aircrew and spacecrew radiation exposure “the dangers … ·  · 2016-01-08b.j. lewis royal...

50
B.J. Lewis B.J. Lewis Royal Military College of Canada Royal Military College of Canada Ottawa Chapter, Canadian Nuclear Society Ottawa Chapter, Canadian Nuclear Society Ottawa, Ontario Ottawa, Ontario April 16, 2009 April 16, 2009 Aircrew and Spacecrew Radiation Exposure “The Dangers of Getting High”

Upload: voque

Post on 16-May-2018

213 views

Category:

Documents


0 download

TRANSCRIPT

  • B.J. LewisB.J. LewisRoyal Military College of CanadaRoyal Military College of Canada

    Ottawa Chapter, Canadian Nuclear SocietyOttawa Chapter, Canadian Nuclear SocietyOttawa, OntarioOttawa, OntarioApril 16, 2009April 16, 2009

    Aircrew and Spacecrew Radiation Exposure The Dangers of Getting High

  • Outline

    Aircrew Radiation Exposure Assessment Measurements and Computer Code Development

    Space Radiation Monitoring

  • Typical Annual Radiation Exposure

    Total Average Annual Exposure 3.6 mSv

  • Impetus

    ICRP-60 (1990) and ICRP-103 (2007): Reduce radiation exposure limits:

    Nuclear Energy Worker (NEW): 50 to 20 mSv/year Public: 5 to 1 mSv/year

    Recognize occupational exposure of aircrew to radiation

  • Aircrew Radiation Regulation

    European Union (Basic Safety Standard Directive, May 2000)

    Canada(Transport Canada, Commercial and Business Aviation Advisory Circular, April 2001) Account for exposure for >1 mSv/y (> 8 km)

    Assess exposure Adjust working schedules (> 6 mSv action level) Inform workers Control doses during pregnancy (

  • P. Band et al., B.C. Cancer Foundation (Cdn/AC Pilots, 1950-1992) Excess AML and prostatic cancer

    J. Grayson et al., Brooks AFB (USAF Pilots, 1975-1989) Excess cancer in all sites, testis & urinary bladder

    E. Pukkala et al, Finnish Cancer Registry (FAs, 1967-1992) Excess female breast and bone cancer

    European Study of Cancer Among flying PErsonnel (ESCAPE) (9 countries) (1960-1997) Scarce evidence for specific occupational cancer risk Revised interest with ESCAPE II (or COSMIC) study to include US PAN AM cohort

    D. Irvine, British Airways Pilots, 1998 B. Grajewski, NIOSH Studies (FA (1998-2000), Pilots (2001))

    FAs reproductive health effects Biomarker study of pilots

    Epidemiological Studies

  • Radiation Exposure to Aircrew

    Complex mixed-radiation field

    Galactic Cosmic Rays (GCR)

    Solar Particle Events(SPE)

  • Galactic Cosmic Ray (GCR) Exposure Conditions

    Relatively constant field dependent upon: Solar Activity Latitude Altitude

    Complicated field Many particle types, large energy range Greater uncertainty in biological risk

  • Solar Magnetic Field Shielding (When)

    GCR intensity GCR intensity anticoincidentanticoincident with solar cyclewith solar cycle

    0

    50

    100

    150

    200

    250

    300

    350

    400

    1953 1958 1963 1968 1973 1978 1983 1988 1993 1998 2003 2008

    Year

    Suns

    pot N

    umbe

    r

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    Clim

    ax H

    ourly

    Cou

    nt R

    ate

    /100

    19 20 21 22 23

  • Earth Magnetic Field Shielding(Where)

    Greater shielding at equator than geomagnetic poles (factor of ~3)

  • Atmospheric Shielding(How High)

