aircraft control lecture 12

Upload: arief-hadiyanto

Post on 04-Apr-2018

220 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/29/2019 aircraft control Lecture 12

    1/27

    Lecture# 12AircraftLateralAutopilots

    Multi-loopclosure

    HeadingControl: linearHeadingControl: nonlinear

  • 7/29/2019 aircraft control Lecture 12

    2/27

    Fall2004 16.333101LateralAutopilots

    Wecanstabilize/modifythe lateraldynamicsusingavarietyofdif-ferentfeedbackarchitectures.

    a - -p 1 -s

    r -Glat(s)

    -r 1 -

    s

    Lookfor

    good

    sensor/actuator

    pairings

    to

    achieve

    desired

    behavior.

    Example: Yawdamper

    Can improve the damping on the Dutch-roll mode by adding afeedbackonrtotherudder: c =kr(rcr)r

    3.33ServodynamicsHr = s+3.33 addedtoruddera =Hrcr rSystem:

    1.618s3+0.7761s2+0.03007s+0.1883Grcr =s5+3.967s4+3.06s3+3.642s2+1.71s+0.01223

    3.5 3 2.5 2 1.5 1 0.5 0

    2

    1.5

    1

    0.5

    0

    0.5

    1

    1.5

    2

    0.94

    0.86 0.160.340.50.640.76

    3.5

    0.76

    0.985

    0.160.340.50.64

    1

    0.86

    0.94

    0.985

    0.53 1.522.5

    Lateral autopilot: r to rudder

    Real Axis

    ImaginaryAxis

    c

    r

    Figure2: Lateralpole-zeromapG r

  • 7/29/2019 aircraft control Lecture 12

    3/27

    Fall2004 16.333102 Notethatthegainoftheplantisnegative(Kplant 0

    Real Axis

    ImaginaryAxis

    3.5 3 2.5 2 1.5 1 0.5 02

    1.5

    1

    0.5

    0

    0.5

    1

    1.5

    2

    1

    0.25

    0.250.5

    0.5

    0.75

    0.25

    0.5

    0.75

    Lateral autopilot: r to rwith k

  • 7/29/2019 aircraft control Lecture 12

    4/27

    Fall2004 16.333103YawDamper: Part2

    Canavoidthisproblemtosomeextentbyfilteringthefeedbacksignal.Feedbackonlyahighpassversionofthersignal.Highpasscutsoutthelowfrequencycontentinthesignalsteadystatevalueofrwouldnotbefedbacktothecontroller.

    Newyawdamper: c = kr(rcHw(s)r) whereHw(s) = s isther s+1washoutfilter.

    102

    101

    100

    101

    102

    101

    100

    Washout filter with =4.2

    |Hw

    (s)|

    Freq (rad/sec)

    Figure4: Washoutfilterwith =4.2 Newcontrolpicture

    p 1a - - -s

    Glat(s)c r 1rrc - - - - -Hr(s)kr6 s

    Hw(s)

  • 7/29/2019 aircraft control Lecture 12

    5/27

    Fall2004 16.333104

    2 1.5 1 0.5 0 0.5 11.5

    1

    0.5

    0

    0.5

    1

    1.5

    0.250.5

    0.5

    0.75

    0.75

    0.25

    1

    0.5

    0.25

    Lateral autopilot: r to rudder WITH washout filter

    Real Axis

    Imag

    inaryAxis

    Figure5: RootLocuswiththewashoutfilter included. ZeroinHw(s)trapsapoleneartheorigin,butitisslowenoughthat

    itcanbecontrolledbythepilot. Obviouslyhaschangedtheclosedlooppolelocations( ),butkr =1.6stillseemstogiveawelldampedresponse.

  • 7/29/2019 aircraft control Lecture 12

    6/27

    Fall2004 16.333105

    0 5 10 15 20 25 300.5

    0

    0.5

    1

    Time

    Responser

    Without Washout

    With Washout

    0 5 10 15 20 25 30

    0.5

    0

    0.5

    1

    Time

    Control

    r

    Without Washout

    With Washout

    Figure 6: Impulse response of closed loop system with and without the Washoutfilter ( = 4.2). Commanded rc = 0, and both have (r)ss = 0, but without thefilter,rss = 0,whereaswith it,rss = 0.

    Fordirectcomparisonwithandwithoutthefilter,appliedimpulseasrc tobothclosed-loopsystemsandthencalculatedrandr.

