 2 a) %7 %7 %3 \\ / a |sin(beta) - ------------- - --------|| | | %1 1/2 || | \ %1 %2/| | + ----------------------------------------|/(%2) + (y3 + a) | 1/2 | | %1 / \ %3 cot(beta) %13 cos(beta) sin(beta) + ---------------- 1/2 %1 / (y3 + 2 a) %7 %7 %3 \\ / a |sin(beta) - ------------- - --------|| | | %1 1/2 || | \ %1 %2/| / 2 | + ----------------------------------------| %4 / %2 - (y3 + a) | 1/2 | / | %1 / \ %6 cot(beta) %13 %3 cot(beta) %13 (2 y3 + 4 a) ---------------- - 1/2 ----------------------------- 1/2 3/2 %1 %1 / %6 %3 %4\ %3 cot(beta) |- ---- + -----| | %2 2 | \ %2 / + ----------------------------- 1/2 %1 / (y3 + 2 a) %7 %7 %3 \ a |sin(beta) - ------------- - --------| (2 y3 + 4 a) | %1 1/2 | \ %1 %2/ / - 1/2 ----------------------------------------------------- + a | 3/2 | %1 \ %7 (y3 + 2 a) sin(beta) (y3 + 2 a) %7 (2 y3 + 4 a) - ---- - -------------------- + -------------------------- %1 %1 2 %1 sin(beta) %3 %7 %6 %7 %3 (2 y3 + 4 a) %7 %3 %4 \ / - ------------ - -------- + 1/2 ------------------ + ---------| / 1/2 1/2 3/2 1/2 2| / %1 %2 %1 %2 %1 %2 %1 %2 / / / / \ \ \ | | | | | | | | |

Page 37: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

25

| | | | | | / 1/2| | | | | | y2 sin(beta) | %1 |/(%2)|/(pi (1 - nu))| + B3 |1/8 |(2 - 2 nu) |--------------- + | | | | | | | / 2 \ | / / / | | | 2 | y2 | \ | | |%12 |1 + ----| | | | | 2| \ \ \ \ %12 / y2 sin(beta) y3 --------------------------------------------- 2 2 2 1/2 2 (y1 + y2 + y3 ) (y1 %12 + y2 cos(beta)) 2 2 2 1/2 2 \ / y2 (y1 + y2 + y3 ) sin(beta) y1| / | + -------------------------------------| / | 2 2 | / | (y1 %12 + y2 cos(beta)) / \ 2 2 2 2 2\ y2 (y1 + y2 + y3 ) sin(beta) | y2 sin(beta) 1 + --------------------------------| + ------------- 2 2 | / 2\ (y1 %12 + y2 cos(beta)) / 2 | y2 | %7 |1 + ---| | 2| \ %7 / 1/2 2 \ y2 sin(beta) (2 y3 + 4 a) y2 %1 sin(beta) y1| 1/2 ------------------------- - ----------------------| 1/2 2 | %1 %8 %8 | - ------------------------------------------------------| + y2 2 2 | y2 %1 sin(beta) | 1 + ----------------- | 2 | %8 / / cos(beta) y3 |-------------------- - 1 | 2 2 2 1/2 |(y1 + y2 + y3 ) %11 y3 sin(beta) |------------------------ - ------------------------ | 2 2 2 1/2 2 2 2 3/2 \(y1 + y2 + y3 ) %10 (y1 + y2 + y3 ) %10 %11 %9 %6 %3 (2 y3 + 4 a) - ------------------------- - -------- + 1/2 --------------- 2 2 2 1/2 2 1/2 3/2 (y1 + y2 + y3 ) %10 %1 %2 %1 %2 \ / / \| | | || | | || | | %3 %4 || | | y2 sin(beta) + ---------||/(pi (1 - nu)) + 1/4 |(2 - 2 nu) |- ------------- 1/2 2|| | | / 2\ %1 %2 /| | | 2 | y2 | | | | %7 |1 + ---| | | | | 2| / \ \ \ %7 / 1/2 2 \ y2 sin(beta) (2 y3 + 4 a) y2 %1 sin(beta) y1| 1/2 ------------------------- - ----------------------| 1/2 2 | %1 %8 %8 |

Page 38: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

26

+ ------------------------------------------------------| 2 2 | y2 %1 sin(beta) | 1 + ----------------- | 2 | %8 / (2 - 2 nu) y2 sin(beta) %5 %4 - ----------------------------- 2 %2 (2 - 2 nu) y2 sin(beta) a (2 y3 + 4 a) - 1/2 -------------------------------------- 3/2 %2 %1 / %3 %5 a (y3 + 2 a)\ y2 sin(beta) |1 + ----- + ------------| \ %2 %1 / + --------------------------------------- 1/2 %1 %2 / %3 %5 a (y3 + 2 a)\ y2 (y3 + a) sin(beta) |1 + ----- + ------------| (2 y3 + 4 a) \ %2 %1 / - 1/2 ------------------------------------------------------------- 3/2 %1 %2 / %3 %5 a (y3 + 2 a)\ y2 (y3 + a) sin(beta) |1 + ----- + ------------| %4 \ %2 %1 / - --------------------------------------------------- + y2 (y3 + a) 1/2 2 %1 %2 /%6 %5 %3 %5 %4 %3 a (2 y3 + 4 a) a sin(beta) |----- - -------- - 1/2 ----------------- + ---- | %2 2 3/2 %1 \ %2 %2 %1 \ \ | | | | | | a (y3 + 2 a) (2 y3 + 4 a)\ / 1/2 | | - -------------------------| / (%1 %2)|/(pi (1 - nu))| 2 | / | | %1 / | | | | | | / / 2 2 2 2 %1 := y1 + y2 + y3 + 4 y3 a + 4 a 1/2 %2 := %1 - y1 sin(beta) + (y3 + 2 a) cos(beta) 1/2 %3 := %1 cos(beta) + y3 + 2 a 2 y3 + 4 a %4 := 1/2 ---------- + cos(beta) 1/2 %1 a %5 := cos(beta) + -----

Page 39: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

27

1/2 %1 cos(beta) (2 y3 + 4 a) %6 := 1/2 ---------------------- + 1 1/2 %1 %7 := y1 cos(beta) + (y3 + 2 a) sin(beta) 2 %8 := y1 %7 + y2 cos(beta) y3 %9 := -------------------- - cos(beta) 2 2 2 1/2 (y1 + y2 + y3 ) 2 2 2 1/2 %10 := (y1 + y2 + y3 ) - y1 sin(beta) - y3 cos(beta) 2 2 2 1/2 %11 := (y1 + y2 + y3 ) cos(beta) - y3 %12 := y1 cos(beta) - y3 sin(beta) %3 %13 := (2 - 2 nu) cos(beta) - ---- %2 2 y3 + 4 a %14 := 1/2 ---------- + 1 1/2 %1

Page 40: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

28

e12 = / | | / / | | | | | | | | | / | | | 2 1 | 1/2 B1 |1/8 |(2 - 2 nu) |- ------------ + -------------- + | | | | / 2\ / 2 \ | | | | | y2 | | y2 | \ | | | y1 |1 + ---| %17 |1 + ----| | | | | 2| | 2| \ \ \ \ y1 / \ %17 / 2 2 2 1/2 2 (y1 + y2 + y3 ) sin(beta) y2 sin(beta) ------------------------------ + ------------------------ %18 2 2 2 1/2 (y1 + y2 + y3 ) %18 2 2 2 2 1/2 \ / y2 (y1 + y2 + y3 ) sin(beta) cos(beta)| / | - 2 --------------------------------------------| / | 2 | / | %18 / \ 2 2 2 2 2\ y2 (y1 + y2 + y3 ) sin(beta) | 1 1 + --------------------------------| + ----------------------- 2 | (y1 cos(beta) + %2) %16 %18 / 1/2 2 2 1/2 \ %1 sin(beta) y2 sin(beta) y2 %1 sin(beta) cos(beta)| --------------- + ------------- - 2 -----------------------------| %14 1/2 2 | %1 %14 %14 | + -----------------------------------------------------------------| %15 | | | | / / 1 1 \ - y1 |------------------------------- + ------------------------| - | 2 2 2 1/2 1/2 1/2 | \(y1 + y2 + y3 ) (%10 - y3) %1 (%1 + y3 + 2 a)/ / y2 y1 y2 |- ------------------------------- | 2 2 2 3/2 \ (y1 + y2 + y3 ) (%10 - y3) y2 y2 - ----------------------------- - ------------------------ 2 2 2 2 3/2 1/2 (y1 + y2 + y3 ) (%10 - y3) %1 (%1 + y3 + 2 a) y2 \ - ----------------------| 1/2 2| %1 (%1 + y3 + 2 a) / / %23 %22 \ / - cos(beta) |------------------------ + --------| - y2 cos(beta) | | 2 2 2 1/2 1/2 | |

Page 41: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

29

\(y1 + y2 + y3 ) %11 %1 %4/ \ sin(beta) y2 %23 y2 --------------------- - ------------------------ 2 2 2 2 2 2 3/2 (y1 + y2 + y3 ) %11 (y1 + y2 + y3 ) %11 \ | | | %23 y2 sin(beta) y2 %22 y2 %22 y2\| - ---------------------- + ------------ - -------- - ------||/(pi 2 2 2 2 %1 %4 3/2 2|| (y1 + y2 + y3 ) %11 %1 %4 %1 %4 /| | | / / | | / | | | | | | | | 1 (1 - nu)) + 1/4 |(-2 + 2 nu) (1 - 2 nu) |- ------------ | | / 2\ | | | y2 | | | y1 |1 + ---| | | | 2| \ \ \ y1 / 1 + ----------------------- (y1 cos(beta) + %2) %16 1/2 2 2 1/2 \ %1 sin(beta) y2 sin(beta) y2 %1 sin(beta) cos(beta)| --------------- + ------------- - 2 -----------------------------| %14 1/2 2 | %1 %14 %14 | + -----------------------------------------------------------------| %15 | | | | / 2 cot(beta) / / a \ \ | y1 |nu + -----| | | | 1/2| | |/ a \ \ %1 / | (1 - 2 nu) ||1 - 2 nu - -----| cot(beta) - ----------------| || 1/2| 1/2 | \\ %1 / %1 + y3 + 2 a/ + ------------------------------------------------------------ 1/2 %1 + y3 + 2 a / / a \ \ | y1 |nu + -----| | | | 1/2| | 2 |/ a \ \ %1 / | (1 - 2 nu) y2 ||1 - 2 nu - -----| cot(beta) - ----------------| || 1/2| 1/2 | \\ %1 / %1 + y3 + 2 a/

Page 42: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

30

- ---------------------------------------------------------------- + 1/2 2 1/2 (%1 + y3 + 2 a) %1 / | | | (1 - 2 nu) y2 | | \ / a \ \ y1 |nu + -----| y2 | | 1/2| | a y2 cot(beta) \ %1 / y2 a y1 | -------------- + ------------------------- + ------------------------| 3/2 1/2 2 1/2 1/2 3/2| %1 (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) %1 / / 1/2 (1 - 2 nu) cos(beta) cot(beta) %8 / (%1 + y3 + 2 a) + --------------------------------- / %4 2 (1 - 2 nu) y2 cos(beta) cot(beta) %8 - ------------------------------------- 2 1/2 %4 %1 2 (1 - 2 nu) y2 cos(beta) cot(beta) a a (y3 + a) cot(beta) - ------------------------------------ + -------------------- 3/2 3/2 %4 %1 %1 2 a y2 (y3 + a) cot(beta) (y3 + a) %27 - 3 ------------------------ + ------------------------ 5/2 1/2 1/2 %1 %1 (%1 + y3 + 2 a) 2 2 y2 (y3 + a) %27 y2 (y3 + a) %27 - ------------------------ - ---------------------- + y2 (y3 + a) 3/2 1/2 1/2 2 %1 (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) / / a \ \ | y1 |2 nu + -----| y2 | | | 1/2| | | \ %1 / y2 a y1 a y1 y2| |- ------------------------- - ------------------------ - 2 -------| | 1/2 2 1/2 1/2 3/2 2 | \ (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) %1 %1 / 2 / 1/2 1/2 (y3 + a) %26 y2 (y3 + a) %26 / (%1 (%1 + y3 + 2 a)) + ------------ - ---------------- / 1/2 3/2 %1 %4 %1 %4 2 y2 (y3 + a) %26 / cos(beta) %25 y2 / - ---------------- + y2 (y3 + a) |- ---------------- + cos(beta) | 2 | 2 1/2 | %1 %4 \ %4 %1 \ cos(beta) y2 %24 cot(beta) %3 a y2 cot(beta) -------------------------- + ----------------- 1/2 3/2