    Satellite

    Balloon

    Supersonic

    Subsonic

    High Peaks

    AtmosphericNucleus

    40 km

    20 km

    10 km

    1 km

  • MNS

    LET Chamber

    NE213 Scintillator

    Anthropomorphic Phantomwith TLDs and BDs

    BGOScintillators

    Detector NIMs, Computers, UPS

    LLRM

    Equipment Suite Development

  • Commercial Aircraft Measurement

    TEPCTEPC SWENDISWENDIEberlineEberline

    NRDNRD

    SWENDISWENDI Ionization Ionization ChamberChamber

  • Aircrew Radiation Studies

    Experimentation ~250 Flights (Portable Instruments)

    Ionization Counter/Al2O3 TLDs (low-LET) SWENDI Remmeter/Bubble Detectors (high-LET) Liulin-4N and 4SN (Si-based) LET Spectrometers Tissue Equivalent Proportional Counter (Hawk TEPC)

    Model/Code Development Predictive Code AIrcrew Radiation Exposure (PCAIRE)

  • 0

    20

    40

    60

    TEPC IC TLD SWENDI BD

    TOTAL = NEUTRONIONIZING +

    Ambient Dose Equivalent Distribution (Sv)

  • GammaGamma

    XX--RayRay

    ElectronElectron

    Ionizing Ionizing (low(low--LET)LET)

    NeutronsNeutrons(high(high--LET)LET) 2020

    11

    11

    11

    Quality Factor

    Aircrew

    Q=138%

    Q>162%

    US Atomic Radiation Workers

    Q=20 Lung4%

    Q=193%

    Q>1 Other3%

  • Global Flight Group FlightTime (h)

    Total DoseEq. (Sv)

    Trans-Pacific (CYVR-KIX)Trans-Atlantic (CYYZ-LHR)Trans-Canada (CYYZ-CYVR)Caribbean (BGI-CYYZ)Northwest/Yukon (CYOW-CYFBCYRB-CYSR-CYFB-CYOW)

    10.2 6.5 5.0 5.710.2

    57 939 635 527 4

    54 28

    2.2 0.42.5 0.42.4 0.42.2 0.43.4 0.6

    TEPC Data from Selected Flight Routes

    Q

  • Data Coverage

    HNL

    LP PDDIAP

    PGUA

  • TEPC Count Rate

    0

    500

    1000

    1500

    2000

    2500

    0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00Time (Z)

    Cou

    nt R

    ate

    (Cou

    nts/

    Min

    )

    19:00 20:00 21:00 22:00 23:00 0:00 1:00 2:00Time (Z)

    0

    5000

    10000

    15000

    20000

    25000

    30000

    35000

    40000

    Altit

    ude

    (ft)

    Heading North

    Constant Latitude

  • YGK-YYZ-HGK Polar Flight (2005)

    YGK-YYZ YYZ-HGK (polar) HGK HGK-YYZ YYZ-YGK

    Toronto to Hong Kong Hong Kong to Toronto

    4/18/05 9:00 4/18/05 21:00 4/19/05 9:00 4/19/05 21:00 4/20/05 9:00 4/20/05 21:00

    Date and Time

    0

    2000

    4000

    6000

    8000

    10000

    12000

    Alti

    tude

    (m)

    IC+SWENDIHAWKFH41BLiuLinFH41B CorrectedFlight Altitude

    0.1

    1

    10

    Am

    bien

    t Dos

    e E

    quiv

    alen

    t Rat

    e (u

    Sv/

    h)

  • TEPC Data Analysis

    Geomagnetic latitude calculated from geographic latitude & longiGeomagnetic latitude calculated from geographic latitude & longitudetude

    Geomagnetic Latitude, Bm (deg)

    -45 -30 -15 0 15 30 45 60 75 90

    Ambi

    ent T

    otal

    Dos

    e E

    quiv

    alen

    t Rat

    e, H

    (S

    v/h)

    0

    2

    4

    6

    8

    10

    12

    14

    169.4 km10.0 km (+2 Sv/h)10.6 km (+4 Sv/h)11.2 km (+6 Sv/h)11.8 km (+8 Sv/h)Best Fit at 10.6 km

    .