    Bottom plot shows that control signal quickly converges to zero inbothcases,i.e.,nomorecontroleffortisbeingappliedtocorrectthemotion.

    Butonlytheonewiththewashoutfilterproducesazerocontrolinputeventhoughthethere isasteadyturnthecontrollerwillnottrytofightacommandedsteadyturn.

  • 7/29/2019 aircraft control Lecture 12

    7/27

    Fall2004 16.333106HeadingAutopilotDesign

    So now have the yaw damper added correctly and want to controltheheading.Needtobanktheaircrafttoaccomplishthis.Resultisacoordinatedturnwithangularrate

    Aircraftbankedtoanglesothatvectorsumofmg andmU0 isalongthebodyz-axisSumminginthebodyy-axisdirectiongivesmu0 cos=mgsin

    U0tan=

    g Sincetypically1,wehave

    U0

    g

    givesthedesiredbankangleforaspecifiedturnrate.

  • 7/29/2019 aircraft control Lecture 12

    8/27

    Fall2004 16.333107Problemnow isthat tendstobeanoisysignaltobaseoutbankangleon,sowegenerateasmoothersignalbyfilteringit.Assumethatthedesiredheading isknownd andwewant to

    followd relativelyslowlyChoosedynamics1 + = d

    1=

    d 1s+ 1with1=15-20secdependingonthevehicleandthegoals.

    Alowpassfilterthateliminatesthehigherfrequencynoise.

    Filteredheadinganglesatisfies1

    = (d)1

    whichwecanusetocreatethedesiredbankangle:U0

    d = = U0 (d)g 1g

  • 7/29/2019 aircraft control Lecture 12

    9/27

    7 6 5 4 3 2 1 010

    8

    6

    4

    2

    0

    2

    4

    6

    8

    10

    0.88

    0.68

    0.52 0.38 0.28 0.060.120.2

    0.68

    0.38 0.28 0.2 0.12 0.06

    8

    0.88

    0.52

    6

    2

    4

    6

    8

    2

    4

    Root Locus

    Real Axis

    ImaginaryAxis

    Fall2004 16.333108RollControl

    Giventhisdesiredbankangle,weneedaroll controller toensurethatthevehicletracksitaccurately.Aileronisbestactuatortouse: a = k(d)kpp

    Todesignk andkp,canjustusetheapproximationoftherollmodeI

    I xxp = Lpp+ Laa xxLp = Laa= pwhichgives La=

    a s(IxxsLp) Forthedesign,addtheaileronservodynamics

    1Ha(s) = , a = Ha(s)ca0.15s+ 1 a

    PDcontroller

    c= k(s

    + 1) + kd,

    adds

    zero

    at

    s= 1/a

    Pick= 2/3

    Figure7:

    Root

    Locus

    for

    roll

    loop

    closed

    Loop

    poles

    for

    Kp =20,K =30

  • 7/29/2019 aircraft control Lecture 12

    10/27

    Fall2004 16.333109

    0 1 2 3 4 5 6 7 8 9 100.4

    0.3

    0.2

    0.1

    0

    0.1

    0.2

    0.3

    Reponse to initial roll of 15 degs

    p

    0 1 2 3 4 5 6 7 8 9 102

    0

    2

    4

    6

    8

    10x 10

    3 Reponse to initial roll of 15 degs

    r

    Figure8: Rollresponsetoan initialrolloffset

  • 7/29/2019 aircraft control Lecture 12

    11/27

    Fall2004 16.3331010

    0 5 10 15 20 25 300.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    Time (sec)

    Reponse to step input c=15 degs (0.26 rad)

    p

    0 5 10 15 20 25 300.1

    0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    Time (sec)

    Reponse to step input c=15 degs (0.26 rad)

    r

    Figure9: Rollresponsetoastepcommandforc. Notetheadverseyaweffects.

  • 7/29/2019 aircraft control Lecture 12

    12/27

    2 1.5 1 0.5 0 0.5 1 1.5 2

    1

    0.5

    0

    0.5

    1

    0.68 0.5 0.25

    0.975

    0.94

    0.88

    0.8

    0.68 0.25

    0.994

    1.5

    0.50.8

    11.75

    0.88

    0.50.751.25 0.25

    0.94

    0.975

    0.994

    Heading Command Loop 1=12 sec

    Real Axis

    ImaginaryAxis

    Fall2004 16.3331011HeadingAutopilot

    PuttingthepiecestogetherwegetthefollowingautopilotcontrollerKp

    ?6

    + - K

    Ha(s)-?

    ca - -

    p1s -

    d Glat(s)

    0

    6 - Kr Hs(s)-cr - -r 1

    s -

    s

    s+ 1U0 1g 6+ d

    Laststep: analyzeeffectofclosingthed loop

    Figure10: Headinglooprootlocus. Closed looppolesforgainU0/(g1). 8thordersystem,butRLfairlywellbehaved.