Page 43: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

31

%1 %1 (2 - 2 nu) sin(beta) y2 cos(beta)\ + ---------------------------------|/(%4) 1/2 | %1 / \ | | | | | a (y3 + 2 a) cos(beta) cot(beta) y2\ / 1/2 | + 2 -----------------------------------| / (%1 %4)|/(pi (1 - nu) 2 | / | %1 / | | | / \ / | | | | | | | | | | | | / / y2 )| + 1/2 B2 |1/8 |(-1 + 2 nu) |------------------------------- | | | | 2 2 2 1/2 | \ \ \(y1 + y2 + y3 ) (%10 - y3) | | / y2 + ------------------------ 1/2 1/2 %1 (%1 + y3 + 2 a) / y2 y2 \\ 2 / - cos(beta) |------------------------ + --------|| + y1 | | 2 2 2 1/2 1/2 || | \(y1 + y2 + y3 ) %11 %1 %4// \ y2 y2 - ------------------------------- - ----------------------------- 2 2 2 3/2 2 2 2 2 (y1 + y2 + y3 ) (%10 - y3) (y1 + y2 + y3 ) (%10 - y3) y2 y2 \ - ------------------------ - ----------------------| 3/2 1/2 1/2 2| %1 (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) / %17 sin(beta) y2 %17 %23 y2 + --------------------- - ------------------------ 2 2 2 2 2 2 3/2 (y1 + y2 + y3 ) %11 (y1 + y2 + y3 ) %11 %17 %23 y2 (y1 cos(beta) + %2) sin(beta) y2 - ---------------------- + -------------------------------- 2 2 2 2 %1 %4 (y1 + y2 + y3 ) %11 (y1 cos(beta) + %2) %22 y2 (y1 cos(beta) + %2) %22 y2\ - -------------------------- - --------------------------|/(pi 3/2 2 | %1 %4 %1 %4 / /

Page 44: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

32

| | | | | | (1 - nu)) + 1/4 | | \ / (%21 + nu) y2 (%21 + 1) cos(beta) y2\ (1 - 2 nu) |------------------------ - ----------------------| - | 1/2 1/2 1/2 | \%1 (%1 + y3 + 2 a) %1 %4 / / | | | (1 - 2 nu) |(-1 + 2 nu) y1 cot(beta) + nu (y3 + 2 a) - a | \ 2 / a \\ y1 |nu + -----|| | 1/2|| a y1 cot(beta) \ %1 /| / 1/2 2 + -------------- + ----------------| y2 / ((%1 + y3 + 2 a) 1/2 1/2 | / %1 %1 + y3 + 2 a/ / 2 / a \ | y1 |nu + -----| y2 | | 1/2| 1/2 | a y1 cot(beta) y2 \ %1 / %1 ) + (1 - 2 nu) |- ----------------- - ------------------------- | 3/2 1/2 2 1/2 \ %1 (%1 + y3 + 2 a) %1 \ | 2 | y1 a y2 | / 1/2 - ------------------------| / (%1 + y3 + 2 a) + (1 - 2 nu) 1/2 3/2| / (%1 + y3 + 2 a) %1 / / a %22 \ / cot(beta) |(y1 cos(beta) + %2) cos(beta) - ---------------| y2 / ( | 1/2 | / \ %1 cos(beta)/ / a sin(beta) y2 a %22 y2 \ (1 - 2 nu) cot(beta) |- -------------- + ---------------| | %1 cos(beta) 3/2 | 2 1/2 \ %1 cos(beta)/ %4 %1 ) - --------------------------------------------------------- %4 a y2 (y3 + a) cot(beta) y1 + 3 -------------------------- 5/2 %1 / 2 / a \ \ | y1 |2 nu + -----| | | | 1/2| 2| | %20 + a \ %1 / a y1 | (y3 + a) |2 nu + ------- - ------------------------ - -----| y2 | 1/2 1/2 1/2 3/2| \ %1 %1 (%1 + y3 + 2 a) %1 /

Page 45: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

33

- --------------------------------------------------------------- + 1/2 2 1/2 (%1 + y3 + 2 a) %1 / 2 / a \ | y1 |2 nu + -----| y2 | | 1/2| | (%20 + a) y2 \ %1 / (y3 + a) |- ------------ + ------------------------ | 3/2 3/2 1/2 \ %1 %1 (%1 + y3 + 2 a) 2 / a \ \ y1 |2 nu + -----| y2 | | 1/2| 2 2 | \ %1 / y1 a y2 a y1 y2| / + ---------------------- + ---------------------- + 3 --------| / ( 1/2 2 2 1/2 5/2 | / %1 (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) %1 / / | 1/2 | %1 + y3 + 2 a) - (y3 + a) cot(beta) |-cos(beta) sin(beta) | \ / %3 %12\\ %22 |(2 - 2 nu) cos(beta) - ------|| a y1 (y3 + 2 a) \ %4 /| / 2 + --------------- + -----------------------------------| y2 / (%4 3/2 1/2 | / %1 cos(beta) %1 / / | | 1/2 | a y1 (y3 + 2 a) y2 %1 ) + (y3 + a) cot(beta) |-3 ------------------ | 5/2 \ %1 cos(beta) / %3 %12\ sin(beta) y2 |(2 - 2 nu) cos(beta) - ------| \ %4 / + -------------------------------------------- %1 / %3 %12\ %22 |(2 - 2 nu) cos(beta) - ------| y2 \ %4 / - -------------------------------------- 3/2 %1 \ | | / cos(beta) y2 %12 %3 %12 y2 %3 a y2 \\ | %22 |- ---------------- + --------- + ------------------|| | | 1/2 2 1/2 3/2 || | \ %1 %4 %4 %1 %4 %1 cos(beta)/| | + ---------------------------------------------------------|/(%4)|/( 1/2 | | %1 / / \ | | | / | |

Page 46: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

34

| | | | pi (1 - nu))| + 1/2 B3 | | | / \ / %23 %22 \ sin(beta) |------------------------ + --------| | 2 2 2 1/2 1/2 | \(y1 + y2 + y3 ) %11 %1 %4/ 1/8 ----------------------------------------------- + 1/8 y2 sin(beta) pi (1 - nu) / sin(beta) y2 %23 y2 |--------------------- - ------------------------ | 2 2 2 2 2 2 3/2 \(y1 + y2 + y3 ) %11 (y1 + y2 + y3 ) %11 %23 y2 sin(beta) y2 %22 y2 %22 y2\ - ---------------------- + ------------ - -------- - ------|/(pi 2 2 2 2 %1 %4 3/2 2| (y1 + y2 + y3 ) %11 %1 %4 %1 %4 / / / a | | 1 + ----- | | 1/2 | | %1 (1 - nu)) + 1/4 |(1 - 2 nu) |---------------- | | 1/2 \ \%1 + y3 + 2 a 2 / a \ y2 |1 + -----| | 1/2| 2 \ %1 / y2 a cos(beta) %8 - ------------------------- - ------------------------ - ------------ 1/2 2 1/2 1/2 3/2 %4 (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) %1 \ | 2 2 | 2 y2 cos(beta) %8 y2 cos(beta) a| (y3 + a) %7 y2 (y3 + a) %7 + ---------------- + ---------------| - ----------- + --------------- 2 1/2 3/2 | 1/2 3/2 %4 %1 %4 %1 / %1 %1 / a y2 y2 \ y2 (y3 + a) |-2 ---- - -------------------------| | 2 1/2 2 1/2| \ %1 (%1 + y3 + 2 a) %1 / - ------------------------------------------------- 1/2 %1 /%3 %8 a (y3 + 2 a)\ (y3 + a) cos(beta) |----- + ------------| \ %4 %1 / + ----------------------------------------- 1/2 %1 %4 2 /%3 %8 a (y3 + 2 a)\ y2 (y3 + a) cos(beta) |----- + ------------| \ %4 %1 / - --------------------------------------------- 3/2 %1 %4 2 /%3 %8 a (y3 + 2 a)\ y2 (y3 + a) cos(beta) |----- + ------------|

Page 47: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

35

\ %4 %1 / - --------------------------------------------- + y2 (y3 + a) 2 %1 %4 /cos(beta) y2 %8 %3 %8 y2 %3 a y2 a (y3 + 2 a) y2\ cos(beta) |--------------- - --------- - -------- - 2 ---------------| | 1/2 2 1/2 3/2 2 | \ %1 %4 %4 %1 %4 %1 %1 / / | | \ \ | | | | | | | / 1/2 | | | / / / (%1 %4)|/(pi (1 - nu))| + 1/2 B1 |1/8 |(1 - 2 nu) | / | | | | | / / \ \ \ y1 y1 ------------------------------- + ------------------------ 2 2 2 1/2 1/2 1/2 (y1 + y2 + y3 ) (%10 - y3) %1 (%1 + y3 + 2 a) /%9 %5 \\ 2 / y1 - cos(beta) |--- + ----|| - y2 |- ------------------------------- \%11 %4 /| | 2 2 2 3/2 / \ (y1 + y2 + y3 ) (%10 - y3) y1 y1 - ----------------------------- - ------------------------ 2 2 2 2 3/2 1/2 (y1 + y2 + y3 ) (%10 - y3) %1 (%1 + y3 + 2 a) y1 / y1 - ---------------------- - cos(beta) |- ------------------------ 1/2 2 | 2 2 2 3/2 %1 (%1 + y3 + 2 a) \ (y1 + y2 + y3 ) %11 %9 y1 %5 \\\ - ------------------------- - -------- - ---------|||/(pi (1 - nu)) 2 2 2 1/2 2 3/2 1/2 2||| (y1 + y2 + y3 ) %11 %1 %4 %1 %4 /// / | | | | | | + 1/4 | | \ / (%21 - nu) y1 (%21 + 1 - 2 nu) cos(beta) %5\ (1 - 2 nu) |------------------------ - -----------------------------| | 1/2 1/2 %4 | \%1 (%1 + y3 + 2 a) / / | | | + (1 - 2 nu) | | \

Page 48: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

36

2 / a \ y2 |nu + -----| | 1/2| / a \ \ %1 / y1 cot(beta) |1 - 2 nu - -----| + nu (y3 + 2 a) - a + ---------------- | 1/2| 1/2 \ %1 / %1 + y3 + 2 a \ / | | | | | / 1/2 2 1/2 | | y1 / ((%1 + y3 + 2 a) %1 ) - (1 - 2 nu) | | / | / \ 2 / a \ a y1 cot(beta) |1 - 2 nu - -----| cot(beta) + --------------- | 1/2| 3/2 \ %1 / %1 2 / a \ \ y2 |nu + -----| y1 | | 1/2| 2 | \ %1 / y2 a y1 | / - ------------------------- - ------------------------| / ( 1/2 2 1/2 1/2 3/2| / (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) %1 / 1/2 (1 - 2 nu) cos(beta) cot(beta) %8 %1 + y3 + 2 a) - --------------------------------- %4 (1 - 2 nu) (y1 cos(beta) + %2) cot(beta) %8 %5 + ---------------------------------------------- 2 %4 (1 - 2 nu) (y1 cos(beta) + %2) cot(beta) a y1 + --------------------------------------------- 3/2 %4 %1 2 a (y3 + a) cot(beta) a y1 (y3 + a) cot(beta) - -------------------- + 3 ------------------------ 3/2 5/2 %1 %1 / 2 / a \ \ | y2 |2 nu + -----| | | | 1/2| 2| | %20 - a \ %1 / a y2 | (y3 + a) |-2 nu + ------- + ------------------------ + -----| y1 | 1/2 1/2 1/2 3/2| \ %1 %1 (%1 + y3 + 2 a) %1 / - ---------------------------------------------------------------- + 1/2 2 1/2 (%1 + y3 + 2 a) %1 / | | | (%20 - a) y1 (1 - 2 nu) cot(beta) (y3 + a) |- ------------ + -------------------- | 3/2 1/2 \ %1 %1 2 / a \ 2 / a \ y2 |2 nu + -----| y1 y2 |2 nu + -----| y1