  • Latitude Dependence:Dose Rate Vs Cutoff Rigidity

    Ambient dose equivalent rate (35000 ft)

    Cutoff Rigidity, Rc (GV)0 2 4 6 8 10 12 14 16 18

    Am

    bien

    t Dos

    e E

    quiv

    alen

    t Rat

    e (

    Sv/

    h)

    0

    2

    4

    6

    8

    10

    NorthSouthBest Fit

    .

    GCR ability to penetrate magnetic GCR ability to penetrate magnetic fieldfield

    Global CutoffRigidity Contours

  • Altitude Effect (Balloon Flights)

    Satellite

    Balloon

    Supersonic

    Subsonic

    High Peaks

    AtmosphericNucleus

    40 km

    20 km

    10 km

    1 km

    Atmospheric Depth h (g / cm2)

    0 200 400 600 800 1000f A

    lt0.01

    0.1

    1

    10

    Balloon Data (July 14, 2001)Balloon Data (July 23, 2001)Model

  • Solar Cycle Effect (10.7 km)

    Vertical cutoff rigidity Rc (MV)0 2 4 6 8 10 12 14 16 18

    Ambi

    ent d

    ose

    equi

    vale

    nt ra

    te (

    Sv/

    h)no

    rmal

    ized

    to 1

    0.6

    km

    0

    2

    4

    6

    8

    RMC IC+SWENDI (Climax = 3744 counts/h/100, = 984 MV)ACREM IC+NMX (Climax = 4277 counts/h/100, = 498 MV) Best Fit ACREM IC+NMXBest Fit RMC IC+SWENDI

    Poles Equator

    IC + SWENDI

  • PCAIRE Code

    Visual_PCAIRE.exe

  • PCAIRE Code vs Concorde/ER-2 (NASA) (High-Altitude)

    15.2 -18 km (Concorde)15.2 - 21 km (ER-2)

    PCAIRE Predicted Route Dose (Sv)0 20 40 60 80 100 120 140 160

    TEPC

    Mea

    sure

    d R

    oute

    Dos

    e (u

    Sv)

    0

    20

    40

    60

    80

    100

    120

    140

    160Heliocentric Potential (FAA)Deceleration Parameter (NASA)

    Concorde Flights

    ER-2 South 1 & 2

    ER-2 East

    ER-2 North 2

    ER-2 North 1

  • Aircrew Annual Exposure

    0

    1

    2

    3

    4

    5

    6

    Flight Attendants Pilots

    PC-A

    IRE

    Pred

    ictio

    n of

    Ann

    ual

    Dos

    e Eq

    uiva

    lent

    (mSv

    )

    ICRP 60 Public Limit

  • 99-EHD-239

    0

    2

    4

    6

    Ave

    rage

    Exp

    osur

    e (m

    Sv/y

    ear)

    Occupation

    Nuclear FuelHandlerIndustrialRadiographerUranium Miner

    Nuclear MedicineTechnologistCommercialAircrew

    Canadian Annual Occupational Exposures

  • Health Impact

    ~25% of population will develop fatal cancer If aircrew exposed to 6 mSv/y over 30 years, risk of

    developing a fatal cancer: 6 mSv/y x 30 y x 4 x10-5 cancers/mSv = 0.7%

  • Radiation Exposure from Solar Particle Events (SPE)

    Highly sporadic events associated with solar flares and coronal mass ejection

    Additional exposure to aircrew

  • Aircrew Exposure from SPEs

    Propagate GCR and GOES-11 spectra (p, He) through atmosphere with Monte Carlo Code (MCNPX)

    Prot

    on F

    lux

    (n/M

    eV/s

    r/cm

    2 )

    Proton energy (MeV)

    SPE

    GCR

  • Dose and NM Count Rate Prediction

    ( ) ( )

    ( ) ( )

