air foil

58
Airfoil From Wikipedia, the free encyclopedia This article is about airfoils. For other types of foil, see Foil (disambiguation) . For the kite, see Foil kite . Examples of airfoils in nature and within various vehicles. Though not strictly an airfoil, the dolphin fin obeys the same principles in a different fluid medium. An airfoil (in American English ) or aerofoil (in British English ) is the shape of a wing or blade (of apropeller , rotor , or turbine ) or sail as seen in cross-section . An airfoil-shaped body moved through a fluid produces an aerodynamic force . The component of this force perpendicular to the direction of motion is called lift . The component parallel to the direction of motion is called drag . Subsonic flight airfoils have a characteristic shape with a rounded leading edge, followed by a sharp trailing edge, often with asymmetric curvature of upper and lower surfaces. Foils of similar function designed with water as the working fluid are called hydrofoils . The lift on an airfoil is primarily the result of its angle of attack and shape. When oriented at a suitable angle, the airfoil deflects the

Upload: gurunathan-p

Post on 21-Jul-2016

12 views

Category:

Documents


1 download

DESCRIPTION

AERODYNAMICS 1-AE 2251 Lesson Plankevintsubasa

TRANSCRIPT

Page 1: air foil

AirfoilFrom Wikipedia, the free encyclopediaThis article is about airfoils. For other types of foil, see Foil (disambiguation). For the kite, see Foil kite.

Examples of airfoils in nature and within various vehicles. Though not strictly an airfoil, the dolphin fin obeys the same

principles in a different fluid medium.

An airfoil (in American English) or aerofoil (in British English) is the shape of a wing or blade (of apropeller, rotor, or turbine) or sail as seen in cross-section.

An airfoil-shaped body moved through a fluid produces an aerodynamic force. The component of this force perpendicular to the direction of motion is called lift. The component parallel to the direction of motion is called drag. Subsonic flight airfoils have a characteristic shape with a rounded leading edge, followed by a sharp trailing edge, often with asymmetric curvature of upper and lower surfaces. Foils of similar function designed with water as the working fluid are called hydrofoils.

The lift on an airfoil is primarily the result of its angle of attack and shape. When oriented at a suitable angle, the airfoil deflects the oncoming air, resulting in a force on the airfoil in the direction opposite to the deflection. This force is known as aerodynamic force and can be resolved into two components: liftand drag. Most foil shapes require a positive angle of attack to generate lift, but cambered airfoils can generate lift at zero angle of attack. This "turning" of the air in the vicinity of the airfoil creates curvedstreamlines which results in lower pressure on one side and higher pressure on the other. This pressure difference is accompanied by a velocity difference, via Bernoulli's principle, so the resulting flowfield about the airfoil has a higher average velocity on the upper surface than on the lower surface. The lift force can be related directly to the average

Page 2: air foil

top/bottom velocity difference without computing the pressure by using the concept of circulation and the Kutta-Joukowski theorem.[1][2][3][4]

Contents  [hide] 

1 Introduction 2 Airfoil terminology 3 Thin airfoil theory 4 Derivation of thin airfoil theory 5 See also 6 Notes 7 References 8 External links

Introduction[edit]

Streamlines around a NACA 0012 airfoil at moderate angle of attack

Lift and Drag curves for a typical airfoil

Page 3: air foil

A fixed-wing aircraft's wings, horizontal, and vertical stabilizers are built with airfoil-shaped cross sections, as arehelicopter rotor blades. Airfoils are also found in propellers, fans, compressors and turbines. Sails are also airfoils, and the underwater surfaces of sailboats, such as the centerboard and keel, are similar in cross-section and operate on the same principles as airfoils. Swimming and flying creatures and even many plants and sessileorganisms employ airfoils/hydrofoils: common examples being bird wings, the bodies of fish, and the shape ofsand dollars. An airfoil-shaped wing can create downforce on an automobile or other motor vehicle, improvingtraction.