Page 49: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

37

| 1/2| | 1/2| \ %1 / \ %1 / - ------------------------ - ---------------------- 3/2 1/2 1/2 2 %1 (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) \ | 2 2 | y2 a y1 a y2 y1| / 1/2 - ---------------------- - 3 --------| / (%1 + y3 + 2 a) - 2 1/2 5/2 | / %1 (%1 + y3 + 2 a) %1 / / 2 (y3 + a) |cos(beta) | \ (1 - 2 nu) (y1 cos(beta) + %2) cot(beta) + a cos(beta) - ------------------------------------------------------ 1/2 %1 a (y3 + 2 a) (y1 cos(beta) + %2) cot(beta) %19 \ / 2 + ------------------------------------------ - --------| %5 / %4 3/2 1/2 | / %1 %1 %4/ / + (y3 + a) | | \ ((1 - 2 nu) (y1 cos(beta) + %2) cot(beta) + a cos(beta)) y1 ----------------------------------------------------------- 3/2 %1 (1 - 2 nu) cos(beta) cot(beta) a (y3 + 2 a) cos(beta) cot(beta) - ------------------------------ + -------------------------------- 1/2 3/2 %1 %1 a (y3 + 2 a) (y1 cos(beta) + %2) cot(beta) y1 %19 y1 - 3 --------------------------------------------- + -------- 5/2 3/2 %1 %1 %4 %19 %5 / a cos(beta) cot(beta) %3 + --------- - |- ------------------------ 1/2 2 | 1/2 %1 %4 \ %1 a (y1 cos(beta) + %2) cot(beta) %3 y1 + ------------------------------------- 3/2 %1 \ | | | | | a (y1 cos(beta) + %2) cot(beta) cos(beta) y1\ / 1/2 \ | - --------------------------------------------| / (%1 %4)|/(%4)| %1 | / | | / / / \ /

Page 50: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

38

| | | | / / | | | | | | | | | | | | | | | | y2 /(pi (1 - nu))| + 1/2 B2 |1/8 |(2 - 2 nu) |2 ------------- | | | | / 2\ / | | | 2 | y2 | | | | y1 |1 + ---| | | | | 2| \ \ \ \ y1 / / y2 cos(beta) | y2 sin(beta) y1 - --------------- + |------------------------ / 2 \ | 2 2 2 1/2 2 | y2 | \(y1 + y2 + y3 ) %18 %17 |1 + ----| | 2| \ %17 / 2 2 2 1/2 \ y2 (y1 + y2 + y3 ) sin(beta) (2 y1 cos(beta) - y3 sin(beta))| - -----------------------------------------------------------------| 2 | %18 / / 2 2 2 2 2\ / | y2 (y1 + y2 + y3 ) sin(beta) | y2 cos(beta) / |1 + --------------------------------| - ------------------------ / | 2 | 2 \ %18 / (y1 cos(beta) + %2) %16 1/2 \ y2 sin(beta) y1 y2 %1 sin(beta) (2 y1 cos(beta) + %2)| --------------- - ----------------------------------------| 1/2 2 | %1 %14 %14 | + ----------------------------------------------------------| %15 | | | | / / 1 1 \ + y2 |------------------------------- + ------------------------| + | 2 2 2 1/2 1/2 1/2 | \(y1 + y2 + y3 ) (%10 - y3) %1 (%1 + y3 + 2 a)/ / y1 y1 y2 |- ------------------------------- | 2 2 2 3/2 \ (y1 + y2 + y3 ) (%10 - y3) y1 y1 - ----------------------------- - ------------------------ 2 2 2 2 3/2 1/2 (y1 + y2 + y3 ) (%10 - y3) %1 (%1 + y3 + 2 a) y1 \ / cos(beta) - ----------------------| - y2 |------------------------ 1/2 2| | 2 2 2 1/2 %1 (%1 + y3 + 2 a) / \(y1 + y2 + y3 ) %11 %17 y1 %17 %9 cos(beta) - ------------------------ - ------------------------- + --------- 2 2 2 3/2 2 2 2 1/2 2 1/2 (y1 + y2 + y3 ) %11 (y1 + y2 + y3 ) %11 %1 %4

Page 51: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

39

\ | | | (y1 cos(beta) + %2) y1 (y1 cos(beta) + %2) %5\| - ---------------------- - ----------------------||/(pi (1 - nu)) + 3/2 1/2 2 || %1 %4 %1 %4 /| | | / / | | / | | | | | | | | y2 y2 cos(beta) 1/4 |(2 - 2 nu) (1 - 2 nu) |------------- - ------------------------ | | / 2\ 2 | | 2 | y2 | (y1 cos(beta) + %2) %16 | |y1 |1 + ---| | | | 2| \ \ \ y1 / 1/2 \ y2 sin(beta) y1 y2 %1 sin(beta) (2 y1 cos(beta) + %2)| --------------- - ----------------------------------------| 1/2 2 | %1 %14 %14 | + ----------------------------------------------------------| %15 | | | | / 2 cot(beta) / / a \ \ | y1 |nu + -----| | | | 1/2| | |/ a \ \ %1 / | (1 - 2 nu) y2 ||-1 + 2 nu + -----| cot(beta) + ----------------| y1 || 1/2| 1/2 | \\ %1 / %1 + y3 + 2 a/ - ------------------------------------------------------------------- 1/2 2 1/2 (%1 + y3 + 2 a) %1 / a | nu + ----- | 1/2 | a y1 cot(beta) %1 + (1 - 2 nu) y2 |- -------------- + ---------------- | 3/2 1/2 \ %1 %1 + y3 + 2 a 2 / a \ \ y1 |nu + -----| | | 1/2| 2 | \ %1 / y1 a | / - ------------------------- - ------------------------| / ( 1/2 2 1/2 1/2 3/2| / (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) %1 / 1/2 (1 - 2 nu) y2 cot(beta) %12 %5 %1 + y3 + 2 a) + ------------------------------

Page 52: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

40

2 %4 (1 - 2 nu) y2 cot(beta) a y1 a y2 (y3 + a) cot(beta) y1 + ---------------------------- + 3 -------------------------- - y2 3/2 5/2 %4 %1 cos(beta) %1 / nu y1 a y1 %13\ (y3 + a) |(1 - 2 nu) cot(beta) - 2 ---------------- - --------| y1 | 1/2 1/2 | \ %1 + y3 + 2 a %1 / / 3/2 1/2 / (%1 (%1 + y3 + 2 a)) - y2 (y3 + a) / / nu y1 a y1 %13\ / |(1 - 2 nu) cot(beta) - 2 ---------------- - --------| y1 / (%1 | 1/2 1/2 | / \ %1 + y3 + 2 a %1 / / | | 1/2 2 | nu (%1 + y3 + 2 a) ) + y2 (y3 + a) |-2 ---------------- | 1/2 \ %1 + y3 + 2 a 2 2 nu y1 a %13 a y1 %13 + 2 ------------------------- - ----- + --------- 1/2 2 1/2 1/2 3/2 (%1 + y3 + 2 a) %1 %1 %1 / y1 y1 \\ a y1 |- ----- - -------------------------|| | 3/2 1/2 2 1/2|| \ %1 (%1 + y3 + 2 a) %1 /| / 1/2 - ------------------------------------------| / (%1 1/2 | / %1 / 1/2 (%1 + y3 + 2 a)) - y2 (y3 + a) cot(beta) / %3 %12 a (y3 + 2 a)\ / 3/2 |(-2 + 2 nu) cos(beta) + ------ + ------------| y1 / (%1 %4) - y2 \ %4 %1 cos(beta)/ / / %3 %12 a (y3 + 2 a)\ (y3 + a) cot(beta) |(-2 + 2 nu) cos(beta) + ------ + ------------| %5 \ %4 %1 cos(beta)/ / 1/2 2 / / (%1 %4 ) + y2 (y3 + a) cot(beta) | / | \ cos(beta) y1 %12 %3 %12 %5 %3 a y1 a (y3 + 2 a) y1\ ---------------- - --------- - ------------------ - 2 ---------------| 1/2 2 3/2 2 | %1 %4 %4 %4 %1 cos(beta) %1 cos(beta) / \ \ | | | | | | / | | | | | |

Page 53: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

41

/ 1/2 | | | / / (%1 %4)|/(pi (1 - nu))| + 1/2 B3 |1/8 | / | | | | | | \ \ | | | | / / /%9 %5 \ 2 / (1 - 2 nu) sin(beta) |--- + ----| - y2 sin(beta) | \%11 %4 / | \ y1 %9 y1 - ------------------------ - ------------------------- - -------- 2 2 2 3/2 2 2 2 1/2 2 3/2 (y1 + y2 + y3 ) %11 (y1 + y2 + y3 ) %11 %1 %4 / / | | | | %5 \\ | | sin(beta) %5 - ---------||/(pi (1 - nu)) + 1/4 |(1 - 2 nu) |- ------------ 1/2 2|| | | %4 %1 %4 // \ \ a 2 / a \ 1 + ----- y1 |1 + -----| 1/2 | 1/2| %1 \ %1 / - ---------------- + ------------------------- 1/2 1/2 2 1/2 %1 + y3 + 2 a (%1 + y3 + 2 a) %1 2 y1 a cos(beta) %8 (y1 cos(beta) + %2) %8 %5 + ------------------------ + ------------ - ------------------------- 1/2 3/2 %4 2 (%1 + y3 + 2 a) %1 %4 \ | | 2 (y1 cos(beta) + %2) a y1| (y3 + a) %7 y1 (y3 + a) %7 - ------------------------| + ----------- - --------------- 3/2 | 1/2 3/2 %4 %1 / %1 %1 / a y1 y1 \ y1 (y3 + a) |-2 ---- - -------------------------| / | 2 1/2 2 1/2| | \ %1 (%1 + y3 + 2 a) %1 / | + ------------------------------------------------- + (y3 + a) | 1/2 | %1 \ / a (y3 + 2 a)\ (y1 cos(beta) + %2) |1 + ------------| / a \ \ %1 / sin(beta) |cos(beta) - -----| + -------------------------------------- | 1/2| 1/2 \ %1 / %1 \ / | | %6 | / 2 |sin(beta) a y1 - --------| %5 / %4 - (y3 + a) |-------------- 1/2 | / | 3/2 %1 %4/ \ %1 / a (y3 + 2 a)\

Page 54: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

42

cos(beta) |1 + ------------| \ %1 / + ---------------------------- 1/2 %1 / a (y3 + 2 a)\ (y1 cos(beta) + %2) |1 + ------------| y1 \ %1 / - ----------------------------------------- 3/2 %1 (y1 cos(beta) + %2) a (y3 + 2 a) y1 %6 y1 %6 %5 / - 2 ----------------------------------- + -------- + --------- - | 5/2 3/2 1/2 2 | %1 %1 %4 %1 %4 \ a cos(beta) %3 a (y1 cos(beta) + %2) %3 y1 - -------------- + --------------------------- 1/2 3/2 %1 %1 \ \ | | | a (y1 cos(beta) + %2) cos(beta) y1\ / 1/2 | | - ----------------------------------| / (%1 %4)|/(%4)|/(pi %1 | / | | / / / \ | | | (1 - nu))| | / 2 2 2 2 %1 := y1 + y2 + y3 + 4 y3 a + 4 a %2 := (y3 + 2 a) sin(beta) 1/2 %3 := %1 cos(beta) + y3 + 2 a 1/2 %4 := %1 - y1 sin(beta) + (y3 + 2 a) cos(beta) y1 %5 := ----- - sin(beta) 1/2 %1 2 a (y1 cos(beta) + %2) %3 %6 := y2 cos(beta) sin(beta) - ------------------------ 1/2 %1 a 1 %7 := ---- + ---------------- %1 1/2 %1 + y3 + 2 a a %8 := cos(beta) + ----- 1/2 %1 y1