    =

    = =+

    =

    = =+

    =

    =

    =

    =

    m

    ii

    primEiNM

    m

    i

    n

    j

    primiEijjii

    m

    ii

    primEiA

    m

    i

    n

    j

    primiEijjii

    EEPh

    sPREcC

    EEPPKEcH

    1,

    1 1,1,

    1

    1,

    1 1,1,

    1

    3600)hcount (

    hs3600)h Sv(,E

    &&&

    &&&&

    NM Count Rate

    Dose Rate

    Energy bin width

    NM Response Function

    MCNPX matrix coefficients

    Primary GOES spectrum

    Dose Conversion Coefficient

    Global Cut-off Rigidity Contours

    Noisy Sun Effects

  • Solar Storm Effects and Solar Flare Anisotropy

    "SOHO (ESA & NASA)"

  • Neutron monitor peak count rate - April 15th, 2001

    1.E-01

    1.E+00

    1.E+01

    1.E+02

    1.E+03

    1.E+04

    100 1000 10000

    Effective Cutoff Rigidity (MV)

    Cou

    nt R

    ate

    (C/s

    )

    RMC Model (0 km) Thule OuluCape Schmidt Lomniky Stit MagadanIrkutsk Alma Ata ApatityJungfraujoch Kiel NewarkRome Yakutsk RMC Model (3 km)South Pole

    RMC Model (0 km)

    RMC Model (3 km)

    Neutron Monitor Analysis

  • SPE Aircrew Exposure (GLE 60)

    0

    2

    4

    6

    8

    10

    12

    14

    16

    18

    10 11 12 13 14 15 16 17 18 19 20

    GCR (background)(PCAire v7.2)

    SPE Model

    Measurements (MDU)

    Prague JFK International, NY

    Start of Solar Flare

    Am

    bien

    t Dos

    e R

    ate

    (Sv

    /hr)

    Universal Time (UTC) * Spurny et al

    (April 2001)

  • Commercial Code Development: PCAIRESys Operational environment:

    Not for Research Monitoring system for large number of personnel and flights

    AirlineHuman

    resourcesdatabase

    AirlineHuman

    resourcesdatabase

    PCAIREPCAIRESysSysDose databasedose by flightdose by crew

    Interface

    Pcairesystem

    administrator

    Employees

    Employer

    National Dose Registry

    Databaseadministrator

  • Sources of Space Radiation (Manned Missions in Low-Earth Orbit)*

    S

    N

    SOUTH ATLANTIC ANOMALY(Protons)

    INNER RADIATION BELT(Protons)

    OUTER RADIATION BELT(Electrons)

    OUTER RADIATION BELT(Electrons)

    GALACTIC COSMIC RADIATION (GCR)(Protons to Iron Nuclei) Magnetic

    AxisSpinAxis

    * Adapted from: M. Golightly, Radiation Familiarization, CSA Training with SRAG, NASA, JSC, January 27-31, 2003.

    SOLAR PARTICLE EVENT(Protons to Iron Nuclei)

  • Nominal In-flight Radiation EnvironmentElectrons in outer radiation beltGalactic Cosmic Rays

    Protons in South Atlantic Anomaly

  • Space Weather Radiation Enhancements

    Outer electron belt enhancement--electrons

    Solar particle event (SPE)--protons

    Additional radiation belts-- high energy electrons, protons (?)

  • Parameters that Affect Exposure or Susceptibility

    Mission Factors Space Weather Orbit Inclination South Atlantic Anomaly (SAA) Passage Altitude Shielding Length of Mission

    Individual Factors Sex Age Health Status Nutritional Status Ethnicity

  • IV-CPDSTEPCRAMsCPDs

    TEPCPRDsCPDs

    EV-CPDSEV-CPDS: Extra-Vehicular Charged Particle Spectrometer

    IV-CPDS: Intra-Vehicular Charged Particle Spectrometer

    TEPC: Tissue Equivalent Proportional Counter

    RAM: Radiation Area Monitors(TLDs)

    PRD: Passive Radiation Dosimeter(TLDs)

    CPD: Crew Passive Dosimeter (TLDs, PNTD)

    Active instrument real-time telemetry

    Active instrumentno real-time telemetry

    Passive instrument

    Space Radiation Monitoring

    * Adaped from: M. Golightly, Initial Briefing to Astronauts Radiation Exposure During Space Missions, 1998 Astronaut Candidate Class, NASA-JSC, June 10, 1999.