Any object with an angle of attack in a moving fluid, such as a flat plate, a building, or the deck of a bridge, will generate an aerodynamic force (called lift) perpendicular to the flow. Airfoils are more efficient lifting shapes, able to generate more lift (up to a point), and to generate lift with less drag.

A lift and drag curve obtained in wind tunnel testing is shown on the right. The curve represents an airfoil with a positive camber so some lift is produced at zero angle of attack. With increased angle of attack, lift increases in a roughly linear relation, called the slope of the lift curve. At about 18 degrees this airfoil stalls, and lift falls off quickly beyond that. The drop in lift can be explained by the action of the upper-surface boundary layer, which separates and greatly thickens over the upper surface at and past the stall angle. The thickened boundary layer's displacement thickness changes the airfoil's effective shape, in particular it reduces its effective camber, which modifies the overall flow field so as to reduce the circulation and the lift. The thicker boundary layer also causes a large increase in pressure drag, so that the overall drag increases sharply near and past the stall point.

Airfoil design is a major facet of aerodynamics. Various airfoils serve different flight regimes. Asymmetric airfoils can generate lift at zero angle of attack, while a symmetric airfoil may better suit frequent inverted flight as in anaerobatic airplane. In the region of the ailerons and near a wingtip a symmetric airfoil can be used to increase the range of angles of attack to avoid spin–stall. Thus a large range of angles can be used without boundary layer separation. Subsonic airfoils have a round leading edge, which is naturally insensitive to the angle of attack. The cross section is not strictly circular, however: the radius of curvature is increased before the wing achieves maximum thickness to minimize the chance of boundary layer separation. This elongates the wing and moves the point of maximum thickness back from the leading edge.

Supersonic airfoils are much more angular in shape and can have a very sharp leading edge, which is very sensitive to angle of attack. A supercritical airfoil has its maximum thickness close to the leading edge to have a lot of length to slowly shock the supersonic flow back to subsonic speeds. Generally such transonic airfoils and also the supersonic airfoils have a low camber to reduce drag divergence. Modern aircraft wings may have different airfoil sections along the wing span, each one optimized for the conditions in each section of the wing.

Movable high-lift devices, flaps and sometimes slats, are fitted to airfoils on almost every aircraft. A trailing edge flap acts similarly to an aileron; however, it, as opposed to an aileron, can be retracted partially into the wing if not used.

A laminar flow wing has a maximum thickness in the middle camber line. Analyzing the Navier–Stokes equations in the linear regime shows that a negative pressure gradient along the flow has the same effect as reducing the speed. So with the maximum camber in the middle, maintaining a laminar flow over a larger percentage of the wing at a higher cruising speed is possible. However, with rain or insects on the wing, or for jetliner speeds, this does not work. Since such a wing stalls more easily, this airfoil is not used on wingtips (spin-stall again).

Schemes have been devised to define airfoils – an example is the NACA system. Various airfoil generation systems are also used. An example of a general purpose airfoil that finds wide application, and predates the NACA system, is the Clark-Y. Today, airfoils can be designed for specific functions using inverse design programs such as PROFOIL, XFOIL and AeroFoil. XFOIL is an online program created by Mark Drela that will design and analyze subsonic isolated airfoils.[5]

Page 4: air foil

Airfoil terminology[edit]

Airfoil nomenclature

The various terms related to airfoils are defined below:[6]

The suction surface (a.k.a. upper surface) is generally associated with higher velocity and lower static pressure.

The pressure surface (a.k.a. lower surface) has a comparatively higher static pressure than the suction surface. The pressure gradient between these two surfaces contributes to the lift force generated for a given airfoil.

The geometry of the airfoil is described with a variety of terms :

The leading edge is the point at the front of the airfoil that has maximum curvature (minimum radius).[7]

The trailing edge is defined similarly as the point of maximum curvature at the rear of the airfoil.

