air flow patterns

Upload: rodrigo-pozza

Post on 06-Jul-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 Air Flow Patterns

    1/9

    I C h e i T l E  0263-8762/04/S30.00 0.00

    2004  Institution of Chemical  Engineers

    Trans

     IChemE,  Part A, October

     2004

    Chemical Engineering Research and Design,  82 A10):  1344—1352

    IR  FLOW

     P TTERNS

     IN DEHUMIDIFIER

    WOOD DRYING KILNS

    Z .

     F. SUN

    1

      , C. G.

      C A R R I N G T O N 1  

    J . A.

      A N D E R S O N 2

      and Q. SUN

    1

    1Physics

      Department, University of Otago, Dunedin, New Zealand

    ^Energy

      Group Ltd, Dunedin, New Zealand

    B

    y  simulating the airflow

     patterns,

     velocity and

     pressure

     distributions in an industrial

    dehumidifier wood drying

     k i l n ,

     it is shown that typical dehumidifier  system configur

    ations create a risk of high levels of air recirculation at the dehumidifier,  wi th adverse

    implications for dryer capacity and efficiency. The simulation results also show that, for high

    efficiency,

      it is important to avoid air recirculation. An alternative air  flow  configuration,

    which

      could

      achieve

      this result using a single set of

      fans,

      is

     presented

      and its

      performance

    assessed.

    Keywords: wood drying;

      heat

      transfer; mass transfer; mathematical modelling;

      heat

     pump;

    dehumidifier.

    INTRODUCTION

    Air f low

      design  is potentially important in the  design  of

    dehumidifier drying kilns which

      operate

      as closed,  fu l ly -

    recirculatory

      systems.

      In this

      paper,

      we  show  how the

    performance

      of a dehumidifier wood drying  ki ln  can be

    impaired by a mismatch  between  the  ki ln  airflow  system

    and the dehumidifier. In turn, the poor

      performance

      of

    the dehumidifier  reduces  the overall efficiency of the

      ki ln ,

    resulting in

     increased

      drying time and  energy  use.

    In industrial wood drying kilns, the effect of non-uniform

    airflows

      is particularly  diff icul t  to resolve. Nijdam and

    Keey 2002)

      have

     investigated airflow

     patterns

      in conven

    tional

     heat-and-vent

     timber kilns to determine design modi

    fications that promote  more uniform flows. Their velocity

    measurements

      down the height of the timber  stack  in a

    k i l n  wi th  outward-swing  overhead baffles showed that the

    uppermost  packets

      of the

      stack  were starved

      of airflow.

    Nijdam  and Keey 2002)  demonstrated  that,  using con

    toured right-angled

      bends

      and inward-swinging

      overhead

    baffles in higher-velocity wood drying kilns, there  was a

    3-fold

      reduction in the

      range

      of the vertical velocity

    distribution.

    In a typical industrial dehumidifier

      k i l n ,

      the dehumidifier

    comprises separate

     modules,  wi th  their own fans,  indepen

    dent of other fans which may be used to maintain air move

    ment  in the

      k i l n .

      In this  system  the  k i l n  airflow and the

    dehumidifier airflow interact closely, although they are nor

    mally  not  designed  as an integrated  system. The impact of

    mismatches

      is  diff icul t  to anticipate. It is

      also

      diff icul t  to

    Correspondence to:  Dr Z.F. Sun,  Physics  Department, University of

    Otago, PO Box 56, Dunedin, New Zealand.

    E-mail:

     [email protected]

    measure  the distributions of air velocity and

     pressure,

      due

    to the complex interactions of the

      subsystems, such

      as the

    k i l n  fans,  wood  stack, air ducts  and the dehumidifier  fans

    and  heat

     exchangers.

      In this

      paper

      we

     present

      an

      analysis

    of airflow in a commercial dehumidifier wood drying  k i l n

    as a whole, using a three-dimensional CFD model. We

    show

     how airflow

     design

     has the potential to affect the

     per

    formance of dehumidifier wood drying kilns in unexpected

    ways. A modified  k i l n  configuration, in which an air duct

    connects

      the exit of the dehumidifier  fans  wi th  the  upper

    duct  space  of the

      k i l n ,

      has

      been  assessed

      using the CFD

    model. The

      results  show

      that this  ki ln  configuration can

    significantly

      improve the dehumidifier wood drying  ki ln

    performance. In particular, for dehumidifier wood drying

    kilns  to  achieve  high efficiency, it is

     advantageous

      to use

    a single set of

     fans

      to drive the air  flow  and to

      ensure

     all

    the  flow

     passes

      the dehumidifiers without recirculation.