  • 7/29/2019 aircraft control Lecture 12

    13/27

    Fall2004 16.3331012 Measurewithaverticalgyroandwithadirectionalgyro Addalimitertod orelsewecangetsomeverylargebankangles

    DesignvariablesareK,Kp,1,,andKr Multi-loopclosuremustbedonecarefully

    Must choose the loop gains carefully so that each one is slowerthantheoneinsidecanleadtoslowoverallresponse

    Analysisonfullycoupledsystemmightshowthatthecontrollersdesignedonsubsystemmodelsinteractwithothermodes(poles)severaliterationsmightberequired

    Nowneedawaytospecifyd

  • 7/29/2019 aircraft control Lecture 12

    14/27

    Fall2004 16.3331013

    0 5 10 15 20 25 30 35 40 45 500.1

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    Time (sec)

    p

    0 5 10 15 20 25 30 35 40 45 500.1

    0.05

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    Time (sec)

    r

    c

    Figure11: Responseto15degstepinc. Notethebankangleisapproximately30degs,which isaboutthemaximumallowed. Decreasing1 tendsto increasemax.

  • 7/29/2019 aircraft control Lecture 12

    15/27

    Fall2004 16.3331014GroundTrackControl

    Considerscenarioshown- usethistodeterminedesiredheadingd

    Figure12: Headingdefinitions

    Areinitiallyat(0,0),movingalongXe (0 =0)Wanttobeat(0,1000)movingalongdashedlineangledatref

    Separationdistanced=Yref Ya/c (d0 =1000)Desiredinertialyposition- ypositionofaircraft

    d =U0sin(ref ) U0(ref ) Wanttosmoothlydecreasedtozero,useafiltersothat

    d = 1d d

    =30secd

    1d = U0(ref )

    d1 1

    = = ref + d=ref + (Yref Ya/c)dU0 dU0

    whichincludesafeedbackontheaircraftinertialY position. Usethisastheinputd.

  • 7/29/2019 aircraft control Lecture 12

    16/27

    Fall2004 16.3331015

    -5000

    pathoffset

    Nwas

    h(s)

    Dwas

    h(s)

    Washou

    tFIlter

    ac3out

    To

    Workspace

    Signal

    Generator

    Saturation

    JNr(s)

    JDr(s)

    RudderDynamics

    2*pi/180

    Psi_ref

    Path1

    desired

    ye

    Mux

    Mu

    syslat2

    Lateral

    -K

    -

    Kp

    1 sIntegrator

    -K-

    U0

    Kphi Gai

    n

    emu

    0

    Constant

    Clock

    -K-

    Bankingmix1

    -K-

    Bankingmix

    JNa(s)

    JDa(s)

    AileronDynamics

    alldata

    alldata

    rpp

    hi

    v

    psi

    psi

    time

    desiredpath

    desiredpath

    psi_ref

    Psi_d

    ye

    Figure13: Simulink implementationrunac3.mfirst

  • 7/29/2019 aircraft control Lecture 12

    17/27

    Fall2004

    0 100 200 300 400 500 600 700 800 900 1000

    1.5

    1

    0.5

    0

    0.5

    1

    1.5

    x 104

    PathY

    e

    Yref

    Ya/c

    16.3331016

    Figure14: Pathfollowingforgroundtrackcontroller

    0 100 200 300 400 500 600 700 800 900 10000.8

    0.6

    0.4

    0.2

    0

    0.2

    0.4

    0.6

    andc

    c

    Figure15: Rollcommandfollowingforgroundtrackcontroller

    0 100 200 300 400 500 600 700 800 900 10003

    2

    1

    0

    1

    2

    3

    a

    ndc

    c

    Figure16: Headingfollowingforgroundtrackcontroller

  • 7/29/2019 aircraft control Lecture 12

    18/27

    Fall2004 16.3331017AlternativeStrategy

    Sanghyuk Park developed an alternative tracking algorithm that hepresentedthispastsummer1