The chord line is the straight line connecting leading and trailing edges. Thechord length, or simply chord,  , is the length of the chord line. That is the reference dimension of the airfoil section.

Different definitions of airfoil thickness

Page 5: air foil

An airfoil designed for winglets(PSU 90-125WL)

The shape of the airfoil is defined using the following geometrical parameters:

The mean camber line or mean line is the locus of points midway between the upper and lower surfaces. Its shape depends on the thickness distribution along the chord;

The thickness of an airfoil varies along the chord. It may be measured in either of two ways: Thickness measured perpendicular to the camber line.[8][9] This

is sometimes described as the "American convention";[8]

Thickness measured perpendicular to the chord line.[10] This is sometimes described as the "British convention".

Some important parameters to describe an airfoil's shape are its camber and its thickness. For example, an airfoil of the NACA 4-digit series such as the NACA 2415 (to be read as 2 - 4 - 15) describes an airfoil with a camber of 0.02 chord located à 0.40 chord, with 0.15 chord of maximum thickness.

Finally, important concepts used to describe the airfoil's behavior when moving through a fluid are:

The aerodynamic center, which is the chord-wise length about which the pitching moment is independent of the lift coefficient and the angle of attack.

The center of pressure, which is the chord-wise location about which the pitching moment is zero.

Thin airfoil theory[edit]

An airfoil section is displayed at the tip of this Denney Kitfox aircraft, built in 1991.

Page 6: air foil

Airfoil of Kamov Ka-26 helicopters

Thin airfoil theory is a simple theory of airfoils that relates angle of attack to lift for incompressible, inviscid flows. It was devised by German-American mathematician Max Munk and further refined by British aerodynamicist Hermann Glauert and others[11] in the 1920s. The theory idealizes the flow around an airfoil as two-dimensional flow around a thin airfoil. It can be imagined as addressing an airfoil of zero thickness and infinite wingspan.

Thin airfoil theory was particularly notable in its day because it provided a sound theoretical basis for the following important properties of airfoils in two-dimensional flow:[12][13]

(1) on a symmetric airfoil, the center of pressure and aerodynamic center lies exactly one quarter of the chord behind the leading edge(2) on a cambered airfoil, the aerodynamic center lies exactly one quarter of the chord behind the leading edge(3) the slope of the lift coefficient versus angle of attack line is   units per radian

As a consequence of (3), the section lift coefficient of a symmetric airfoil of infinite wingspan is:

where   is the section lift coefficient, is the angle of attack in radians, measured relative to

the chord line.

(The above expression is also applicable to a cambered airfoil where   is the angle of attack measured relative to the zero-lift line instead of the chord line.)

Also as a consequence of (3), the section lift coefficient of a cambered airfoil of infinite wingspan is:

where   is the section lift coefficient when the angle of attack is zero.

Thin airfoil theory does not account for the stall of the airfoil, which usually occurs at an angle of attack between 10° and 15° for typical airfoils.[14]

Derivation of thin airfoil theory[edit]

Page 7: air foil

From top to bottom:

• Laminar flow airfoil for a RC park flyer

• Laminar flow airfoil for a RC pylon racer

• Laminar flow airfoil for a manned propeller aircraft

• Laminar flow at a jet airliner airfoil

• Stable airfoil used for flying wings

• Aft loaded airfoil allowing for a large main spar and

late stall

• Transonic supercritical airfoil

• Supersonic leading edge airfoil

Colors:

Black = laminar flow,

red = turbulent flow,

grey = subsonic stream,

blue = supersonic flow volume

The airfoil is modeled as a thin lifting mean-line (camber line). The mean-line, y(x), is considered to

produce a distribution of vorticity   along the line, s. By the Kutta condition, the vorticity is zero at the trailing edge. Since the airfoil is thin, x (chord position) can be used instead of s, and all angles can be approximated as small.