Page 55: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

43

%9 := -------------------- - sin(beta) 2 2 2 1/2 (y1 + y2 + y3 ) 2 2 2 1/2 %10 := (y1 + y2 + y3 ) %11 := %10 - y1 sin(beta) - y3 cos(beta) a %12 := 1 + --------------- 1/2 %1 cos(beta) 1 1 %13 := ----- + ---------------- 1/2 1/2 %1 %1 + y3 + 2 a 2 %14 := y1 (y1 cos(beta) + %2) + y2 cos(beta) 2 2 y2 %1 sin(beta) %15 := 1 + ----------------- 2 %14 2 y2 %16 := 1 + -------------------- 2 (y1 cos(beta) + %2) %17 := y1 cos(beta) - y3 sin(beta) 2 %18 := y1 %17 + y2 cos(beta) 2 2 a (y1 cos(beta) + %2) cot(beta) %3 %19 := y2 cos(beta) - ---------------------------------- 1/2 %1 %20 := (1 - 2 nu) y1 cot(beta) 2 %21 := (2 - 2 nu) cot(beta) 1/2 %22 := %1 sin(beta) - y1 2 2 2 1/2 %23 := (y1 + y2 + y3 ) sin(beta) - y1 a %24 := (1 - 2 nu) cos(beta) - ----- 1/2 %1 %25 := %3 %24 cot(beta) + (2 - 2 nu) %22 cos(beta) cos(beta) %25 a (y3 + 2 a) cos(beta) cot(beta) %26 := ------------- - -------------------------------- %4 %1 / a \ y1 |2 nu + -----| | 1/2| \ %1 / a y1 %27 := (-1 + 2 nu) cot(beta) + ----------------- + ----

Page 56: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

44

1/2 %1 %1 + y3 + 2 a

Page 57: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

45

e13 = / | | / / | | | | | | | | | | | | y2 sin(beta) 1/2 B1 |1/8 |(2 - 2 nu) |--------------- | | | / 2 \ | | | 2 | y2 | | | |%14 |1 + ----| | | | | 2| \ \ \ \ %14 / 2 2 2 1/2 2 y2 sin(beta) y3 y2 (y1 + y2 + y3 ) sin(beta) y1 ------------------------ + ------------------------------------- 2 2 2 1/2 2 (y1 + y2 + y3 ) %15 %15 + ---------------------------------------------------------------- 2 2 2 2 2 y2 (y1 + y2 + y3 ) sin(beta) 1 + -------------------------------- 2 %15 y2 sin(beta) - ----------------------- 2 (y1 cos(beta) + %6) %9 1/2 2 \ y2 sin(beta) (2 y3 + 4 a) y2 %1 sin(beta) y1| / 1/2 ------------------------- - ----------------------| | 1/2 2 | | %1 %7 %7 | | + ------------------------------------------------------| - y1 y2 | %8 | | | \ | | / y3 -------------------- - 1 2 2 2 1/2 y3 (y1 + y2 + y3 ) - ------------------------------- - -------------------------------- 2 2 2 3/2 2 2 2 1/2 2 (y1 + y2 + y3 ) (%11 - y3) (y1 + y2 + y3 ) (%11 - y3) \ | | 2 y3 + 4 a %19 | - 1/2 ------------------------ - -------------------------| - y2 3/2 1/2 1/2 1/2 2| %1 (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) / / sin(beta) y3 %22 y3 cos(beta) |--------------------- - ------------------------ | 2 2 2 2 2 2 3/2 \(y1 + y2 + y3 ) %12 (y1 + y2 + y3 ) %12 %22 %21 sin(beta) (2 y3 + 4 a)

Page 58: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

46

- ------------------------- + 1/2 ---------------------- 2 2 2 1/2 2 %1 %2 (y1 + y2 + y3 ) %12 / | \ | | | | | | | %20 (2 y3 + 4 a) %20 %18 \| | - 1/2 ---------------- - ---------||/(pi (1 - nu)) + 1/4 |(-2 + 2 nu) 3/2 1/2 2|| | %1 %2 %1 %2 /| \ | | / / | | | | y2 sin(beta) (1 - 2 nu) |- ----------------------- | 2 \ (y1 cos(beta) + %6) %9 1/2 2 \ y2 sin(beta) (2 y3 + 4 a) y2 %1 sin(beta) y1| 1/2 ------------------------- - ----------------------| 1/2 2 | %1 %7 %7 | 2 + ------------------------------------------------------| cot(beta) %8 | / / / a \ \ | y1 |nu + -----| | | | 1/2| | |/ a \ \ %1 / | (1 - 2 nu) y2 ||1 - 2 nu - -----| cot(beta) - ----------------| %19 || 1/2| 1/2 | \\ %1 / %1 + y3 + 2 a/ - ------------------------------------------------------------------- 1/2 2 (%1 + y3 + 2 a) / / a \ | y1 |nu + -----| %19 | | 1/2| | a (2 y3 + 4 a) cot(beta) \ %1 / + (1 - 2 nu) y2 |1/2 ------------------------ + ------------------- | 3/2 1/2 2 \ %1 (%1 + y3 + 2 a) \ | | y1 a (2 y3 + 4 a) | / 1/2 + 1/2 ------------------------| / (%1 + y3 + 2 a) 1/2 3/2| / (%1 + y3 + 2 a) %1 / (1 - 2 nu) y2 cos(beta) cot(beta) %5 %18 - ---------------------------------------- 2 %2 (1 - 2 nu) y2 cos(beta) cot(beta) a (2 y3 + 4 a) - 1/2 ------------------------------------------------ 3/2

Page 59: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

47

%2 %1 a y2 cot(beta) a y2 (y3 + a) cot(beta) (2 y3 + 4 a) + -------------- - 3/2 ------------------------------------ 3/2 5/2 %1 %1 y2 %27 y2 (y3 + a) %27 (2 y3 + 4 a) + ------------------------ - 1/2 ---------------------------- 1/2 1/2 3/2 1/2 %1 (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) / / a \ | y1 |2 nu + -----| %19 | | 1/2| y2 (y3 + a) %27 %19 | \ %1 / - ------------------------- + y2 (y3 + a) |- --------------------- 1/2 1/2 2 | 1/2 2 %1 (%1 + y3 + 2 a) \ (%1 + y3 + 2 a) \ | | y1 a (2 y3 + 4 a) a y1 (2 y3 + 4 a)| / 1/2 - 1/2 ------------------------ - -----------------| / (%1 1/2 3/2 2 | / (%1 + y3 + 2 a) %1 %1 / 1/2 y2 %26 y2 (y3 + a) %26 (2 y3 + 4 a) (%1 + y3 + 2 a)) + -------- - 1/2 ---------------------------- 1/2 3/2 %1 %2 %1 %2 y2 (y3 + a) %26 %18 / cos(beta) %25 %18 - ------------------- + y2 (y3 + a) |- ----------------- + cos(beta) 1/2 2 | 2 %1 %2 \ %2 // cos(beta) (2 y3 + 4 a) \ ||1/2 ---------------------- + 1| %24 cot(beta) || 1/2 | \\ %1 / %3 a (2 y3 + 4 a) cot(beta) + 1/2 --------------------------- 3/2 %1 (2 - 2 nu) sin(beta) (2 y3 + 4 a) cos(beta)\ + 1/2 -------------------------------------------|/(%2) 1/2 | %1 / a cos(beta) cot(beta) - --------------------- %1 \ | | | | | a (y3 + 2 a) cos(beta) cot(beta) (2 y3 + 4 a)\ / 1/2 | + ---------------------------------------------| / (%1 %2)|/(pi 2 | / | %1 / / \ | /

Page 60: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

48

| | | | / | | | | | | | | | (1 - nu))| + 1/2 B2 |1/8 |(-1 + 2 nu) | | | | \ \ | | / / y3 \ |-------------------- - 1 | | 2 2 2 1/2 | |(y1 + y2 + y3 ) %19 /%21 %18\| |------------------------ + ---------------- - cos(beta) |--- + ---|| | %11 - y3 1/2 \%12 %2 /| \ %1 + y3 + 2 a / / | | 2 | y3 + y1 |- ------------------------------- | 2 2 2 3/2 \ (y1 + y2 + y3 ) (%11 - y3) y3 -------------------- - 1 2 2 2 1/2 (y1 + y2 + y3 ) 2 y3 + 4 a - -------------------------------- - 1/2 ------------------------ 2 2 2 1/2 2 3/2 1/2 (y1 + y2 + y3 ) (%11 - y3) %1 (%1 + y3 + 2 a) \ | | %19 | sin(beta) %22 - -------------------------| - ------------------------ 1/2 1/2 2| 2 2 2 1/2 %1 (%1 + y3 + 2 a) / (y1 + y2 + y3 ) %12 %14 sin(beta) y3 %14 %22 y3 + --------------------- - ------------------------ 2 2 2 2 2 2 3/2 (y1 + y2 + y3 ) %12 (y1 + y2 + y3 ) %12 %14 %22 %21 sin(beta) %20 - ------------------------- + ------------- 2 2 2 1/2 2 1/2 (y1 + y2 + y3 ) %12 %1 %2 (y1 cos(beta) + %6) sin(beta) (2 y3 + 4 a) + 1/2 ------------------------------------------ %1 %2 (y1 cos(beta) + %6) %20 (2 y3 + 4 a) - 1/2 ------------------------------------ 3/2 %1 %2 / | \ | | | | | / (y1 cos(beta) + %6) %20 %18| | | - ---------------------------|/(pi (1 - nu)) + 1/4 |(1 - 2 nu) | 1/2 2 | | |

Page 61: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

49

%1 %2 / \ \ 2 ((2 - 2 nu) cot(beta) + nu) %19 -------------------------------- 1/2 %1 + y3 + 2 a / | 2 \ | ((2 - 2 nu) cot(beta) + 1) cos(beta) %18| | - -----------------------------------------| - (1 - 2 nu) | %2 | | / \ a y1 cot(beta) (-1 + 2 nu) y1 cot(beta) + nu (y3 + 2 a) - a + -------------- 1/2 %1 2 / a \\ / y1 |nu + -----|| | | 1/2|| | \ %1 /| / 1/2 2 | + ----------------| %19 / (%1 + y3 + 2 a) + (1 - 2 nu) |nu 1/2 | / | %1 + y3 + 2 a/ \ 2 / a \ y1 |nu + -----| %19 | 1/2| a y1 cot(beta) (2 y3 + 4 a) \ %1 / - 1/2 --------------------------- - -------------------- 3/2 1/2 2 %1 (%1 + y3 + 2 a) \ | 2 | y1 a (2 y3 + 4 a) | / 1/2 - 1/2 ------------------------| / (%1 + y3 + 2 a) + (1 - 2 nu) 1/2 3/2| / (%1 + y3 + 2 a) %1 / / a %20 \ / cot(beta) |(y1 cos(beta) + %6) cos(beta) - ---------------| %18 / | 1/2 | / \ %1 cos(beta)/ 2 %2 - (1 - 2 nu) cot(beta) / a sin(beta) (2 y3 + 4 a) a %20 (2 y3 + 4 a)\ |%17 - 1/2 ------------------------ + 1/2 ------------------|/(%2) | %1 cos(beta) 3/2 | \ %1 cos(beta) / / | | a y1 cot(beta) a y1 (y3 + a) cot(beta) (2 y3 + 4 a) | - -------------- + 3/2 ------------------------------------ + | 3/2 5/2 | %1 %1 \ 2 / a \ \ y1 |2 nu + -----| | | 1/2| 2| (1 - 2 nu) y1 cot(beta) + a \ %1 / a y1 | 2 nu + --------------------------- - ------------------------ - -----|