    Guidancelogicselectsareferencepointonthedesiredtrajectoryandusesittogeneratealateralaccelerationcommand.SelectionofReferencePoint Reference point is on the desired

    pathatadistance(L1)forwardofthevehicleFigure17.LateralAccelerationCommanddeterminedbyascmd =2V

    2sinL1

    R

    V

    R

    L1

    desired pathreference poin

    2

    aScmd

    aircraft

    Figure17: DiagramforGuidanceLogic

    Direction of acceleration depends on sign of angle between the L1linesegmentandthevehiclevelocityvector.Ifselectedreferencepointtotherightofthevehiclevelocityvec-

    tor,thenthevehiclewillbecommandedtoacceleratetotheright(seeFigure17)vehiclewilltendtoalign itsvelocitydirectionwiththedirectionoftheL1 linesegment.

    1SanghyukPark,JohnDeyst,andJonathanHow,ANewNonlinearGuidanceLogicforTrajectoryTracking,AIAAGNC2004.

  • 7/29/2019 aircraft control Lecture 12

    19/27

    Fall2004 16.3331018

    =as

    Vt

    s=Vt

    L1

    : velocity direction change

    due to the acceleration

    reference point

    Figure18: OneTimeStep

    0 20 40 60 8010

    0

    10

    20

    30

    40

    50

    X

    Y

    Desired Path

    At some point, acceleration sign changes

    Smooth convergence to desired path

    Vehicle PositionReference PointL

    1

    t V L1Figure19: StepbyStep( =1, =10,and =40) Figure18showsevolutionoftheguidancelogicinonetimestepand

    Figure19showsthetrajectoryofthevehicleoverseveraltimesteps.Vehicle initially starts from a location far away from the desired

    path,andeventuallyconvergestoit.Ifvehiclefarfromthedesiredpath,thentheguidancelogicrotates

    the vehicle so that its velocity direction approaches the desiredpathatalargeangle.

    Ifvehicleclosetothedesiredpath,thentheguidancelogicrotatesthevehiclesoitsvelocitydirectionapproachesthedesiredpathatasmallangle.

  • 7/29/2019 aircraft control Lecture 12

    20/27

    Fall2004 16.3331019 Figure 20definesthenotationusedforalinearization.

    d reference poin

    desired flight path

    1

    2

    L1

    V

    1s

    cmd

    a

    Figure20: LinearModelforStraight-lineFollowingCaseL1 isthedistancefromthevehicletothereferencepoint.disthecross-trackerrorV isthevehiclenominalspeed.

    Assuming issmallsin=1+2 andd d

    1 , 2L1 V

    CombiningtheabovegivesV

    2ascmd =2 sin2V d + V d (1)L1 L1 L1

    LinearizationyieldsaPDcontrollerforthecross-trackerror.RatioofV andseparationdistanceL1 isan important factor in

    determiningtheproportionalandderivativecontrollergains.Keypoints: NL formworkssignificantlybetterthanaPDand

    ismuchmoretoleranttowindsdisturbances.

  • 7/29/2019 aircraft control Lecture 12

    21/27

    Fall2004 16.3331020Implementation

    Can implement this command by assuming that vehicle maintainssufficientlifttobalanceweight,eventhoughbankedatangle.Requiresthatthevehiclespeedupand/orchangetoa larger.

    LiftincrementW

    CL =Lmg(n1)QS QS

    wherenL/W istheloadfactor.AssumethatLcos=W,thenLsin=mas,sothat

    astan=

    g Wecanusethistodevelopd thatweapplytotherollcontroller.

    Kp

    c 1a? - ? - - - -Ha(s)K6+ p sGlat(s)d

    c0 r 1r- - - - -Hs(s)Kr6 s

    s

    s+ 1SomesimulationsshownWorkswellhardestpart isdeterminingwheretoplacethe ref-

    erencepoint,whichisL1 aheadalongthepath.Recall thatL1 acts like a gain in the controller making it too

    smallcandrivetheaircraftunstable.

  • 7/29/2019 aircraft control Lecture 12

    22/27

    Fall2004 16.3331021

    0 1 2 3 4 5

    x 104

    2

    1.5

    1

    0.5

    0

    0.5

    1

    1.5

    2

    x 104

    Ye

    xe

    veh

    Path

    Figure21: Simulation#1: path. TurnradiusRV2/(gtan)

    0 500 1000 1500 2000

    30

    20

    10

    0

    10

    20

    30

    time

    andd

    d

    Figure22: simulation#1: bankangle. Limitedto30degshere.