Page 8: air foil

From the Biot–Savart law, this vorticity produces a

flow field   where

where   is the location where induced velocity is produced,   is the location of the vortex element producing the velocity and   is the chord length of the airfoil.

Since there is no flow normal to the curved

surface of the airfoil,   balances that from the component of main flow  , which is locally normal to the plate – the main flow is locally

inclined to the plate by an angle  . That is:

This integral equation can by solved

for  , after replacing x by

 ,

as a Fourier series in   with a modified lead

term 

That is

(These terms are known as the Glauert integral).

The coefficients are given by

and

By the Kutta–Joukowski theorem, the total lift force F is proportional to

Page 9: air foil

and its moment M about the leading edge to

The calculated Lift coefficient depends only on the first two terms of the Fourier series, as

The moment M about the leading edge depends only on   and   , as

The moment about the 1/4 chord point will thus be,

.

From this it follows that the center of pressure is aft of the 'quarter-chord' point 0.25 c, by

Page 10: air foil

The aerodynamic center, AC, is at the quarter-chord point. The AC is where the pitc

Page 11: air foil

hing moment M' does not vary with angle of attack, i.e.,

See also[edit]

Page 12: air foil

Aq uanator

Ci rculation control wing

Hy drofoil

Kli ne–Fogleman airfoil

Kü ssner effect

Pa rafoil

Notes[edit]

Page 13: air foil

1. Jump up^ "...the effect of the wing is to give the air stream a downward velocity component. The reaction force of the deflected air mass must then act on

Page 14: air foil

the wing to give it an equal and opposite upward component." In: Halliday, David; Resnick, Robert, Fundamentals of Physics 3rd Edition, John Wiley & So

Page 15: air foil

ns, p. 378

2. Jump up^ "If the body is shaped, moved, or inclined in such a way as to produce a net deflection or turning of the flow, the local velocity is

Page 16: air foil

changed in magnitude, direction, or both. Changing the velocity creates a net force on the body" "Lift from Flow Turning". NASA Glenn Research Center. 

Page 17: air foil

Archived from the original on 5 July 2011. Retrieved 2011-06-29.

3. Jump up^ "The cause of the aerodynamic lifting force is the downward accel

Page 18: air foil

eration of air by the airfoil..." Weltner, Klaus; Ingelman-Sundberg, Martin, Physics of Flight – reviewed

4. Jump up^ "...if a streamline is curved, there

Page 19: air foil

must be a pressure gradient across the streamline..."Babinsky, Holger (November 2003), "How do wings work?",Physics Education

5. Jump up^ 

Page 20: air foil

XFOIL

6. Jump up^ Hurt, H. H., Jr. (January 1965) [1960]. Aerodynamics for Naval Aviators. U.S. Government Printing Office, Washington, D.C.: U.S. Navy,

Page 21: air foil

Aviation Training Division. pp. 21–22. NAVWEPS 00-80T-80.

7. Jump up^ Houghton, E. L.; Carpenter, P.W. (2003). Butterworth Heinmann, ed.Aer

Page 22: air foil

odynamics for Engineering Students (5th ed.). ISBN 0-7506-5111-3. p.18

8. ^ Jump up to:a b Houghton, E. L.; Carpenter, P.W. (2003). Butterworth Hein

Page 23: air foil

mann, ed.Aerodynamics for Engineering Students (5th ed.). ISBN 0-7506-5111-3. p.17

9. Jump up^ Phillips, Warren F. (2010). Mechanics of Flight (2

Page 24: air foil

nd ed.). Wiley & Sons.ISBN 978-0-470-53975-0. p.27

10. Jump up^ Bertin, John J.; Cummings, Russel M. (2009). Pearson Prentice Hall, ed.Aerod

Page 25: air foil

ynamics for Engineers (5th ed.). ISBN 978-0-13-227268-1. p.199

11. Jump up^ Abbott, Ira H., and Von Doenhoff, Albert E. (1959), Theory of Wing

Page 26: air foil

Sections, Section 4.2, Dover Publications Inc., New York, Standard Book Number 486-60586-8