  • Space Dosimetry* Type Program Measurements

    Crew Personnel Dosimetry:TLD-100 All Programs Absorbed doseTLD-300, 600, 700 STS, and ISS Absorbed doseCR-39 or other Nuclear plastic track detectors

    Apollo, Skylab, STS, STS, Mir Fluence vs. LET or Z

    Fission Foils Apollo, STS Neutrons

    Area dosimetry:TLD-100 STS, Mir, ISS Absorbed doseTLD-300, 600, 700 STS, ISS Absorbed doseCR-39 or other Nuclear plastic track detectors Fluence vs. LET or ZFission Foils Apollo, STS NeutronsActive Ionization Chambers Apollo, Skylab Absorbed doseTEPC STS, Mir, ISS Lineal energy, dose, dose equivalentZ,E Telescope Mir, STS, ISS Fluence vs. Z and EBonner Spheres STS, ISS NeutronsBubble detectors STS Neutrons

    *Adapted from: F. Cucinotta, Organ Dose Estimates for Astronauts, CSA Training with SRAG, NASA-JSC, January 27-31, 2003.

  • Typical Exposures Daily Exposures

    150 200 Gy/d (solar max) (2 x greater at solar minimum)

    25 mGy or ~ 60 mSv for 140 days (CNSC terrestrial limits are 20 mSv/y)

    Dependent upon where you spend your time/sleep/timing/altitude etc.

    SPE Doses (IVA) Highly variable

    Small events ~100 200 Gy ( ~ 300 Gy @ TEPC/Lab Fwd)

    Large events ~ 10 20+ mGy (Jul 2000 estimate ~6 mGy @ Node1)

  • Radiation Exposure ComparisonsType of Exposure Limit: Annual Canadian Public Limit: Annual Canadian Radiation Worker

    Average annual exposure to natural background Average annual occupational exposure (US) (ground) Living one year in Kerala, India

    Airline Flight Crew

    Apollo 14 Highest Skin Dose Average Shuttle Skin Dose STS 82 Highest Skin Dose STS-57 (473 km, 28.5) STS-60 (352 km, 57) 140 day mission on ISS (400 km, 51.56) 1 year in deep space (5 g cm-2 Al shielding) 1 year deep space (5 g cm-2 polyethylene shielding) Mars mission BFO Dose (GCR+SPE: behind 10 g cm-2 shielding) (3-year)

    Dose Equivalent1 mSv/y

    20 mSv/y

    2.94 mSv/y2.10 mSv/y13 mSv/y

    1-6 mSv/y

    14 mSv~4.33 mSv76.3 mSv19.1 mSv

    4 mSv~60 mSv1140 mSv870 mSv

    800 to 2000 mSv

  • Biological Effects of Ionizing Radiation

    Ionizing radiation causes atoms and molecules to become ionized or excited: Produce free radicals Break chemical bonds Produce new chemical bonds and cross-linkage between macromolecules Damage molecules that regulate vital cell processes (e.g. DNA, RNA, proteins).

    Tissues that undergo rapid cell regeneration are most sensitive to radiation (e.g., blood-forming organs, reproductive organs, and lymphatic system)

  • U.S. Astronaut Exposure Limits

    Exposure Duration

    Blood Forming Organs Eye Skin

    30 days 0.25 1.0 1.5

    Annual 0.50 2.0 3.0

    Career Limit: fatal cancer (3% for all ages and both sexes)

    National Council on Radiation Protection and Measurements (NCRP), Guidance on Radiation Received in Space Activities. NCRP Report No. 98, (July 31, 1989)

    NCRP Report No. 132 (Dec 2000)

    Career Exposure LimitsNCRP Report No. 98 (1989)

    (Sv)

    10 Year Career Exposure LimitsNCRP Report No. 132 (2000)

    (Sv)

