ajc_v54_p107

8
AUSTRALASIAN JOURNAL OF COMBINATORICS Volume 54 (2012), Pages 107–114 Some results on incidence coloring, star arboricity and domination number Pak Kiu Sun Wai Chee Shiu Department of Mathematics Hong Kong Baptist University, Kowloon Tong Hong Kong [email protected] [email protected] Abstract Two inequalities are established connecting the graph invariants of inci- dence chromatic number, star arboricity and domination number. Using these, upper and lower bounds are deduced for the incidence chromatic number of a graph and further reductions are made to the upper bound for a planar graph. It is shown that cubic graphs with orders not divis- ible by four are not 4-incidence colorable. Sharp upper bounds on the incidence chromatic numbers are determined for Cartesian products of graphs, and for joins and unions of graphs. 1 Introduction An incidence coloring separates the whole graph into disjoint independent incidence sets. Since incidence coloring was introduced by Brualdi and Massey [4], most re- search has concentrated on determining the minimum number of independent in- cidence sets, also known as the incidence chromatic number, which can cover the graph. The upper bound on the incidence chromatic number of planar graphs [7], cubic graphs [13] and a lot of other classes of graphs were determined [6, 7, 15, 17, 21]. However, for general graphs, only an asymptotic upper bound is obtained [9]. There- fore, to find an alternative upper bound and lower bound on the incidence chromatic number for all graphs is the main objective of this paper. In Section 2, we will establish a global upper bound for the incidence chromatic number in terms of chromatic index and star arboricity. This result reduces the upper bound on the incidence chromatic number of the planar graphs. A global lower bound which involves the domination number will be introduced in Section 3. This research was partially supported by the Pentecostal Holiness Church Incorporation (Hong Kong)

Upload: andrew-raspwald

Post on 24-Aug-2015

5 views

Category:

Documents


1 download

DESCRIPTION

Scientific

TRANSCRIPT

AUSTRALASIAN JOURNAL OF COMBINATORICSVolume 54 (2012), Pages 107114Some results on incidencecoloring, star arboricityand dominationnumberPakKiuSunWaiCheeShiuDepartmentofMathematicsHongKongBaptistUniversity,[email protected] wcshiu@hkbu.edu.hkAbstractTwoinequalitiesareestablishedconnectingthegraphinvariantsofinci-dencechromaticnumber,stararboricityanddominationnumber. Usingthese, upperandlowerboundsarededucedfortheincidencechromaticnumberofagraphandfurtherreductionsaremadetotheupperboundforaplanargraph. Itisshownthatcubicgraphswithordersnotdivis-iblebyfourarenot4-incidencecolorable. SharpupperboundsontheincidencechromaticnumbersaredeterminedforCartesianproducts ofgraphs,andforjoinsandunionsofgraphs.1 IntroductionAn incidence coloringseparatesthewholegraphintodisjoint independentincidencesets. SinceincidencecoloringwasintroducedbyBrualdi andMassey[4], mostre-searchhas concentratedondeterminingtheminimumnumber of independent in-cidencesets, alsoknownastheincidencechromaticnumber, whichcancoverthegraph. Theupperboundontheincidencechromaticnumberof planargraphs[7],cubic graphs [13] and a lot of other classes of graphs were determined [6, 7, 15, 17, 21].However, for general graphs, only an asymptotic upper bound is obtained [9]. There-fore, to nd an alternative upper bound and lower bound on the incidence chromaticnumberforallgraphsisthemainobjectiveofthispaper.InSection2,wewillestablishaglobalupperboundfortheincidencechromaticnumber interms of chromaticindexandstar arboricity. This result reduces theupper boundonthe incidencechromaticnumber of the planar graphs. AgloballowerboundwhichinvolvesthedominationnumberwillbeintroducedinSection3.This research was partially supported by the Pentecostal Holiness Church Incorporation (HongKong)108 PAKKIUSUNANDWAICHEESHIUFinally,theincidencechromaticnumberofgraphsconstructedfromsmallergraphswillbedeterminedinSection4.All graphs in this paper are connected. Let V (G) and E(G) (or Vand E) be thevertex-setandedge-setofagraphG,respectively. LetthesetofallneighborsofavertexubeNG(u)(orsimplyN(u)). Moreover,thedegreedG(u)(orsimplyd(u))ofuisequalto |NG(u)|andthemaximumdegreeofGisdenotedby(G)(orsimply). AnedgecoloringofGisamapping: E(G) C,whereCisacolor-set, suchthatadjacentedgesofGareassigneddistinctcolors. Thechromaticindex