12. Jump up^ Abbott, Ira H., and Von Doenhoff, Al

Page 27: air foil

bert E. (1959), Theory of Wing Sections, Section 4.3

13. Jump up^ Clancy, L.J. (1975), Aerodynamics, Sections 8.1 to 8.8, Pitman Publishing Limit

Page 28: air foil

ed, London. ISBN 0-273-01120-0

14. Jump up^ Aerospaceweb's information on Thin Airfoil Theory

References[e

Page 29: air foil

dit]

Anderson, John, D (2007). Fundamentals of Aerodynamics. McGraw-Hill.

D esktopaero

U niversity of Sydney

Page 30: air foil

, Aerodynamics for Students

Ba tchelor, George. K (1967). An Introduction to Fluid Dynamics. Cambridge UP. pp. 467–

Page 31: air foil

471.

External links[edit]

Wikimedia Commons has

media related to Airfoils.

UI UC Airfoil Coordinates Database

D atabase wit

Page 32: air foil

h airfoils

Air foil & Hydrofoil Reference Application

Th e Joukowski Airfoil

C hard Museum The Birth of Powered Flight.

Fo ilSim 

Page 33: air foil

An airfoil simulator from NASA.

N ACA Project Application to draw airfoil sections in Autocad and DraftSight.Categ

Page 34: air foil

ories: 

A erodynamics

A ircraft wing design

Navigation menu

Create account

Log in

A rticle

T alk

Read Edit View history

Page 35: air foil

Main page Contents Featured content Current events Random article Donate to Wikipedia Wikimedia Shop

Interaction Help About Wikipedia Community portal Recent changes Contact page Tools What links here Related changes Upload file Special pages Permanent link Page information Data item Cite this page Print/export Create a book Download as PDF Printable version Languages Afrikaans العربية Català Deutsch Español فارسی Français Gaeilge 한국어 हि�न्दी Hrvatski Italiano עברית Magyar മലയാളം

Nederlands 日本語 Polski Português Română

Go

Page 36: air foil

Русский සිංහල Simple English Српски / srpski Suomi Svenska தமிழ்

Türkçe Українська 中文

Edit links

T

hi

s

p

a

g

e

w

a

s

la

st

m

o

di

fi

e

d

o

n

5

J

u

n

e

2

0

1

4

Page 37: air foil

at

2

0:

4

3.

T

e

xt

is

a

v

ai

la

bl

e

u

n

d

er

th

C

re

at

iv

e

C

o

m

m

o

n

s

At

tri

b

ut

io

Page 38: air foil

n-

S

h

ar

e

Al

ik

e

Li

c

e

n

s

e;

a

d

di

ti

o

n

al

te

r

m

s

m

a

y

a

p

pl

y.

B

y

u

si

n

g

Page 39: air foil

th

is

si

te

,

y

o

u

a

gr

e

e

to

th

T

er

m

s

of

U

s

a

n

P

ri

v

a

c

y

P

ol

ic

y.

W

iki

Page 40: air foil

p

e

di

a

®

is

a

re

gi

st

er

e

d

tr

a

d

e

m

ar

k

of

th

e

W

iki

m

e

di

a

F

o

u

n

d

at

io

n,

In

Page 41: air foil

c.

,

a

n

o

n-

pr

of

it

or

g

a

ni

z

at

io

n.

P

r

i

v

a

c

y

p

o

l

i

c

y

Page 42: air foil

A

b

o

u

t

W

i

k

i

p

e

d

i

a

D

i

s

c

l

a

i

m

e

r

s

Page 43: air foil

C

o

n

t

a

c

t

W

i

k

i

p

e

d

i

a

D

e

v

e

l

o

p

e

r

s