algebraic topology background - université grenoble alpessergerar/papers/genova-5.pdf · 0...

24
0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut Fourier, Grenoble, France Genova Summer School, 2006

Upload: vuduong

Post on 16-Aug-2019

229 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

0

Constructive Homological Algebra V.

Algebraic Topology background

Francis Sergeraert, Institut Fourier, Grenoble, FranceGenova Summer School, 2006

Page 2: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

1

“General” topological spaces

cannot be directly installed in a computer.

A combinatorial translation is necessary.

Main methods:

1. Simplicial complexes.

2. Simplicial sets.

Warning: Simplicial sets more complex (!)

but more powerful than simplicial complexes.

Page 3: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

2

Simplicial complex K = (V, S) where:

1. V = set = set of vertices of K;

2. S ∈ P(Pf∗ (V )) (= set of simplices) satisfying:

(a) σ ∈ S ⇒ σ = non-empty finite set of vertices;

(b) {v} ∈ S for all v ∈ V ;

(c) {(σ ∈ S) and (∅ 6= σ′ ⊂ σ)} ⇒ (σ′ ∈ S).

Notes:

1. V may be infinite (⇒ S infinite).

2. ∀σ ∈ S, σ is finite.

Page 4: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

3

Example:

V = {0, 1, 2, 3, 4, 5, 6}

S =

{0}, {1}, {2}, {3}, {4}, {5}, {6},{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 3}, {2, 3}, {3, 4},{4, 5}, {4, 6}, {5, 6}, {0, 1, 2}, {4, 5, 6}

Page 5: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

4

Disadvantages of simplicial complexes.

Example: 2-sphere :

Needs 4 vertices, 6 edges, 4 triangles.

The simplicial set model needs only

1 vertex + 1 “triangle”

but an infinite number of degenerate simplices. . .

Product?

∆1 ×∆1 = I × I?

In general, constructions are difficult

with simplicial complexes.

???−→

Page 6: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

5

Main differences between:

Simplicial complexes???←→ Simplicial Sets

In a simplicial set:

1. A simplex is not defined by its vertices:

Own existence + relations with smaller simplices.

X = {X0oo //ww ''zz $$

X1oo //ww ''zz $$

X2oo //ww ((

X3oo // · · ·}

Page 7: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

6

Examples: two different edges can have same vertices:

• •

Several faces (ends) can be the same:

Page 8: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

7

2. Simplices can be degenerate = more or less “collapsed”.

•0 1•// oo=⇒ 0 • 1

•0

•1

• 2NNNNNNNNNNNNNNN

ppppppppppppppp

OO��

=⇒ •0

1• 2

•0

•1

• 2NNNNNNNNNNNNNNN

ppppppppppppppp

��::::::::

AA��������

oo =⇒ •0

12

Page 9: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

8

Example:

The minimal description as simplicial complex

of the two-sphere S2

needs: 4 vertices + 6 edges + 4 triangles:

Page 10: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

9

But the minimal description of the two-sphereas a simplicial set

needs: 1 vertex + 1 triangle.

•N

•0

•2

•1

// oo

FF

�� 2222222222222222222

XX1111111

��1111111

=⇒

_chlqw~������ " ' + 05=DJOTY ] a ejntz������

$)-39@GLRV[

•012

•N

Note N is not a vertex.

Page 11: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

10

Other example = Real Projective Plane = P 2(R).

Minimal triangulation = 6 vertices + 15 edges + 10 triangles.

Page 12: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

11

Minimal presentation of P 2R as a simplicial set =

1 vertex + 1 edge + 1 triangle.

Triangle

Edge

Vertex

oooooooooooooooooo

OOOOOOOOOOOOOOOOOO ��OO

ttjjjjjjjjjjjjjjjjjjjjjjj

jjTTTTTTTTTTTTTTTTTTTTTTT

oo

oooo

oo??

OO

OO0

0

1

1

2

0

Page 13: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

12

Support for the notion of simplicial set: The ∆ category.

Objects: 0 = {0}, 1 = {0, 1}, . . . , m = {0, 1, . . . , m}, . . .

Morphisms:

∆(m, n) = {α : m↗ n st (k ≤ `⇒ α(k) ≤ α(`))}.

Definition: A simplicial set is

a contravariant functor X : ∆→ Sets.

X(m) = Xm = {m-simplices} of X.

X(α : m→ n) = Xα =

{Incidence relations of type α between Xm and Xn}.