    SYSTEM DESCRIPTION

    Figure 1

     shows

     the

      flow

      configuration and the coordinate

    system based on a commercial wood drying

     k i l n .

     The origin

    of the coordinate

      system

     is at the mid-point of the left-hand

    w a l l  Figure la) of the  k i l n at floor level. The  system con

    sists of two dehumidifier  modules  installed  side-by-side, a

    wood  stack  and six  k i l n  air recirculation  fans,  all located

    wi th i n  an insulated  k i l n

     chamber.

    The two main

     elements

     of the dehumidifier, which

      influ

    ence

      the  flow

      patterns

      in the

      k i l n ,

      are the

      condenser

      and

    evaporator

      and their air

      fans,

      shown in Figure 1 a).

      Each

    module has two

     condenser

     fans  and  three evaporator fans.

    For simplicity, in this investigation only the  characteristics

    of the volume  flow rate and pressure drops of the

     condenser

    1344

  • 8/18/2019 Air Flow Patterns

    2/9

    A IR

      FLOW  PATTERNS

    1345

    5.3  m

    4.24  m

    kiln  fans.

    r .

    2.2 m-

     stack

    3.B7m

    0.8  m

    6.8  m

    (a)

    U

     1.9m

    A

    air duct

    4.3  m

    condenser

     coils

    and  fans

    evaporator coils

    and

      fans

    0.54 m 1 0 8 m  1.08  m

    0.63

      m

    4.51 m

    baffle-board

    central 2.75 m 0.5 m

    symmetry line

    A - A

    (b)

    B

    (c)

    Figure

      1.

      Schematic

      diagram of an industrial dehumidifier wood-drying

    k i ln .

    coils

      and fans are considered, since the  airflow of the evap

    orator  enters  the

      condenser

      and the  flow  rate  is  typically

    only  10% of the

      condenser

      air  f low.  Each dehumidifier

    module  also  has an electric air  heater  to  preheat  the

      k i ln

    before drying commences. Here the  flow

      resistance

     of the

    heater,

      which  is located between the  condenser  fans and

    condenser

     coils, has

      been

      incorporated

      wi th

      the

      condenser

    coils.

    As

      shown in Figure 1(a), the  cross  section of the

      k i ln

    chamber along the x-direction has a trapezoidal  shape,

    wi th

      the  front  higher than the  rear by 1 m. The backward-

    sloping  roof  would  produce stronger vortices in the  front

    top corner and thus a larger

      pressure

      drop than the  peak-

    top and barrel-top kilns  discussed  by  Nijdam  and Keey

    (2002).

      In Figure 1(a), the  dashed  lines  represent  the

    walls

      of a simple air duct  which  connects  the top  ceiling

    space  wi th  the exit of the dehumidifier in a modified con

    figuration

      of

      the  k i ln .

    Stacks of wood are normally several  packets deep in the

    air

      flow

      direction and several  packets  high. As shown in

    Figure 1(a),

      three

      in-line

      packets,

      being 2.1 m

      deep

      each

    in  the air

      flow

     direction, are considered. The three packets

    are supported by bearers  100 mm thick. The gaps

     separated

    the  packets  in the  airflow  direction are 0.25 m wide and

    the  gaps

      separated

      the  packets  vertically are neglected.

    Concrete

      slabs,

      150 mm thick, are placed on the top of

    the timber stack to  reduce  warp during drying  (Nijdam

    and Keey, 2002). It is

      assumed

      that the  k i l n  is  fully

    loaded

      wi th

     60 layers of wood boards and thus the horizon

    tal ceiling  of the drying  zone  is just on the top of the

    concrete  slabs.