Page 62: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

50

1/2 1/2 1/2 3/2| %1 %1 (%1 + y3 + 2 a) %1 / / | | / 1/2 | / (%1 + y3 + 2 a) - (y3 + a) | / | \ 2 / a \ \ y1 |2 nu + -----| | | 1/2| 2| (1 - 2 nu) y1 cot(beta) + a \ %1 / a y1 | 2 nu + --------------------------- - ------------------------ - -----| 1/2 1/2 1/2 3/2| %1 %1 (%1 + y3 + 2 a) %1 / / | | / 1/2 2 | %19 / (%1 + y3 + 2 a) + (y3 + a) | / | \ ((1 - 2 nu) y1 cot(beta) + a) (2 y3 + 4 a) - 1/2 ------------------------------------------ 3/2 %1 2 / a \ 2 / a \ y1 |2 nu + -----| (2 y3 + 4 a) y1 |2 nu + -----| %19 | 1/2| | 1/2| \ %1 / \ %1 / + 1/2 ------------------------------- + ------------------------- 3/2 1/2 1/2 1/2 2 %1 (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) \ | 2 2 | y1 a (2 y3 + 4 a) a y1 (2 y3 + 4 a)| / + 1/2 ---------------------- + 3/2 ------------------| / ( 2 1/2 5/2 | / %1 (%1 + y3 + 2 a) %1 / 1/2 %1 + y3 + 2 a) / / %3 %23\\ | %20 |%16 - ------|| | a y1 (y3 + 2 a) \ %2 /| cot(beta) |-%17 + --------------- + ------------------| | 3/2 1/2 | \ %1 cos(beta) %1 / + ------------------------------------------------------- - %2 / / %3 %23\\ | %20 |%16 - ------|| | a y1 (y3 + 2 a) \ %2 /| (y3 + a) cot(beta) |-%17 + --------------- + ------------------| %18 | 3/2 1/2 | \ %1 cos(beta) %1 / -------------------------------------------------------------------- 2 %2 /

Page 63: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

51

| | | a y1 + (y3 + a) cot(beta) |--------------- | 3/2 \%1 cos(beta) a y1 (y3 + 2 a) (2 y3 + 4 a) - 3/2 ---------------------------- 5/2 %1 cos(beta) / %3 %23\ sin(beta) (2 y3 + 4 a) |%16 - ------| \ %2 / + 1/2 ------------------------------------- %1 / / %3 %23\ | %20 |%16 - ------| (2 y3 + 4 a) | \ %2 / | - 1/2 ------------------------------- + %20 | 3/2 | %1 \ / cos(beta) (2 y3 + 4 a) \ |1/2 ---------------------- + 1| %23 | 1/2 | \ %1 / %3 %23 %18 - ------------------------------------ + ---------- %2 2 %2 \ \ | | \ \ | | / | | | | | | | | | | %3 a (2 y3 + 4 a) | / 1/2| | | | + 1/2 ------------------| / %1 |/(%2)|/(pi (1 - nu))| + 1/2 B3 | 3/2 | / | | | | %2 %1 cos(beta)/ / / / \ / sin(beta) y3 %22 y3 1/8 y2 sin(beta) |--------------------- - ------------------------ | 2 2 2 2 2 2 3/2 \(y1 + y2 + y3 ) %12 (y1 + y2 + y3 ) %12 %22 %21 sin(beta) (2 y3 + 4 a) - ------------------------- + 1/2 ---------------------- 2 2 2 1/2 2 %1 %2 (y1 + y2 + y3 ) %12 / / | | | | %20 (2 y3 + 4 a) %20 %18 \ | | - 1/2 ---------------- - ---------|/(pi (1 - nu)) + 1/4 |(1 - 2 nu) | 3/2 1/2 2| | | %1 %2 %1 %2 / \ \ / a \ y2 |1 + -----| %19 | 1/2| \ %1 / y2 a (2 y3 + 4 a) - ------------------- - 1/2 ------------------------ 1/2 2 1/2 3/2 (%1 + y3 + 2 a) (%1 + y3 + 2 a) %1 \

Page 64: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

52

| | y2 cos(beta) %5 %18 y2 cos(beta) a (2 y3 + 4 a)| + ------------------- + 1/2 ---------------------------| 2 3/2 | %2 %2 %1 / / a 1 \ y2 |---- + ----------------| | %1 1/2 | \ %1 + y3 + 2 a/ - ---------------------------- 1/2 %1 / a 1 \ y2 (y3 + a) |---- + ----------------| (2 y3 + 4 a) | %1 1/2 | \ %1 + y3 + 2 a/ + 1/2 -------------------------------------------------- 3/2 %1 / a (2 y3 + 4 a) %19 \ y2 (y3 + a) |- -------------- - -------------------| | 2 1/2 2| \ %1 (%1 + y3 + 2 a) / - ---------------------------------------------------- 1/2 %1 /%3 %5 a (y3 + 2 a)\ y2 cos(beta) |----- + ------------| \ %2 %1 / + ----------------------------------- 1/2 %1 %2 /%3 %5 a (y3 + 2 a)\ y2 (y3 + a) cos(beta) |----- + ------------| (2 y3 + 4 a) \ %2 %1 / - 1/2 --------------------------------------------------------- 3/2 %1 %2 /%3 %5 a (y3 + 2 a)\ y2 (y3 + a) cos(beta) |----- + ------------| %18 \ %2 %1 / - ------------------------------------------------ + y2 (y3 + a) 1/2 2 %1 %2 // cos(beta) (2 y3 + 4 a) \ ||1/2 ---------------------- + 1| %5 || 1/2 | |\ %1 / %3 %5 %18 cos(beta) |----------------------------------- - --------- | %2 2 \ %2 \ | | %3 a (2 y3 + 4 a) a a (y3 + 2 a) (2 y3 + 4 a)| / - 1/2 ----------------- + ---- - -------------------------| / ( 3/2 %1 2 | / %2 %1 %1 / / \ \ | | | |

Page 65: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

53

| | | 1/2 | | | / y1 %1 %2)|/(pi (1 - nu))| + 1/2 B1 |1/8 y2 |- -------------------- | | | | 2 2 2 3/2 / / | \ (y1 + y2 + y3 ) | | \ y1 / cos(beta) y1 %13 y1 + ----- - cos(beta) |--------------------- - ------------------------ 3/2 | 2 2 2 2 2 2 3/2 %1 \(y1 + y2 + y3 ) %12 (y1 + y2 + y3 ) %12 %13 %10 cos(beta) y1 %3 y1 %3 %4 \\ - ------------------------- - ------------ + -------- + ---------||/( 2 2 2 1/2 2 %1 %2 3/2 1/2 2|| (y1 + y2 + y3 ) %12 %1 %2 %1 %2 // / / / | | | | | | | | | | | | y2 pi (1 - nu)) + 1/4 |(2 - 2 nu) |(1 - 2 nu) |------------- | | | / 2\ | | | 2 | y2 | | | |y1 |1 + ---| | | | | 2| \ \ \ \ y1 / y2 cos(beta) - ----------------------- 2 (y1 cos(beta) + %6) %9 1/2 \ y2 sin(beta) y1 y2 %1 sin(beta) (2 y1 cos(beta) + %6)| --------------- - ----------------------------------------| 1/2 2 | %1 %7 %7 | + ----------------------------------------------------------| %8 | | | | / / a \ y1 |2 nu + -----| y2 | 1/2| \ %1 / y2 a y1 cot(beta) - ------------------------- - ------------------------ 1/2 2 1/2 1/2 3/2 (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) %1 \ | | | y2 cos(beta) %5 %4 y2 cos(beta) a y1| + ------------------ + -----------------| 2 3/2 | %2 %2 %1 | | | / / nu a \ y2 (y3 + a) |2 ---------------- + ----| y1 | 1/2 %1 |

Page 66: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

54

\ %1 + y3 + 2 a / - ------------------------------------------ 3/2 %1 / nu y1 a y1\ y2 (y3 + a) |-2 ------------------------- - 2 ----| | 1/2 2 1/2 2 | \ (%1 + y3 + 2 a) %1 %1 / + --------------------------------------------------- 1/2 %1 / %3 %5 a (y3 + 2 a)\ y2 (y3 + a) cos(beta) |1 - 2 nu - ----- - ------------| y1 \ %2 %1 / - ---------------------------------------------------------- 3/2 %1 %2 / %3 %5 a (y3 + 2 a)\ y2 (y3 + a) cos(beta) |1 - 2 nu - ----- - ------------| %4 \ %2 %1 / - ---------------------------------------------------------- + y2 1/2 2 %1 %2 (y3 + a) cos(beta) / cos(beta) y1 %5 %3 %5 %4 %3 a y1 a (y3 + 2 a) y1\ / |- --------------- + -------- + -------- + 2 ---------------| / ( | 1/2 2 3/2 2 | / \ %1 %2 %2 %2 %1 %1 / \ \ | | / | | | | | | 1/2 | | | / %1 %2)|/(pi (1 - nu))| + 1/2 B2 |1/8 | | | | | | | \ \ | | | | / / /%10 %4 \ 1 1 (-1 + 2 nu) sin(beta) |--- - ----| - -------------------- + ----- \%12 %2 / 2 2 2 1/2 1/2 (y1 + y2 + y3 ) %1 / y1 y1 \ cos(beta) %13 - y1 |- -------------------- + -----| + ------------------------ | 2 2 2 3/2 3/2| 2 2 2 1/2 \ (y1 + y2 + y3 ) %1 / (y1 + y2 + y3 ) %12 %14 cos(beta) y1 %14 %13 y1 + --------------------- - ------------------------ 2 2 2 2 2 2 3/2 (y1 + y2 + y3 ) %12 (y1 + y2 + y3 ) %12 %14 %13 %10 cos(beta) %3 - ------------------------- - ------------ 2 2 2 1/2 2 1/2 (y1 + y2 + y3 ) %12 %1 %2 (y1 cos(beta) + %6) cos(beta) y1 (y1 cos(beta) + %6) %3 y1 - -------------------------------- + ------------------------- %1 %2 3/2 %1 %2

Page 67: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

55

/ | | (y1 cos(beta) + %6) %3 %4\ | + -------------------------|/(pi (1 - nu)) + 1/4 |(-2 + 2 nu) 1/2 2 | | %1 %2 / \ / y1 cos(beta) %4\ (1 - 2 nu) cot(beta) |------------------------ - ------------| | 1/2 1/2 %2 | \%1 (%1 + y3 + 2 a) / / a \ 2 / a \ (2 - 2 nu) |2 nu + -----| (2 - 2 nu) y1 |2 nu + -----| | 1/2| | 1/2| \ %1 / \ %1 / - ------------------------- + ----------------------------- 1/2 1/2 2 1/2 %1 + y3 + 2 a (%1 + y3 + 2 a) %1 2 (2 - 2 nu) y1 a (2 - 2 nu) cos(beta) %5 + ------------------------ + ----------------------- 1/2 3/2 %2 (%1 + y3 + 2 a) %1 (2 - 2 nu) (y1 cos(beta) + %6) %5 %4 - ------------------------------------ 2 %2 (2 - 2 nu) (y1 cos(beta) + %6) a y1 - ----------------------------------- 3/2 %2 %1 / nu y1 a y1\ (y3 + a) |(1 - 2 nu) cot(beta) - 2 ---------------- - ----| y1 | 1/2 %1 | \ %1 + y3 + 2 a / - -------------------------------------------------------------- + 3/2 %1 (y3 + a) / 2 2\ | nu nu y1 a a y1 | |-2 ---------------- + 2 ------------------------- - ---- + 2 -----| | 1/2 1/2 2 1/2 %1 2 | \ %1 + y3 + 2 a (%1 + y3 + 2 a) %1 %1 / / / %3 \ | %3 cot(beta) |%16 - ----| / 1/2 | \ %2 / / %1 + (y3 + a) |%17 + ------------------------- + a / | 1/2 \ %1 / (y3 + 2 a) (y1 cos(beta) + %6) (y1 cos(beta) + %6) %3\ |sin(beta) - ------------------------------ - ----------------------| | %1 1/2 | \ %1 %2 / / \ | / %3 \ | |cos(beta) y1 cot(beta) |%16 - ----| / 1/2| / 2 | \ %2 / / %1 | %4 / %2 - (y3 + a) |-----------------------------------

