algorithmes de commande numÉrique optimale des turbines Éoliennes...

25
ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES Eng. Raluca MATEESCU Dr.Eng Andreea PINTEA Prof.Dr.Eng. Nikolai CHRISTOV Prof.Dr.Eng. Dan STEFANOIU AERT 2013 [CA'NTI 19]

Upload: phamque

Post on 16-Sep-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES

Eng. Raluca MATEESCUDr.Eng Andreea PINTEA

Prof.Dr.Eng. Nikolai CHRISTOVProf.Dr.Eng. Dan STEFANOIU

AERT 2013 [CA'NTI 19]

Page 2: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

CONTENT

IntroductionWind Turbine Mathematical Model LQG Controller DesignMPC Controller DesignResults & Conclusions

Eng. Raluca MATEESCU

Page 3: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

INTRODUCTION – WIND ENERGY

Electrical energy production with minimum environment damage.Romania in 2012 – first place in energy production from wind energy in Central and Eastern Europe.Romania in 2012 – 3.300 MW from facilities connected to the grid.

Eng. Raluca MATEESCU

Page 4: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

INTRODUCTION – EFFICIENCY

Requirement – keep constant the electrical power despite wind speed variations thus the need for a dedicated controller.Discrete-time controllers in order to use it on a wind turbine.

Eng. Raluca MATEESCU

Page 5: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

WIND TURBINE MATHEMATICAL MODEL

Eng. Raluca MATEESCU

Placement Nacelle axis orientation Rotor speed

Onshore Horizontal Fixed

Offshore Vertical Variable

Above rated regime goal: Power Limitation and Mechanical Structure protection!Solution: Pitch Control!

Page 6: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

WIND TURBINE MATHEMATICAL MODEL

Eng. Raluca MATEESCU

QqE

qE

qE

qE

dtd

i

P

i

d

i

c

i

c =++−δδ

δδ

δδ

δδ

)(

The motion equation:

( )( ) ( ) ( ) , ,t t t t+ + =Mq Cq Kq Q q q

where M, C and K are the mass, damping and the stiffness matrices and Q is the vector of the forces acting on the system, depending the vector of generalized coordinates, q.

Lagrange equation:

[ ]1 2T

T G Ty= θ θ ζ ζq

,1 ,2 2T

aero em aero aero aeroC C F F F⎡ ⎤= −⎣ ⎦Q

Page 7: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

WIND TURBINE MATHEMATICAL MODEL

Eng. Raluca MATEESCU

The resulting model is a highly nonlinear 8 order model.

After linearization the system was put into the general form:

[ ]ely P=

[ ], Temu C= β

( , , , , , , , )TT G T T G Tx y y= θ − θ ζ ω ω ζ β

2 1( ) ( ) ( ) ( )( ) ( ) ( ) ( )

wt t t v tt t t t= + +⎧

⎨ = + +⎩

x Fx G u Gy Hx Mu w

Page 8: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

WIND TURBINE MATHEMATICAL MODEL

Eng. Raluca MATEESCU

Aerodynamic Block

Mechanical Block

Pitch Control Block

Generator Block

Wind Turbine

Wind Speed Block

Energy Production ProcessLinearizationOperating Point

8 Order Linear State Space Model

ofWind Turbine

Page 9: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

LQG CONTROLLER DESIGN

A discrete-time Linear Quadratic Gaussian with integral action controller is proposed for horizontal wind turbines.The control objective – keep the output power constant, despite the wind variation, and reduce the fatigue on turbine components.Command vector: Output :

Eng. Raluca MATEESCU

( ) [ ]Temt C= βu

elP

Page 10: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

CONTROLLER DESIGN – LQG BASICS

Stochastic system:

Find the control law u*(t) that minimizes the quadratic cost function:

u*(t) is computed based on the optimal state vector estimation obtained using the continuous-time Kalman filter.