Page 14: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

13

Product construction for simplicial sets.

X = ({Xm}, {Xα}), Y = ({Ym}, {Yα}) two simplicial sets.

Z = X × Y = ???

Simple and natural definition:

Z = X × Y defined by Z = ({Zm}, {Zα}) with:

Zm = Xm × Ym

If ∆(n, m) 3 α : n↗ m:

Zα: Xm × YmXα×Yα−→ Xn × Yn

Page 15: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

14

Example:

This natural product:

automatically constructs

the “right” triangulation of I × I.

=⇒

Page 16: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

15

Twisted Products

Ingredients:

B = base space = simplical set

F = fibre space = simplicial set

G = structural group = simplicial group

τ : B → G = twisting function

Result: E = F × τ B

⇒ Fibration:

F � � // [E = F × τ B] // B

Main point: twist τ = modifier of incidence relations

in F ×B.

Page 17: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

16

Example 1: B = S1, G = Z, τ 1(s1) = 00 ∈ G0

⇒ B ×τ G = S1 × Z = trivial product.

In particular ∂0(s1, τ (s1).k1) = (∗, k0).

Example 2: B = S1, G = Z, τ ′1(s1) = 10 ∈ G0

⇒ B ×τ G = S1 × Z = twisted product.

Now ∂0(s1, k1) = (∗, τ ′(s1).k0) = (∗, (k + 1)0).

Page 18: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

17

Daniel Kan’s fantastic work (∼ 1960− 1980).

Every “standard” natural topological construction process

has a translation in the simplicial world.

Frequently the translation is even “better”.

Typical example. The loop space construction in ordinary

topology gives only an H-space (= group up to homotopy).

Kan’s loop space construction produces a genuine simplicial

group, playing an essential role in Algebraic Topology.

Conclusion: Simplicial world = Paradise! ???

Page 19: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

18

Translation process: Topology → Algebra

X 7−→ C∗(X)

⇒ C∗(X) = chain complex canonically associated to X.

Cm(X) := Z[Xm] and d(σ) :=∑m

i=0(−1)m∂mi (σ).

Hm(X) := Hm(C∗(X)).

“Equivalent” version: CND∗ (X) with:

CNDm (X) := Z[XND

m ] and d(σ) :=∑m

i=0(−1)m∂mi (σ mod ND).

HNDm (X) := Hm(CND

∗ (X))thr= Hm(X).

Page 20: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

18

General work style in Algebraic Topology.

Main problem = Classification.

Main invariants = Homology groups.

X given. H∗(X) = ???

Game rule: Please find a fibration:

F ↪→ E → B

where X = F or E or B

and where the homology of both other terms is known.

Then use the fibration !

Page 21: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

19

Main tools: (F ↪→ E → B)

Serre spectral sequence:

H∗(B; H∗(F ))⇒ H∗(E)

Eilenberg-Moore spectral sequence I:

CobarH∗(B)(H∗(E), Z)⇒ H∗(F )

Eilenberg-Moore spectral sequence II:

BarH∗(G)(H∗(E), H∗(F ))⇒ H∗(F )

But these spectal sequences are not algorithms!

Page 22: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

20

Example. π6S3 = ???.

Solution (Serre). Consider 7 fibrations:

(EM2-SS) K(Z, 1) ↪→ ∗ → K(Z, 2)

(EM2-SS) K(Z2, 1) ↪→ ∗ → K(Z2, 2)

(EM2-SS) K(Z2, 2) ↪→ ∗ → K(Z2, 3)

(EM2-SS) K(Z2, 3) ↪→ ∗ → K(Z2, 4)

(S-SS) K(Z, 2) ↪→ X4 → S3

(S-SS) K(Z2, 3) ↪→ X5 → X4

(S-SS) K(Z2, 4) ↪→ X6 → X5

Solution: π6(S3) = H6(X6)

Page 23: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

21

Effective Homology gives

effective versions

of Serre and Eilenberg-Moore spectral sequences.

⇒ Basic Algebraic Topology

is within range of Symbolic Computation.

Page 24: Algebraic Topology background - Université Grenoble Alpessergerar/Papers/Genova-5.pdf · 0 Constructive Homological Algebra V. Algebraic Topology background Francis Sergeraert, Institut

0

The END

Francis Sergeraert, Institut Fourier, Grenoble, FranceGenova Summer School, 2006