Page 68: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

56

/ | / | %1 / \ / %3 \ %3 cot(beta) |%16 - ----| y1 \ %2 / - ---------------------------- 3/2 %1 / cos(beta) y1 %3 %4\ %3 cot(beta) |- ------------ + -----| | 1/2 2 | \ %1 %2 %2 / + ------------------------------------- - a 1/2 %1 / (y3 + 2 a) (y1 cos(beta) + %6) (y1 cos(beta) + %6) %3\ |sin(beta) - ------------------------------ - ----------------------| | %1 1/2 | \ %1 %2 / / 3/2 / (y3 + 2 a) cos(beta) y1 / %1 + a |- -------------------- / | %1 \ (y3 + 2 a) (y1 cos(beta) + %6) y1 cos(beta) %3 + 2 --------------------------------- - ------------ 2 1/2 %1 %1 %2 (y1 cos(beta) + %6) cos(beta) y1 (y1 cos(beta) + %6) %3 y1 - -------------------------------- + ------------------------- %1 %2 3/2 %1 %2 \ \ \ | | | | | | (y1 cos(beta) + %6) %3 %4\ / 1/2| | | + -------------------------| / %1 |/(%2)|/(pi (1 - nu))| + 1/2 B3 1/2 2 | / | | | %1 %2 / / / / / / / | | | | | | | | | / | | | y2 cos(beta) | y2 sin(beta) y1 |1/8 |(2 - 2 nu) |- --------------- + |------------------------ | | | / 2 \ | 2 2 2 1/2 | | | 2 | y2 | \(y1 + y2 + y3 ) %15 | | | %14 |1 + ----| | | | | 2| \ \ \ \ %14 / 2 2 2 1/2 \ y2 (y1 + y2 + y3 ) sin(beta) (2 y1 cos(beta) - y3 sin(beta))| - -----------------------------------------------------------------| 2 | %15 / / 2 2 2 2 2\ / | y2 (y1 + y2 + y3 ) sin(beta) | y2 cos(beta) / |1 + --------------------------------| + ----------------------- / | 2 | 2 \ %15 / (y1 cos(beta) + %6) %9 1/2 \

Page 69: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

57

y2 sin(beta) y1 y2 %1 sin(beta) (2 y1 cos(beta) + %6)| --------------- - ----------------------------------------| 1/2 2 | %1 %7 %7 | - ----------------------------------------------------------| + y2 %8 | | | | / / cos(beta) y1 %13 y1 sin(beta) |--------------------- - ------------------------ | 2 2 2 2 2 2 3/2 \(y1 + y2 + y3 ) %12 (y1 + y2 + y3 ) %12 \ | | | %13 %10 cos(beta) y1 %3 y1 %3 %4 \| - ------------------------- - ------------ + -------- + ---------||/( 2 2 2 1/2 2 %1 %2 3/2 1/2 2|| (y1 + y2 + y3 ) %12 %1 %2 %1 %2 /| | | / / / | | | | | | | | y2 pi (1 - nu)) + 1/4 |(2 - 2 nu) |------------- | | / 2\ | | 2 | y2 | | |y1 |1 + ---| | | | 2| \ \ \ y1 / y2 cos(beta) - ----------------------- 2 (y1 cos(beta) + %6) %9 1/2 \ y2 sin(beta) y1 y2 %1 sin(beta) (2 y1 cos(beta) + %6)| --------------- - ----------------------------------------| 1/2 2 | %1 %7 %7 | + ----------------------------------------------------------| %8 | | | | / (2 - 2 nu) y2 sin(beta) %5 %4 (2 - 2 nu) y2 sin(beta) a y1 - ----------------------------- - ---------------------------- 2 3/2 %2 %2 %1 / %3 %5 a (y3 + 2 a)\ y2 (y3 + a) sin(beta) |1 + ----- + ------------| y1 \ %2 %1 / - --------------------------------------------------- 3/2 %1 %2 / %3 %5 a (y3 + 2 a)\ y2 (y3 + a) sin(beta) |1 + ----- + ------------| %4

Page 70: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

58

\ %2 %1 / - --------------------------------------------------- + y2 (y3 + a) 1/2 2 %1 %2 /cos(beta) y1 %5 %3 %5 %4 %3 a y1 a (y3 + 2 a) y1\ sin(beta) |--------------- - -------- - -------- - 2 ---------------| | 1/2 2 3/2 2 | \ %1 %2 %2 %2 %1 %1 / \ \ | | | | | | / 1/2 | | / (%1 %2)|/(pi (1 - nu))| / | | | | | | | | / / 2 2 2 2 %1 := y1 + y2 + y3 + 4 y3 a + 4 a 1/2 %2 := %1 - y1 sin(beta) + (y3 + 2 a) cos(beta) 1/2 %3 := %1 cos(beta) + y3 + 2 a y1 %4 := ----- - sin(beta) 1/2 %1 a %5 := cos(beta) + ----- 1/2 %1 %6 := (y3 + 2 a) sin(beta) 2 %7 := y1 (y1 cos(beta) + %6) + y2 cos(beta) 2 2 y2 %1 sin(beta) %8 := 1 + ----------------- 2 %7 2 y2 %9 := 1 + -------------------- 2 (y1 cos(beta) + %6) y1 %10 := -------------------- - sin(beta) 2 2 2 1/2 (y1 + y2 + y3 ) 2 2 2 1/2 %11 := (y1 + y2 + y3 ) %12 := %11 - y1 sin(beta) - y3 cos(beta) 2 2 2 1/2 %13 := (y1 + y2 + y3 ) cos(beta) - y3

Page 71: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

59

%14 := y1 cos(beta) - y3 sin(beta) 2 %15 := y1 %14 + y2 cos(beta) %16 := (2 - 2 nu) cos(beta) %17 := cos(beta) sin(beta) 2 y3 + 4 a %18 := 1/2 ---------- + cos(beta) 1/2 %1 2 y3 + 4 a %19 := 1/2 ---------- + 1 1/2 %1 1/2 %20 := %1 sin(beta) - y1 y3 %21 := -------------------- - cos(beta) 2 2 2 1/2 (y1 + y2 + y3 ) 2 2 2 1/2 %22 := (y1 + y2 + y3 ) sin(beta) - y1 a %23 := 1 + --------------- 1/2 %1 cos(beta) a %24 := (1 - 2 nu) cos(beta) - ----- 1/2 %1 %25 := %3 %24 cot(beta) + (2 - 2 nu) %20 cos(beta) cos(beta) %25 a (y3 + 2 a) cos(beta) cot(beta) %26 := ------------- - -------------------------------- %2 %1 / a \ y1 |2 nu + -----| | 1/2| \ %1 / a y1 %27 := (-1 + 2 nu) cot(beta) + ----------------- + ---- 1/2 %1 %1 + y3 + 2 a

Page 72: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

60

e23 = / / | | | | | | 1/2 B1 |1/8 |(1 - 2 nu) | | \ \ / y3 \ |-------------------- - 1 | | 2 2 2 1/2 | |(y1 + y2 + y3 ) %16 /%17 %14\| |------------------------ + ---------------- - cos(beta) |--- + ---|| | %8 - y3 1/2 \%9 %2 /| \ %1 + y3 + 2 a / / | | 2 | y3 - y2 |- ------------------------------ | 2 2 2 3/2 \ (y1 + y2 + y3 ) (%8 - y3) y3 -------------------- - 1 2 2 2 1/2 (y1 + y2 + y3 ) 2 y3 + 4 a - ------------------------------- - 1/2 ------------------------ 2 2 2 1/2 2 3/2 1/2 (y1 + y2 + y3 ) (%8 - y3) %1 (%1 + y3 + 2 a) %16 / y3 - ------------------------- - cos(beta) |- ----------------------- 1/2 1/2 2 | 2 2 2 3/2 %1 (%1 + y3 + 2 a) \ (y1 + y2 + y3 ) %9 \\ || || %17 2 y3 + 4 a %14 \|| - ------------------------ - 1/2 ---------- - ---------|||/(pi 2 2 2 1/2 2 3/2 1/2 2||| (y1 + y2 + y3 ) %9 %1 %2 %1 %2 /// / | | / 2 | |((2 - 2 nu) cot(beta) - nu) %16 (1 - nu)) + 1/4 |(1 - 2 nu) |-------------------------------- | | 1/2 \ \ %1 + y3 + 2 a / | 2 \ | ((2 - 2 nu) cot(beta) + 1 - 2 nu) cos(beta) %14| | - ------------------------------------------------| + (1 - 2 nu) | %2 | | / \ 2 / a \ y2 |nu + -----| | 1/2| / a \ \ %1 / y1 cot(beta) |1 - 2 nu - -----| + nu (y3 + 2 a) - a + ----------------

Page 73: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

61

| 1/2| 1/2 \ %1 / %1 + y3 + 2 a \ / | | | | | / 1/2 2 | | %16 / (%1 + y3 + 2 a) - (1 - 2 nu) | | / | / \ 2 / a \ y2 |nu + -----| %16 | 1/2| a y1 cot(beta) (2 y3 + 4 a) \ %1 / 1/2 --------------------------- + nu - -------------------- 3/2 1/2 2 %1 (%1 + y3 + 2 a) \ | 2 | y2 a (2 y3 + 4 a) | / 1/2 - 1/2 ------------------------| / (%1 + y3 + 2 a) 1/2 3/2| / (%1 + y3 + 2 a) %1 / (1 - 2 nu) sin(beta) cot(beta) %4 (1 - 2 nu) %5 cot(beta) %4 %14 - --------------------------------- + ------------------------------ %2 2 %2 (1 - 2 nu) %5 cot(beta) a (2 y3 + 4 a) a y1 cot(beta) + 1/2 -------------------------------------- - -------------- 3/2 3/2 %2 %1 %1 / | | a y1 (y3 + a) cot(beta) (2 y3 + 4 a) | + 3/2 ------------------------------------ + | 5/2 | %1 \ 2 / a \ y2 |2 nu + -----| | 1/2| 2 (1 - 2 nu) y1 cot(beta) - a \ %1 / a y2 -2 nu + --------------------------- + ------------------------ + ----- 1/2 1/2 1/2 3/2 %1 %1 (%1 + y3 + 2 a) %1 \ / | | | | | / 1/2 | | / (%1 + y3 + 2 a) - (y3 + a) | | / | / \ 2 / a \ y2 |2 nu + -----| | 1/2| 2 (1 - 2 nu) y1 cot(beta) - a \ %1 / a y2 -2 nu + --------------------------- + ------------------------ + ----- 1/2 1/2 1/2 3/2 %1 %1 (%1 + y3 + 2 a) %1 \ /

Page 74: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

62

| | | | | / 1/2 2 | | %16 / (%1 + y3 + 2 a) + (y3 + a) | | / | / \ ((1 - 2 nu) y1 cot(beta) - a) (2 y3 + 4 a) - 1/2 ------------------------------------------ 3/2 %1 2 / a \ 2 / a \ y2 |2 nu + -----| (2 y3 + 4 a) y2 |2 nu + -----| %16 | 1/2| | 1/2| \ %1 / \ %1 / - 1/2 ------------------------------- - ------------------------- 3/2 1/2 1/2 1/2 2 %1 (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) \ | 2 2 | y2 a (2 y3 + 4 a) a y2 (2 y3 + 4 a)| / - 1/2 ---------------------- - 3/2 ------------------| / ( 2 1/2 5/2 | / %1 (%1 + y3 + 2 a) %1 / 1/2 %1 + y3 + 2 a) 2 %22 a (y3 + 2 a) %5 cot(beta) %21 cos(beta) - ----- + ------------------------- - -------- 1/2 3/2 1/2 %1 %1 %1 %2 + --------------------------------------------------------- - %2 / 2 %22 a (y3 + 2 a) %5 cot(beta) %21 \ (y3 + a) |cos(beta) - ----- + ------------------------- - --------| | 1/2 3/2 1/2 | \ %1 %1 %1 %2/ / | | / 2 | %22 (2 y3 + 4 a) %14 / %2 + (y3 + a) |1/2 ---------------- / | 3/2 \ %1 (1 - 2 nu) sin(beta) cot(beta) a %5 cot(beta) - ------------------------------ + -------------- 1/2 3/2 %1 %1 a (y3 + 2 a) sin(beta) cot(beta) + -------------------------------- 3/2 %1 a (y3 + 2 a) %5 cot(beta) (2 y3 + 4 a) %21 (2 y3 + 4 a) - 3/2 -------------------------------------- + 1/2 ---------------- 5/2 3/2 %1 %1 %2 / | | %21 %14 | a sin(beta) cot(beta) %3 + --------- - |- ------------------------