Eng. Raluca MATEESCU

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( )t t t v t

tt t t t +

= + +⎧∈⎨ = + +⎩

x Ax Buy Cx Du w

( )1 10

1( ) limT

T T

TJ E dt

T→∞

⎧ ⎫⎪ ⎪= +⎨ ⎬⎪ ⎪⎩ ⎭∫u y Q y u R u

ˆ( ) ( )t t∗ = −u Kx

ˆ ˆ ˆ( ) ( ) ( ) ( ( ) ( ))ft t t t t= + + −x Ax Bu K y Cx

Page 11: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

DISCRETE TIME AUGMENTED MODEL

Discrete augmented model of the wind turbine:

The corresponding quadratic cost function :

Eng. Raluca MATEESCU

[ ][ 1] [ ] [ ] [ ] [ ][ ] [ ] [ ] [ ] [ ] , 1, , 4

t s

i

n n n v n v nn n n n y n i+ = + + +⎧⎪

⎨ = + + = =⎪⎩

z Az Bu E Ey Cz Du w …

}

1 10

0

1( [ ]) lim ( [ ] [ ] [ ] [ ] [ ] [ ])

1lim ( [ ] [ ] [ ] [ ] [ ] [ ]

2 [ ] [ ] [ ]) ,

NT T

N

NT T

N

T

J n E n n n n n nN

E n n n n n nN

n n n

→∞

→∞

⎧ ⎫= + =⎨ ⎬

⎩ ⎭⎧

= +⎨⎩

+

u y Q y u R u

z Q z u R u

z S u

1, 1[ ] [ ] [ ] and [ ] [ ]TT

refn n n n y y n⎡ ⎤= ε ε = −⎣ ⎦z xwhere:

Page 12: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

CONTROLLER DESIGN – CONTROL LAW

The discrete-time LQG control law is :

where is the optimal estimation of , which is obtained by the Kalman filter:

The gain matrix is computed as:

The gain matrix of the Kalman filter:

Eng. Raluca MATEESCU

ˆ[ ] [ ] [ ],d in n K n∗ = − + εu K xˆ[ ]nx [ ]nx

( )ˆ ˆ ˆ[ 1] [ ] [ ] [ ] [ ]ˆ ˆ[ ] [ ] [ ]

fn n n n n

n n n

⎧ + = + + −⎪⎨

= +⎪⎩

x Ax Bu K y y

y Cx Du

[ ]d iK= −K K

( ) ( )1T T T−= + +K R B PB B PA S

( ) 1T Tf f f

−= +K AP C W CP C

Page 13: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

LQG STRATEGY – RESULTS & CONCLUSIONS

Simulation Environment – Matlab SIMULINK

Wind speed profile:

Eng. Raluca MATEESCU

Page 14: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

Output power of the wind turbine obtained using the designed discrete-time LQG controller.

Eng. Raluca MATEESCULQG STRATEGY – RESULTS & CONCLUSIONS

Page 15: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

MPC CONTROLLER DESIGN

A discrete-time model predictive control (MPC) strategy is proposed for horizontal axis wind turbines.The control objective – keep the output power constant, despite the wind variation, and reduce the fatigue on turbine components.Command vector: Output :

Eng. Raluca MATEESCU

( ) [ ]Temt C= βu

elP

Page 16: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

DISCRETE TIME AUGMENTED MODELAugmented state-space model of the HAWT:

where:

Eng. Raluca MATEESCU

( 1) ( ) ( ) ( )( ) ( )

e e

e

x k x k u k ky t x k

ε+ = ⋅ + ⋅∆ + ⋅ε⎧⎨ = ⋅⎩

A B BC

[ ]( 1) ( 1) ( 1) Tmx k x k y k+ = ∆ + +

( ) ( ) ( 1)u k u k u k∆ = − −

kε( ) is the input disturbance – wind speed variation.

Page 17: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

Step 1: Calculate the predicted plant output with the future control signal as the adjustable variable. This prediction is described within an optimization window

.The future control trajectory is denoted by:

The future state variables are denoted as:

The output and command vectors are defined as:

Eng. Raluca MATEESCU

PN

( ), ( 1), ..., ( 1),i i i Cu k u k u k N∆ ∆ + ∆ + − is control horizon.CN

( 1 | ), ( 2 | ), ...., ( | ), ..., ( | )i i i i i i i P ix k k x k k x k m k x k N k+ + + +

[ ]

( ) ( 1) ... ( 1)

( 1 | ) y( 2 | ).. ( | )