    Age (yr) Male Female Male Female

    25 1.5 1.0 0.7 0.4

    35 2.5 1.75 1.0 0.6

    45 3.25 2.5 1.5 0.9

    55 4.0 3.0 3.0 1.7

    Non-Stochastic (Deterministic) Effects: NCRP-98 (Sv) and NCRP-132 (Gy-Eq)*

    *NCRP-132 uses relative biological effectiveness (RBE) in place of quality factor (Q)

  • Observed Astronaut Health Effects (Hamm & Al 2000)

    Significant increase in lifelong risk of cataracts in astronauts Of 48 lens opacities in 295 astronauts, 39 of those occurred after space flight 90% of those 39 cataracts occurred after lunar missions and high inclination space flights

    14 cases of cancer in 312 astronauts from 1959 to present (excluding non-melanoma skin cancers)

    59% higher than the control group

  • No protection from Earths magnetic field

    image from NASA/Viking

    Interplanetary Travel

  • Summary

    Aircrew RadiationPCAIRE Code Development (GCR and Solar Flares)

    Experimentally-based - Only one!Commercial Airline Application (spin off) (PCAIRESys)

    Space Radiation

  • AcknowledgementsRMC Research Team: Prof. L. Bennett, Research Associates and Assistants (A.R. Green, A. Butler, M. Boudreau, B. Bennett), Graduate Students (Dr. P. Tume, M. McCall, B. Ellaschuck, M. Desormeaux, Dr. M. Pierre, H. Al Anid) Air Canada, Canada 3000 Airlines, Canadian Airlines International, Canadian Regional Airlines, First Air, Aerolinas Argentinas, British Airways, Air Operations at 8 Wing Trenton, 437/436/429 SquadronsJ. Servant (Transport Canada),C. Thorp & S. Kupca (DGNS/DND), W. Friedberg (US Federal Aviation Administration), H. Goldberg (Air Transport Association of Canada), M. Pelliccioni & A. Zanini (INFN), E. Felsberger (U Graz), S. Roesler(CERN), A. Chee (Boeing), H.Schraube (GSF), W. Heinrich (U Siegen), K. OBrien (Northern Arizona U), U. Schrewe (FHH), D. Bartlett (NRPB), V. Ciancio (UNP), D. Irvine (British Airways), J. Lafortune and F. Lemay (PCAIRE Inc)G. Badhwar (NASA-JSC), F. Cuccinotta (NASA-JSC)H. Ing, M. Smith, K. Garrow (Bubble Technology Industries)

    Aircrew and Spacecrew Radiation Exposure The Dangers of Getting HighOutlineTypical Annual Radiation Exposure ImpetusAircrew Radiation Regulation Epidemiological Studies Radiation Exposure to AircrewGalactic Cosmic Ray (GCR) Exposure ConditionsSolar Magnetic Field Shielding (When)Earth Magnetic Field Shielding(Where)Atmospheric Shielding(How High)Equipment Suite DevelopmentCommercial Aircraft Measurement Aircrew Radiation StudiesAmbient Dose Equivalent Distribution (Sv)Quality FactorTEPC Data from Selected Flight RoutesData CoverageTEPC Count RateTEPC Data AnalysisLatitude Dependence:Dose Rate Vs Cutoff RigidityAltitude Effect (Balloon Flights)PCAIRE CodePCAIRE Code vs Concorde/ER-2 (NASA) (High-Altitude)Aircrew Annual ExposureCanadian Annual Occupational ExposuresHealth ImpactRadiation Exposure from Solar Particle Events (SPE)Aircrew Exposure from SPEsDose and NM Count Rate PredictionSolar Storm Effects and Solar Flare AnisotropySPE Aircrew Exposure (GLE 60)Commercial Code Development: PCAIRESysNominal In-flight Radiation EnvironmentSpace Weather Radiation EnhancementsParameters that Affect Exposure or SusceptibilitySpace Dosimetry* Radiation Exposure ComparisonsBiological Effects of Ionizing RadiationU.S. Astronaut Exposure LimitsObserved Astronaut Health Effects (Hamm & Al 2000)Summary Acknowledgements