  • 7/29/2019 aircraft control Lecture 12

    23/27

    Fall2004 16.3331022

    2000 0 2000 4000 6000 8000 10000 12000 140000

    0.5

    1

    1.5

    2

    2.5

    3

    3.5x 10

    5

    Ye

    xe

    veh

    Path

    0 200 400 600 800 1000 1200

    30

    20

    10

    0

    10

    20

    30

    time

    and

    d

    d

    Figure23: simulation#2

  • 7/29/2019 aircraft control Lecture 12

    24/27

    Fall2004 16.3331023FlightTest

    Guidancealgorithm implementedandtestedwithtwoUAVs[ParentChildUnmannedAirVehicle(PCUAV)projectbyProf. Deyst]RequiredlateralaccelerationachievedusingbankanglecontrolNominalflightvelocityofabout25m/s,thechoiceofL1=150m

    resultsintheassociatedcrossoverfrequencyat0.4rad/s.

    Figure 24showstheflightdatafortheMinivehicleusingtheguidancelogicinthelateraldynamics.Plot shows the 2-dimensional trajectory of the Mini vehicle ()

    withacommandeddesiredtrajectory(- -).Smallnumbersalongthetrajectoryaretheflighttimes recorded

    intheonboardavionics.Lateral displacement between the vehicle and the desired path

    within2 meters for the 75% of its flight time and within3metersfor96%oftheflighttime

    .

    AsimilarflighttestwasperformedfortheOHSParent(seeFigure25)After the transient period, the trajectory of the vehicle followed

    thecommandedpathwithin2meters forthe78%of itsflighttimeandwithin3metersfor97%oftheflighttime.

  • 7/29/2019 aircraft control Lecture 12

    25/27

    Fall2004 16.3331024

    300 200 100 0 100 200 300 400400

    300

    200

    100

    0

    100

    200

    300

    East [m]

    North[m]

    141

    150

    160

    170

    180

    190

    200

    210

    220

    230

    Desired PathPosition Trajectory

    Figure24: FlightDataofMINI- TrajectoryFollowing

    700 600 500 400 300 200 100100

    0

    100

    200

    300

    400

    500

    East [m]

    N

    orth[m]

    76

    90

    110

    130

    150

    170

    Desired PathPosition Trajectory

    Figure25: FlightDataofOHSParent- TrajectoryFollowing

  • 7/29/2019 aircraft control Lecture 12

    26/27

    Fall2004 16.3331025 Thendemonstratedrendezvousfromanyarbitraryinitialpositionsto

    aconfigurationoftightformationflight.Figures26showthepositionsoftheParentandtheMini inthe

    north-east2-Dmapevery10seconds.OHSParentvehiclefollowsthecircularflightpath,withnoknowl-

    edgeoftheMinivehicleslocation.Minivehicleschedulesitsflightpathandperformsformationflight

    byreceivingpositioninformationfromtheOHSParent.

    300 200 100 0 100 200 300 400400

    300

    200

    100

    0

    100

    200

    300

    O

    M

    EAST [m]

    NORTH

    [m]

    40 [sec]

    300 200 100 0 100 200 300 400400

    300

    200

    100

    0

    100

    200

    300

    O

    M

    EAST [m]

    NORTH

    [m]

    120 [sec]

    300 200 100 0 100 200 300 400400

    300

    200

    100

    0

    100

    200

    300

    O

    M

    EAST [m]

    NORTH

    [m]

    70 [sec]

    300 200 100 0 100 200 300 400400

    300

    200

    100

    0

    100

    200

    300

    OM

    EAST [m]

    NORTH

    [m]

    90 [sec]

    Figure26: FlightData- RendezvousTrajectoriesofOHSandMini(O:OHS,M:Mini)

  • 7/29/2019 aircraft control Lecture 12

    27/27

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    13

    14

    15

    16

    17

    18

    19

    20

    21

    22

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    33

    34

    35

    36

    37

    38

    39

    40

    41

    42

    43

    44

    45

    46

    47

    48

    49

    50

    51

    52

    Fall2004 16.3331026% newr.m 53 kk=1;% Analyze tracking algorithm by Park et al 54 while (~isempty(iii)) & (kk