TT T Ti i i C

Ti i i i i P i

U u k u k u k N

Y y k k k k x k N k

⎡ ⎤∆ = ∆ ∆ + ∆ + −⎣ ⎦

= + + +

CONTROLLER DESIGN – MPC

Page 18: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

The future state variables are calculated sequentially using the set of future control parameters as follows:

Effectively, we have:

With:

Eng. Raluca MATEESCU

CONTROLLER DESIGN – MPC

1 2

1

2

( | ) ( ) ( ) ( 1)

( 1)

( 1 | ) ... 1 |

p P P

pP C

P

N N Ni P i i i i

NN Ni C i

Ni i i P i

x k N k A x k A B u k A B u k

A B u k N A B k

A B k k B k N k

− −

−−ε

−ε ε

+ = + ∆ + ∆ +

+ ∆ + − + ε( )

+ ε + + + ε( + − )

( )iY Fx k U= +Φ∆

2

3 2

1 2

0 00

; 0

P CP P P N NN N N

CA CBCA CAB CB

F CA CA B CAB

CA CA B CA B CA B−− −

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= Φ =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Page 19: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

For a given set-point signal at sample time the objective of the predictive control system is to bring the predicted output as close as possible to the set-point signal . This objective is then translated into a design to find the ‘best’control parameter vector such that an error function between the set-point and the predicted output is minimized.

The set point signal is defined as:

Eng. Raluca MATEESCU

CONTROLLER DESIGN – MPC

( ) ( ) ( ) ( )1 2

T

i i i q ir k r k r k r k⎡ ⎤= ⎣ ⎦…

Page 20: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

Assuming that the data vector that contains the set-point information is:

the cost function that reflects the control objective is:

Control vector ∆U is linked to the set-point signal r(ki) and the state variable x(ki) via the following equation:

CONTROLLER DESIGN – MPCEng. Raluca MATEESCU

( ) ( ) ( )( )1

s i iU R R r k Fx k−Τ Τ Τ∆ = Φ Φ + Φ −Φ

[ ]1 1 ... 1 ( )PN

TS iR r k=

Page 21: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

Step 3: Receding horizon control - Applying the receding horizon control principle, the first m elements in ∆U are taken to form the incremental optimal control:

With:

Eng. Raluca MATEESCU

CONTROLLER DESIGN – MPC

( ) [ ]( )( ) ( )( )

( ) ( )

1

y

0 0

=K

CN

i m m m

s i i

i mpc i

u k I R

R r k Fx k

r k K x k

−Τ

Τ Τ

∆ = Φ Φ +

× Φ −Φ

( )

( )

1

11... (first row of the matrix)0

y T S

mpc T

K R R

K R F

− Τ

− Τ

= Φ Φ + Φ

⎡ ⎤⎢ ⎥= Φ Φ + Φ⎢ ⎥⎢ ⎥⎣ ⎦

Page 22: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

Step 4: Building the Observer for State estimation –Considering that the given information considered for MPC design x(ki) is not measurable an observer is needed. The observer is constructed using the equation:

Where Kob is the observer gain matrix, and Am and Bm

correspond to the discrete-time state-space model of the plant. Kob was computed using the Matlab ‘place’function, based on the augmented state space model.

Eng. Raluca MATEESCU

CONTROLLER DESIGN – MPC

( ) ( ) ( ) ( )( )correction termmodel

ˆ ˆ ˆ( 1)m m m m ob m mx k A x k B u k K y k C x k+ = + + −

Page 23: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

MPC – RESULTS & CONCLUSIONS

Simulation Environment – Matlab SIMULINK

Wind speed profile:

Eng. Raluca MATEESCU

Page 24: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

Output power of the wind turbine obtained using the designed discrete-time MPC.

Eng. Raluca MATEESCU

MPC – RESULTS & CONCLUSIONS

Page 25: ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE DES TURBINES ÉOLIENNES …acse.pub.ro/.../Algorithmes_de_commande_numerique_optimale_des… · ALGORITHMES DE COMMANDE NUMÉRIQUE OPTIMALE

Q&A

En vous remerciant de votre attention, je vous souhaite

une agreable journée!

Eng. Raluca MATEESCU