(G)ofagraphGistheminimumnumberof colorsrequiredtolabel all edgesof Gsuchthatadjacentedgesreceiveddistinctcolors. Allnotationsnotdenedinthispapercanbefoundinthebooks[3]and[22].Let D(G) be a digraph induced from G by splitting each edge uv E(G) into twooppositearcs uvand vu. Accordingto[15],incidencecoloringofGisequivalenttothe coloring of arcs of D(G), where two distinct arcsuvandxyare adjacent providedoneofthefollowingholds:(1)u = x;(2)v= xory= u.Let A(G) be the set of all arcs of D(G). An incidence coloring of G is a mapping: A(G) C,whereCisacolor-set,suchthatadjacentarcsofD(G)areassigneddistinctcolors. Theincidencechromaticnumber, denotedbyi, istheminimumcardinalityofCforwhich:A(G) Cisanincidencecoloring. AnindependentsetofarcsisasubsetofA(G)whichconsistsofnon-adjacentarcs.2 IncidencechromaticnumberandStararboricityA star forest is a forest whose connected components are stars. The star arboricity ofagraph G (introducedby Akiyama and Kano[1]),denoted by st(G),is thesmallestnumberofstarforestswhoseunioncoversalledgesofG.We now establish a connection among the chromatic index, the star arborcity andtheincidencechromaticnumberofagraph. Thisrelation,togetherwiththeresultsby Hakimi et al. [10], provided a new upper bound of the incidence chromatic numberofplanargraphs,k-degenerategraphsandbipartitegraphs.Theorem2.1LetGbeagraph. Theni(G)

(G) + st(G), where

(G)isthechromaticindexofG.Proof: We color all the arcs goingintothe center of astar bythe same color.Thus,half ofthearcsof astar forest can becolored by one color. Sincest(G) is thesmallestnumberof starforestswhoseunioncoversall edgesof G, half of thearcsofGcanbecoloredbyst(G)colors. TheuncoloredarcsnowformadigraphwhichisanorientationofG. WecolorthesearcsaccordingtotheedgecoloringofGandthisisaproperincidencecoloringbecauseedgecoloringismorerestrictive. Hence

(G) +st(G)colorsaresucienttocoloralltheincidencesofG. INCIDENCECOLORING, ARBORICITYANDDOMINATION 109Remarks: Theorem2.1wasindependentlyobtainedbyYang[23] previously. Forfurtherinformationpleaseconsultthewebpage[18].We now obtain the following new upper boundson the incidence chromatic num-bersof planargraphs,a class of k-degenerate graphsand aclass of bipartitegraphs.Corollary2.2Let Gbe aplanar graph. Theni(G) +5for =6andi(G) 12for = 6.Proof: Theboundis truefor 5, sinceBrualdi andMassey[4] provedthati(G) 2. LetGbeaplanargraphwith 7, wehave