Page 75: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

63

1/2 2 | 1/2 %1 %2 \ %1 a %5 cot(beta) %3 (2 y3 + 4 a) + 1/2 ------------------------------ 3/2 %1 / cos(beta) (2 y3 + 4 a) \\ \ a %5 cot(beta) |1/2 ---------------------- + 1|| | | 1/2 || | \ %1 /| / 1/2 | - -----------------------------------------------| / (%1 %2)|/( 1/2 | / | %1 / / / | | / / \ \ | | | | | | | | | | | | | | | | | | y2 sin(beta) %2)|/(pi (1 - nu))| + 1/2 B2 |1/8 |(2 - 2 nu) |--------------- | | | | | / 2 \ / / | | | 2 | y2 | | | |%11 |1 + ----| | | | | 2| \ \ \ \ %11 / 2 2 2 1/2 2 y2 sin(beta) y3 y2 (y1 + y2 + y3 ) sin(beta) y1 ------------------------ + ------------------------------------- 2 2 2 1/2 2 (y1 + y2 + y3 ) %12 %12 + ---------------------------------------------------------------- 2 2 2 2 2 y2 (y1 + y2 + y3 ) sin(beta) 1 + -------------------------------- 2 %12 y2 sin(beta) - ------------- / 2\ 2 | y2 | %5 |1 + ---| | 2| \ %5 / 1/2 2 \ y2 sin(beta) (2 y3 + 4 a) y2 %1 sin(beta) y1| / 1/2 ------------------------- - ----------------------| | 1/2 2 | | %1 %6 %6 | | + ------------------------------------------------------| + y1 y2 | %7 | | | \ | | / y3 -------------------- - 1 2 2 2 1/2 y3 (y1 + y2 + y3 ) - ------------------------------ - ------------------------------- 2 2 2 3/2 2 2 2 1/2 2 (y1 + y2 + y3 ) (%8 - y3) (y1 + y2 + y3 ) (%8 - y3) \

Page 76: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

64

| | 2 y3 + 4 a %16 | / - 1/2 ------------------------ - -------------------------| - y2 | 3/2 1/2 1/2 1/2 2| | %1 (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) / \ sin(beta) %11 y3 - ----------------------- - ----------------------- 2 2 2 1/2 2 2 2 3/2 (y1 + y2 + y3 ) %9 (y1 + y2 + y3 ) %9 %11 %17 sin(beta) %5 (2 y3 + 4 a) - ------------------------ + --------- - 1/2 --------------- 2 2 2 1/2 2 1/2 3/2 (y1 + y2 + y3 ) %9 %1 %2 %1 %2 / | \ | / | | | | | | | | | %5 %14 \| | | - ---------||/(pi (1 - nu)) + 1/4 |(2 - 2 nu) (1 - 2 nu) | 1/2 2|| | | %1 %2 /| | | | | | | | | / \ \ y2 sin(beta) - ------------- / 2\ 2 | y2 | %5 |1 + ---| | 2| \ %5 / 1/2 2 \ y2 sin(beta) (2 y3 + 4 a) y2 %1 sin(beta) y1| 1/2 ------------------------- - ----------------------| 1/2 2 | %1 %6 %6 | 2 + ------------------------------------------------------| cot(beta) %7 | | | | / - / / a \ \ | y1 |nu + -----| | | | 1/2| | |/ a \ \ %1 / | (1 - 2 nu) y2 ||-1 + 2 nu + -----| cot(beta) + ----------------| %16 || 1/2| 1/2 | \\ %1 / %1 + y3 + 2 a/ -------------------------------------------------------------------- 1/2 2 (%1 + y3 + 2 a) / / a \ | y1 |nu + -----| %16 | | 1/2| | a (2 y3 + 4 a) cot(beta) \ %1 / + (1 - 2 nu) y2 |- 1/2 ------------------------ - ------------------- | 3/2 1/2 2 \ %1 (%1 + y3 + 2 a)

Page 77: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

65

\ | | y1 a (2 y3 + 4 a) | / 1/2 - 1/2 ------------------------| / (%1 + y3 + 2 a) 1/2 3/2| / (%1 + y3 + 2 a) %1 / (1 - 2 nu) y2 cot(beta) %18 %14 + ------------------------------- 2 %2 (1 - 2 nu) y2 cot(beta) a (2 y3 + 4 a) a y2 cot(beta) + 1/2 -------------------------------------- - -------------- 3/2 3/2 %2 %1 cos(beta) %1 a y2 (y3 + a) cot(beta) (2 y3 + 4 a) + 3/2 ------------------------------------ 5/2 %1 / nu y1 a y1 %20\ y2 |%13 - 2 ---------------- - --------| | 1/2 1/2 | \ %1 + y3 + 2 a %1 / + ---------------------------------------- 1/2 1/2 %1 (%1 + y3 + 2 a) / nu y1 a y1 %20\ y2 (y3 + a) |%13 - 2 ---------------- - --------| (2 y3 + 4 a) | 1/2 1/2 | \ %1 + y3 + 2 a %1 / - 1/2 -------------------------------------------------------------- 3/2 1/2 %1 (%1 + y3 + 2 a) / nu y1 a y1 %20\ y2 (y3 + a) |%13 - 2 ---------------- - --------| %16 | 1/2 1/2 | \ %1 + y3 + 2 a %1 / - ----------------------------------------------------- + y2 (y3 + a) 1/2 1/2 2 %1 (%1 + y3 + 2 a) / | | | nu y1 %16 a y1 %20 (2 y3 + 4 a) |2 ------------------- + 1/2 --------------------- | 1/2 2 3/2 \ (%1 + y3 + 2 a) %1 / 2 y3 + 4 a %16 \\ a y1 |- 1/2 ---------- - -------------------|| | 3/2 1/2 2|| \ %1 (%1 + y3 + 2 a) /| / 1/2 - ---------------------------------------------| / (%1 1/2 | / %1 / 1/2 y2 cot(beta) %19 (%1 + y3 + 2 a)) + ---------------- 1/2 %1 %2 y2 (y3 + a) cot(beta) %19 (2 y3 + 4 a) - 1/2 --------------------------------------

Page 78: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

66

3/2 %1 %2 / | | y2 (y3 + a) cot(beta) %19 %14 | - ----------------------------- + y2 (y3 + a) cot(beta) | 1/2 2 | %1 %2 \ / cos(beta) (2 y3 + 4 a) \ |1/2 ---------------------- + 1| %18 | 1/2 | \ %1 / %3 %18 %14 ------------------------------------ - ---------- %2 2 %2 \ | | %3 a (2 y3 + 4 a) a a (y3 + 2 a) (2 y3 + 4 a)| - 1/2 ------------------ + ------------ - -------------------------| 3/2 %1 cos(beta) 2 | %2 %1 cos(beta) %1 cos(beta) / \ \ | | / | | | | | | | | | | | | / 1/2 | | | / / (%1 %2)|/(pi (1 - nu))| + 1/2 B3 |1/8 | / | | | | | | \ \ | | | | / / /%17 %14\ 2 / (1 - 2 nu) sin(beta) |--- + ---| - y2 sin(beta) | \%9 %2 / | \ y3 %17 2 y3 + 4 a - ----------------------- - ------------------------ - 1/2 ---------- 2 2 2 3/2 2 2 2 1/2 2 3/2 (y1 + y2 + y3 ) %9 (y1 + y2 + y3 ) %9 %1 %2 / | | / | | | | %14 \\ | | sin(beta) %14 - ---------||/(pi (1 - nu)) + 1/4 |(1 - 2 nu) |- ------------- 1/2 2|| | | %2 %1 %2 // \ \ / a \ y1 |1 + -----| %16 | 1/2| \ %1 / y1 a (2 y3 + 4 a) sin(beta) %4 + ------------------- + 1/2 ------------------------ + ------------ 1/2 2 1/2 3/2 %2 (%1 + y3 + 2 a) (%1 + y3 + 2 a) %1 \ / a 1 \ | y1 |---- + ----------------|

Page 79: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

67

| | %1 1/2 | %5 %4 %14 %5 a (2 y3 + 4 a)| \ %1 + y3 + 2 a/ - --------- - 1/2 -----------------| + ---------------------------- 2 3/2 | 1/2 %2 %2 %1 / %1 / a 1 \ y1 (y3 + a) |---- + ----------------| (2 y3 + 4 a) | %1 1/2 | \ %1 + y3 + 2 a/ - 1/2 -------------------------------------------------- 3/2 %1 / a (2 y3 + 4 a) %16 \ y1 (y3 + a) |- -------------- - -------------------| | 2 1/2 2| \ %1 (%1 + y3 + 2 a) / + ---------------------------------------------------- 1/2 %1 / a (y3 + 2 a)\ %5 |1 + ------------| / a \ \ %1 / %15 sin(beta) |cos(beta) - -----| + --------------------- - -------- | 1/2| 1/2 1/2 \ %1 / %1 %1 %2 - ---------------------------------------------------------------- + %2 (y3 + a) / / a (y3 + 2 a)\ \ | %5 |1 + ------------| | | / a \ \ %1 / %15 | |sin(beta) |cos(beta) - -----| + --------------------- - --------| %14 | | 1/2| 1/2 1/2 | \ \ %1 / %1 %1 %2/ / | | / 2 | sin(beta) a (2 y3 + 4 a) / %2 - (y3 + a) |1/2 ------------------------ / | 3/2 \ %1 / a (y3 + 2 a)\ sin(beta) |1 + ------------| \ %1 / + ---------------------------- 1/2 %1 / a (y3 + 2 a)\ %5 |1 + ------------| (2 y3 + 4 a) \ %1 / - 1/2 ---------------------------------- 3/2 %1 / a a (y3 + 2 a) (2 y3 + 4 a)\ %5 |---- - -------------------------| | %1 2 | \ %1 / %15 (2 y3 + 4 a) + ------------------------------------- + 1/2 ---------------- 1/2 3/2 %1 %1 %2 /

Page 80: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

68

| | %15 %14 | a sin(beta) %3 a %5 %3 (2 y3 + 4 a) + --------- - |- -------------- + 1/2 -------------------- 1/2 2 | 1/2 3/2 %1 %2 \ %1 %1 \ | / cos(beta) (2 y3 + 4 a) \\ \ | a %5 |1/2 ---------------------- + 1|| | | | 1/2 || | | \ %1 /| / 1/2 | | - -------------------------------------| / (%1 %2)|/(%2)|/(pi 1/2 | / | | %1 / / / \ | / | | | | | | | | / 1 1 (1 - nu))| + 1/2 B1 |1/8 |-------------------- - ----- | | | 2 2 2 1/2 1/2 / | \(y1 + y2 + y3 ) %1 | | \ / %10 %3 \\ - cos(beta) |----------------------- - --------||/(pi (1 - nu)) + 1/8 | 2 2 2 1/2 1/2 || \(y1 + y2 + y3 ) %9 %1 %2// / y2 y2 / cos(beta) y2 y2 |- -------------------- + ----- - cos(beta) |-------------------- | 2 2 2 3/2 3/2 | 2 2 2 \ (y1 + y2 + y3 ) %1 \(y1 + y2 + y3 ) %9 %10 y2 %10 y2 cos(beta) y2 - ----------------------- - --------------------- - ------------ 2 2 2 3/2 2 2 2 2 %1 %2 (y1 + y2 + y3 ) %9 (y1 + y2 + y3 ) %9 / / / | | | | | | | | | %3 y2 %3 y2 \\ | | | + -------- + ------||/(pi (1 - nu)) + 1/4 |(2 - 2 nu) |(1 - 2 nu) | 3/2 2|| | | | %1 %2 %1 %2 // | | | | | | | | | \ \ \ 1 1 - ------------ + ------------ / 2\ / 2\ | y2 | | y2 | y1 |1 + ---| %5 |1 + ---| | 2| | 2| \ y1 / \ %5 / 1/2 2 2 1/2 \ %1 sin(beta) y2 sin(beta) y2 %1 sin(beta) cos(beta)| --------------- + ------------- - 2 -----------------------------| %6 1/2 2 | %1 %6 %6 | + -----------------------------------------------------------------|

Page 81: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

69

%7 | | | | / a 2 / a \ 2 nu + ----- y2 |2 nu + -----| 1/2 | 1/2| %1 \ %1 / cot(beta) + ---------------- - ------------------------- 1/2 1/2 2 1/2 %1 + y3 + 2 a (%1 + y3 + 2 a) %1 2 2 y2 a cos(beta) %4 y2 cos(beta) %4 - ------------------------ - ------------ + ---------------- 1/2 3/2 %2 2 1/2 (%1 + y3 + 2 a) %1 %2 %1 \ | / nu a \ | (y3 + a) |2 ---------------- + ----| 2 | | 1/2 %1 | y2 cos(beta) a| \ %1 + y3 + 2 a / + ---------------| + ------------------------------------ 3/2 | 1/2 %2 %1 | %1 | | / 2 / nu a \ y2 (y3 + a) |2 ---------------- + ----| | 1/2 %1 | \ %1 + y3 + 2 a / - ---------------------------------------- 3/2 %1 / nu y2 a y2\ y2 (y3 + a) |-2 ------------------------- - 2 ----| | 1/2 2 1/2 2 | \ (%1 + y3 + 2 a) %1 %1 / + --------------------------------------------------- 1/2 %1 / %3 %4 a (y3 + 2 a)\ (y3 + a) cos(beta) |1 - 2 nu - ----- - ------------| \ %2 %1 / + ---------------------------------------------------- 1/2 %1 %2 2 / %3 %4 a (y3 + 2 a)\ y2 (y3 + a) cos(beta) |1 - 2 nu - ----- - ------------| \ %2 %1 / - -------------------------------------------------------- 3/2 %1 %2 2 / %3 %4 a (y3 + 2 a)\ y2 (y3 + a) cos(beta) |1 - 2 nu - ----- - ------------| \ %2 %1 / - -------------------------------------------------------- + y2 2 %1 %2 (y3 + a) cos(beta)

Page 82: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

70

/ cos(beta) y2 %4 %3 %4 y2 %3 a y2 a (y3 + 2 a) y2\ / |- --------------- + --------- + -------- + 2 ---------------| / ( | 1/2 2 1/2 3/2 2 | / \ %1 %2 %2 %1 %2 %1 %1 / \ \ | | / | | | | | | 1/2 | | | / %1 %2)|/(pi (1 - nu))| + 1/2 B2 |1/8 | | | | | | | \ \ | | | | / / / y2 y2 \ (-1 + 2 nu) sin(beta) |----------------------- - --------| | 2 2 2 1/2 1/2 | \(y1 + y2 + y3 ) %9 %1 %2/ / y2 y2 \ %11 cos(beta) y2 - y1 |- -------------------- + -----| + -------------------- | 2 2 2 3/2 3/2| 2 2 2 \ (y1 + y2 + y3 ) %1 / (y1 + y2 + y3 ) %9 %11 %10 y2 %11 %10 y2 %5 cos(beta) y2 - ----------------------- - --------------------- - --------------- 2 2 2 3/2 2 2 2 2 %1 %2 (y1 + y2 + y3 ) %9 (y1 + y2 + y3 ) %9 / | | %5 %3 y2 %5 %3 y2\ | + -------- + --------|/(pi (1 - nu)) + 1/4 |(-2 + 2 nu) (1 - 2 nu) 3/2 2 | | %1 %2 %1 %2 / \ / y2 cos(beta) y2\ cot(beta) |------------------------ - ------------| | 1/2 1/2 1/2 | \%1 (%1 + y3 + 2 a) %1 %2 / / a \ (2 - 2 nu) y1 |2 nu + -----| y2 | 1/2| \ %1 / (2 - 2 nu) y1 a y2 + ------------------------------- + ------------------------ 1/2 2 1/2 1/2 3/2 (%1 + y3 + 2 a) %1 (%1 + y3 + 2 a) %1 (2 - 2 nu) %5 %4 y2 (2 - 2 nu) %5 a y2 - ------------------- - ------------------ 2 1/2 3/2 %2 %1 %2 %1 / nu y1 a y1\ (y3 + a) |%13 - 2 ---------------- - ----| y2 | 1/2 %1 | \ %1 + y3 + 2 a / - --------------------------------------------- 3/2 %1 / nu y1 y2 a y1 y2\ / (y3 + a) |2 ------------------------- + 2 -------| | | 1/2 2 1/2 2 | | \ (%1 + y3 + 2 a) %1 %1 / |

Page 83: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

71

+ -------------------------------------------------- + (y3 + a) | 1/2 | %1 \ / %3 \ %3 cot(beta) |(2 - 2 nu) cos(beta) - ----| \ %2 / cos(beta) sin(beta) + ------------------------------------------ 1/2 %1 / (y3 + 2 a) %5 %5 %3 \\ a |sin(beta) - ------------- - --------|| | %1 1/2 || \ %1 %2/| / 2 1/2 + ----------------------------------------| y2 / (%2 %1 ) - 1/2 | / %1 / / | / %3 \ |cos(beta) y2 cot(beta) |(2 - 2 nu) cos(beta) - ----| | \ %2 / (y3 + a) |---------------------------------------------------- | %1 \ / %3 \ %3 cot(beta) |(2 - 2 nu) cos(beta) - ----| y2 \ %2 / - --------------------------------------------- 3/2 %1 / cos(beta) y2 %3 y2 \ %3 cot(beta) |- ------------ + ---------| | 1/2 2 1/2| \ %1 %2 %2 %1 / + ----------------------------------------- 1/2 %1 / (y3 + 2 a) %5 %5 %3 \ a |sin(beta) - ------------- - --------| y2 | %1 1/2 | \ %1 %2/ - ------------------------------------------- 3/2 %1 / (y3 + 2 a) %5 y2 %5 cos(beta) y2 %5 %3 y2 %5 %3 y2\\ a |2 ---------------- - --------------- + -------- + --------|| | 2 %1 %2 3/2 2 || \ %1 %1 %2 %1 %2 /| + --------------------------------------------------------------|/(%2 1/2 | %1 / / / / \ \ | | | | | | | | | | | | | / | | | | | 1 | )|/(pi (1 - nu))| + 1/2 B3 |1/8 |(2 - 2 nu) |-------------- + | | | | | | / 2 \ | / / | | | | y2 | \ | | |%11 |1 + ----| | | | | 2| \ \ \ \ %11 / 2 2 2 1/2 2

Page 84: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

72

(y1 + y2 + y3 ) sin(beta) y2 sin(beta) ------------------------------ + ------------------------ %12 2 2 2 1/2 (y1 + y2 + y3 ) %12 2 2 2 2 1/2 \ / y2 (y1 + y2 + y3 ) sin(beta) cos(beta)| / | - 2 --------------------------------------------| / | 2 | / | %12 / \ 2 2 2 2 2\ y2 (y1 + y2 + y3 ) sin(beta) | 1 1 + --------------------------------| - ------------ 2 | / 2\ %12 / | y2 | %5 |1 + ---| | 2| \ %5 / 1/2 2 2 1/2 \ %1 sin(beta) y2 sin(beta) y2 %1 sin(beta) cos(beta)| --------------- + ------------- - 2 -----------------------------| %6 1/2 2 | %1 %6 %6 | - -----------------------------------------------------------------| %7 | | | | / / %10 %3 \ / + sin(beta) |----------------------- - --------| + y2 sin(beta) | | 2 2 2 1/2 1/2 | | \(y1 + y2 + y3 ) %9 %1 %2/ \ cos(beta) y2 %10 y2 %10 y2 -------------------- - ----------------------- - --------------------- 2 2 2 2 2 2 3/2 2 2 2 2 (y1 + y2 + y3 ) %9 (y1 + y2 + y3 ) %9 (y1 + y2 + y3 ) %9 \ / | | | | | | cos(beta) y2 %3 y2 %3 y2 \| | - ------------ + -------- + ------||/(pi (1 - nu)) + 1/4 |(2 - 2 nu) %1 %2 3/2 2|| | %1 %2 %1 %2 /| | | | | | / \ / | | | | 1 1 |- ------------ + ------------ | / 2\ / 2\ | | y2 | | y2 | | y1 |1 + ---| %5 |1 + ---| | | 2| | 2| \ \ y1 / \ %5 / 1/2 2 2 1/2 \ %1 sin(beta) y2 sin(beta) y2 %1 sin(beta) cos(beta)| --------------- + ------------- - 2 -----------------------------| %6 1/2 2 | %1 %6 %6 |

Page 85: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

73

+ -----------------------------------------------------------------| %7 | | | | / 2 (2 - 2 nu) sin(beta) %4 (2 - 2 nu) y2 sin(beta) %4 + ----------------------- - --------------------------- %2 2 1/2 %2 %1 2 (2 - 2 nu) y2 sin(beta) a - -------------------------- 3/2 %2 %1 / %3 %4 a (y3 + 2 a)\ (y3 + a) sin(beta) |1 + ----- + ------------| \ %2 %1 / + --------------------------------------------- 1/2 %1 %2 2 / %3 %4 a (y3 + 2 a)\ y2 (y3 + a) sin(beta) |1 + ----- + ------------| \ %2 %1 / - ------------------------------------------------- 3/2 %1 %2 2 / %3 %4 a (y3 + 2 a)\ y2 (y3 + a) sin(beta) |1 + ----- + ------------| \ %2 %1 / - ------------------------------------------------- + y2 (y3 + a) 2 %1 %2 /cos(beta) y2 %4 %3 %4 y2 %3 a y2 a (y3 + 2 a) y2\ sin(beta) |--------------- - --------- - -------- - 2 ---------------| | 1/2 2 1/2 3/2 2 | \ %1 %2 %2 %1 %2 %1 %1 / \ \ | | | | | | / 1/2 | | / (%1 %2)|/(pi (1 - nu))| / | | | | | | | | / / 2 2 2 2 %1 := y1 + y2 + y3 + 4 y3 a + 4 a 1/2 %2 := %1 - y1 sin(beta) + (y3 + 2 a) cos(beta) 1/2 %3 := %1 cos(beta) + y3 + 2 a a %4 := cos(beta) + ----- 1/2 %1

Page 86: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

74

%5 := y1 cos(beta) + (y3 + 2 a) sin(beta) 2 %6 := y1 %5 + y2 cos(beta) 2 2 y2 %1 sin(beta) %7 := 1 + ----------------- 2 %6 2 2 2 1/2 %8 := (y1 + y2 + y3 ) %9 := %8 - y1 sin(beta) - y3 cos(beta) 2 2 2 1/2 %10 := (y1 + y2 + y3 ) cos(beta) - y3 %11 := y1 cos(beta) - y3 sin(beta) 2 %12 := y1 %11 + y2 cos(beta) %13 := (1 - 2 nu) cot(beta) 2 y3 + 4 a %14 := 1/2 ---------- + cos(beta) 1/2 %1 2 a %5 %3 %15 := y2 cos(beta) sin(beta) - ------- 1/2 %1 2 y3 + 4 a %16 := 1/2 ---------- + 1 1/2 %1 y3 %17 := -------------------- - cos(beta) 2 2 2 1/2 (y1 + y2 + y3 ) a %18 := 1 + --------------- 1/2 %1 cos(beta) %3 %18 a (y3 + 2 a) %19 := (-2 + 2 nu) cos(beta) + ------ + ------------ %2 %1 cos(beta) 1 1 %20 := ----- + ---------------- 1/2 1/2 %1 %1 + y3 + 2 a 2 2 a %5 cot(beta) %3 %21 := y2 cos(beta) - ----------------- 1/2 %1 %22 := (1 - 2 nu) %5 cot(beta) + a cos(beta)

Page 87: Algorithms for the calculation of exact displacements ...smalley/ESCI7355/meadetriangulardislocati… · surfaces demonstrate the effects of alternate geo-metric parameterizations

Appendix B. MATLAB functions for the calculation of deformation fields associated with slip on a triangular dislocation element. There are three MATLAB functions included in this appendix. The first,

“CalcTriDisp.m”, is a MATLAB script that calculates the displacements resulting from slip on

a triangular dislocation element. The second, “CalcTriStrain.m” accepts the same arguments

as “CalcTriDisp.m” returning the strains rather than the displacements. Finally there is a short

function, “StrainToStress.m”, converts strains to stresses given the Lame parameters, and

also calculates the three invariants of the stress tensor. All functions return structures. All

functions are vectorized with respect to the observation coordinates. While this allows for a rather

clean implementation it is not necessarily the most memory efficient way of doing the calculations.

For large numbers of observation points it may be memory efficient to loop over station

coordinates to avoid the memory overhead associated with the creation of temporary variables.

The three functions include some rather long lines of code so they are attached as text files. All

functions are distributed under the so-called “MIT” or “X Windows” license.