(G)=[14, 20].Also, Hakimi et al. [10] provedthat st(G) 5. Therefore, i(G) +5byTheorem2.1. Whilewereducetheupperboundontheincidencechromaticnumberofplanargraphsfrom+7 [7]to+5,Hosseini Dolamaand Sopena[6] reduced theboundto + 2undertheadditionalassumptionsthat 5andgirthg 6.AgraphGis k-degenerate[12] if everysubgraphof Ghas avertexof degreeatmostk. Coloringproblemsonk-degenerategraphs[5, 7, 11] arewidelystudiedbecause of its relative simple structure. Inparticular, Hosseini Dolamaet al.[7]provedthat i(G) +2k 1, where Gis ak-degenerate graph. Moreover,certain importantclasses of graph such as outerplanargraphs and planar graphsare2-degenerateand5-degenerategraphs, respectively[12]. Arestrictedk-degenerategraph is a k-degenerate graph with the subgraph induced by N(vi){v1, v2, . . . , vi1}isacompletegraphforeveryi. Weloweredtheboundforrestrictedk-degenerategraphasfollow.Corollary2.3LetGbearestrictedk-degenerategraph. Theni(G) +k + 2.Proof: ByVizingstheorem,wehave

(G) + 1. Also,thestararboricityofarestrictedk-degenerategraphGislessthanorequal tok + 1[10]. Hencewehavei(G) +k + 2byTheorem2.1. Corollary2.4Let Bbeabipartitegraphwithat most onecycle. Theni(B) + 2.Proof: WhenBisabipartitegraphwithatmostonecycle,st(B) 2[10]. Also,it is well known that

(B) = . These results together with Theorem 2.1 prove thecorollary. 3 IncidencechromaticnumberanddominationnumberAdominatingset SV (G) of agraphGis aset where everyvertexnot inShasaneighborinS. Thedominationnumber, denotedby(G), istheminimumcardinalityofadominationsetinG.110 PAKKIUSUNANDWAICHEESHIUAmaximal star forest is astar forest withmaximumnumber of edges. LetG=(V, E)beagraph, thenumberofedgesofamaximalstarforestofGisequalto |V | (G) [8]. We now use the domination number to form a lower bound on theincidencechromaticnumberofagraph. Thefollowingpropositionreformulatestheideasin[2]and[13].Proposition3.1LetG = (V, E)beagraph. Theni(G) 2|E||V | (G).Proof: Eachedgeof Gisdividedintotwoarcsinoppositedirections. Thetotalnumberof arcsof D(G)isthereforeequal to2|E|. Accordingtothedenitionoftheadjacencyofarcs, anindependentsetofarcsisastarforest. Thus, amaximalindependentsetof arcsisamaximal starforest. Asaresult, thenumberof colorclassrequiredisatleast2|E||V | (G). Corollary3.2LetG = (V, E)beanr-regulargraph. Theni(G) r1 (G)|V |.Proof: ByHandshakinglemma,wehave2|E| =

vVd(v) = r|V |,theresultfollowsfromProposition3.1. Example3.1Corollary 3.2 provides an alternative method to show that a completebipartitegraphKr,r, wherer 2isnotr + 1-incidencecolorable. AsKr,risar-regulargraphwith(Kr,r) = 2,wehavei(Kr,r) r1 (G)|V |=r1 1r> r + 1.

Example3.1canbeextendedtocompletek-partitegraphwithpartitesetsofsamesize.Example3.2Let G be a complete k-partite graph where every partite set is of sizej. Thus,theorderofGiskj= nandGisa(n nk)-regulargraphwith(G)= 2.AccordingtoCorollary3.2,wehavei(G) n nk1 (G)|V |=n nk1 2n.Simplecalculationshowsthatn nk1 2n> n nk+ 1fork 3. Therefore,Gisnot((G) + 1)-incidencecolorable. INCIDENCECOLORING, ARBORICITYANDDOMINATION 111Corollary3.3LetG = (V, E)beanr-regulargraph. Twonecessaryconditionsfori(G) = r + 1(alsofor(G2) = r + 1[17])are:1. ThenumberofverticesofGisdivisiblebyr + 1.2. Ifrisodd,thenthechromaticindexofGisequaltor.Proof: Weprove 1only,2wasproved in [16]. By Corollary 3.2, if G isan r-regulargraphandi(G) =r+ 1, thenr+ 1=i(G) r|V ||V | (G)|V |r + 1(G).Sincetheglobal lowerboundofdominationnumberis

|V | + 1

, weconcludethatthenumberofverticesofGmustbedivisiblebyr + 1. 4 GraphsConstructedfromSmallerGraphsIn this section, the upper bounds on the incidence chromatic number are determinedfor Cartesian productof graphsand for join and union of graphs,respectively. Also,theseboundscanbeattainedbysomeclasses ofgraphs[19].We start byprovingthe followingtheoremabout unionof graphs, where thegraphsmaynotdisjoint.Theorem4.1LetG1andG2begraphs. Theni(G1 G2) i(G1) +i(G2).Proof: If some edge e E(G1)E(G2), then we delete it from either one of the edgeset. Thisprocesswillnotaect I(G1 G2),hence,weassumeE(G1) E(G2) = .Let be a i(G1)-incidence coloring of G1 and be a i(G2)-incidence coloring of G2usingdierentcolorset. Thenisaproper(i(G1) +i(G2))-incidencecoloringofG1G2 with (uv) = (uv) when uv E(G1) and (uv) = (uv) when uv E(G2).

ThefollowingexamplerevealedthattheupperboundgiveninTheorem4.1issharp.Example4.1Letnbeanevenintegerandnotdivisibleby3. LetG1beagraphwithV (G1)= {u1, u2, . . . , un}andE(G1)= {u2i1u2i |1 i n2}. Moreover, letG2beanothergraphwithV (G2)=V (G1)andE(G2)= {u2iu2i+1 | 1 i n2}.Then, itisobviousthati(G1)=i(G2)=2andG1 G2=Cnwherenisnotdivisibleby3. Therefore,i(Cn) = 4 = i(G1) +i(G2). TheCartesianproductof graphsG1andG2, denotedbyG1G2, isthegraphwithvertexsetV (G1) V (G2)speciedbyputting(u, v)adjacentto(u

, v

)ifandonlyif(1)u = u

andvv

E(G2)or(2)v = v

anduu

E(G1).Theorem4.2LetG1andG2begraphs. Theni(G1G2) i(G1) + i(G2).112 PAKKIUSUNANDWAICHEESHIUProof: Let |V (G1)| =mand |V (G2)| =n. G1G2isagraphwithmnverticesandtwotypesofedges: fromconditions(1)and(2)respectively. Theedgesoftype(1)formagraphconsistingofndisjointcopiesofG1,henceitsincidencechromaticnumber equal to i(G1). Likewise, the edges of type (2) form a graph with incidencechromaticnumberi(G2). Consequently,thegraphG1G2isequaltotheunionofthe graphs from (1) and (2). By Theorem 4.1, we have i(G1G2) i(G1)+i(G2).

Wedemonstrate theupper bound given in Theorem 4.2 is sharp by the followingexample.Example4.2LetG1=G2=C3, itfollowsthatG1G2isa4-regulargraph. IfG1G2is5-incidencecolorable,thenthechromaticnumberofitssquareisequalto5[17]. However,allvertices inG1G2areofdistanceatmost 2. Therefore,G1G2isnot5-incidencecolorableandtheboundderivedinTheorem4.2isattained. Finally,weconsidertheincidencechromaticnumberofthejoinofgraphs.Theorem4.3LetG1andG2begraphswith |V (G1)| = mand |V (G2)| = n,wherem n 2. Theni(G1 G2) min{m +n, max{i(G1), i(G2)} +m + 2}.Proof: Ontheonehand, wehavei(G1 G2) m + n. Ontheotherhand, thedisjoint graphs G1 and G2 can be colored by max{i(G1), i(G2)} colors, and all otherarcs in between can be colored by m+2 new colors. Therefore, max{i(G1), i(G2)}+m + 2isalsoanupperboundfori(G1 G2). WeutilizethefollowingexampletoshowthattheupperboundinTheorem4.3issharp.Example4.3Let G1 = Kmand G2 = Kn. Then the upper bound m+n is attainedsinceG1 G2 =Km+n. Ontheotherhand, letG1bethecomplementof KmandG2be the complement of Knwithmn2. Thenthe other upper boundmax{i(G1), i(G2)} + m + 2isattainedbecauseG1 G2 =Km,nandi(G1) =i(G2) = 0. References[1] Jin Akiyama and Mikio Kano, Path factors of a graph, Graphs and applications:Proc.FirstColoradoSymposiumonGraphTheory(FrankHararyandJohnS.Maybee,eds.),Wiley,1985,pp. 121.[2] I.AlgorandN.Alon,Thestararboricityofgraphs,DiscreteMath.75(1989),1122.[3] J.A. BondyandU.S.R. Murty, Graphtheorywithapplications, 1st ed., NewYork: Macmillan Ltd.Press,1976.INCIDENCECOLORING, ARBORICITYANDDOMINATION 113[4] R.A. Brualdiand J.J.Q. Massey, Incidence and strongedge colorings of graphs,DiscreteMath.122(1993),5158.[5] Leizhen Cai and Xuding Zhu, Game chromatic index of k-degenerate graphs, J.GraphTheory36(2001),144155.[6] M.HosseiniDolamaandE.Sopena, Onthemaximumaveragedegreeandtheincidence chromatic number of a graph, Discrete Math. and Theoret. Comp. Sci.7(2005),203216.[7] M. Hosseini Dolama, E. Sopena and X. Zhu, Incidence coloring of k-degeneratedgraphs,DiscreteMath.283(2004),121128.[8] S. Ferneyhough, R. Haas, D.HansonandG. MacGillivray, Starforests, domi-natingsetsandRamsey-typeproblems,DiscreteMath.245(2002),255262.[9] B.Guiduli,Onincidence coloringandstar arboricityofgraphs,DiscreteMath.163(1997),275278.[10] S.L. Hakimi, J. Mitchem andE. Schmeichel, Stararboricity ofgraphs,DiscreteMath.149(1996),9398.[11] A.V. Kostochka, K. NakprasitandS.V. Pemmaraju, Onequitablecoloringofd-degenerategraphs,SIAMJ.DiscreteMath.19(1)(2005),8395.[12] D.R. LickandA.T. White, k-degenerategraphs, Canad. J. Math. 22(1970),10821096.[13] M. Maydanskiy, The incidence coloring conjecture for graphs of maximum degree3,DiscreteMath.292(2005),131141.[14] D.P. Sandersand Y. Zhao, Planar graphs of maximum degree seven are class 1,J.Combin.TheorySer.B83(2001),201212.[15] W.C. Shiu, P.C.B. LamandD.L. Chen, Noteonincidencecoloringforsomecubicgraphs,DiscreteMath.252(2002),259266.[16] W.C. Shiu, P.C.B. LamandP.K. Sun, Cubicgraphswithdierentincidencechromaticnumbers,Congr.Numer.182(2006),3340.[17] W.C. ShiuandP.K. Sun, Invalidproofsonincidencecoloring, DiscreteMath.308(2008),65756580.[18]EricSopena,TheIncidenceColoringPage,athttp://www.labri.fr/perso/sopena/pmwiki/index.php.[19] Pak Kiu Sun, Incidence coloring: Origins, developments andrelation with othercolorings, Ph.D.thesis,HongKongBaptistUniversity,2007.114 PAKKIUSUNANDWAICHEESHIU[20] V.G. Vizing, Someunsolvedproblems ingraphtheory(inRussian), UspekhiMat.Nauk.23(1968),117134.[21] S.D.Wang,D.L.ChenandS.C.Pang,TheincidencecoloringnumberofHalingraphsandouterplanargraphs,DiscreteMath.256(2002),397405.[22] D.B.West,Introductiontographtheory,2nded.,Prentice-Hall, Inc.,2001.[23] D.Yang,Fractionalincidencecoloringandstararboricityofgraphs,ArsCom-bin.(toappear).(Received26 May 2011; revised25 May 2012, 24 July 2012)