    The wood stack is  assumed  to be a normally aligned

    stack of wood

      boards

      (Sun and Carrington, 1999),  wi th

    the geometry shown in detail in Figure 1. It is

      assumed

    that the side baffles

      which

      prevent air bypassing the side

    of

     the timber stack, as shown in Figure 1(b), are  fully  effec

    tive, and air bypass is neglected. The details of the horizon

    tal

      board layers are shown in Figure 1(c). The

      space

    between board layers is 20 mm,  which  is maintained by

    longitudinal  stickers (or  fillets across  the  width  of the

    stack at intervals of 450-600 mm (Keey  et ai,  2000).

    Since the

      aspect

      ratio of the ducts formed by the board

    layers and stickers is relatively large, more than 20, the

    effects of the stickers inside the stack on  flow  patterns

    have been  neglected. Stickers at the side end of the stack,

    however, prevent air  flow  from  the stack to the side

    bypass

      space.

      As demonstrated by previous authors,

    the effect of small gaps between  in-line boards on the press

    ure drop of

     airflow

      across wood stacks (Langrish and Keey,

    1996) and on external  mass  and

      heat

      transfer  rates  (Sun,

    2001) can be neglected. Thus, small gaps between  in-line

    boards have been  ignored in the simulation. The ratio of

    the inlet  plenum-space  w id th  to the sum of the heights of

    the sticker  spaces  is equal to 0.67 (=0.8/1 .22 m),  which

    is smaller than the minimum value

      (unity)

      which  was

    suggested

      by

      Nijdam

      and Keey (2002) to mitigate the

    adverse

      effect of the  frictional

      pressure

      drop down the

    height of the plenum chamber.

    NUMERICAL METHOD

    In

      order to characterize the distributions of air velocity

    and  pressure  and air recirculation occurring in the  k i ln ,

    the renormalization group (RNG)

      k-e

      turbulence model

    has  been used  to solve the turbulent momentum transport

    equations. The RNG

      k-e

      model employs a differential

    form  of the relation for the effective viscosity,

      yielding

    an accurate description of how the effective turbulent trans

    port varies  wi th the effective Reynolds number. This allows

    accurate extension of the model to near-wall flows and low-

    Reynolds-number or transitional  flows  (Fluent Incorpor

    ated, 1997). The RNG  k-e  model can be  expressed  by

    the  fo l lowing  momentum equations and the equations for

    turbulent kinetic energy

      k)

      and its

      rate

      of dissipation (e)

    (Fluent Incorporated, 1997):

    9

      , , 3 3

    (P i)  + X -  pUiUj)

    OX;

    /

    Peir

    3  duj BP

    9bc

    (1)

    d,

      „ 9 , ,%  9 /

      dk\

    p k )

      p u t )   =  -

      U M e f f

      - J

      +

      n , S  -  p e

    and

    (2)

    3

     ,  N  3

    ^-(pe) + —(pw,e)

    at ax,

    3

      / 9e\ , e2

    eMeffT-  +CUTH,S  -C

    2

    eP-T   - R  (3)

    3.v,

    dxi

    In

      the simulation, the standard RNG k-e  model  constants,

    derived analytically by RNG theory,

     have been used:

     CM  =

    0.0845, C

    l 6

      = 1.42, C

    2 e

      = 1.68, a

    0

      = 1.0. The standard

    Trans

      I C h emE

    Part A,

     Chemical Engineering Research and Design,  2004,

     82(A10): 1344-1352

  • 8/18/2019 Air Flow Patterns

    3/9

  • 8/18/2019 Air Flow Patterns

    4/9

    A IR  FLOW

     PATTERNS

    1347

    300

    250

    200

    0_

    150-

    £  100

    Q_

    50

    0-

    Woods  Air

    Movement  2101

    Fantech

    0714/10

    Extension of

    fitted  relation

    2

      4 6 8

    Volume

      flow

      rate m3 s~ 1

     igure

      3

    Fan curves of the Woods air movement  k i l n fans and the Fantech

    0714/10/25 condenser fans.

    fo r

      the

      pressure

     rise across each of the

      k i l n

      fans, and

    = 203.029 + 28.7837v - 2.6677v2, 9.1 < v < 15.7

  • 8/18/2019 Air Flow Patterns

    5/9

    1348 SU N   et  al.

    Figure 5 shows the  velocity  field  in a vertical y-z  plane

    coinciding

      wi th  the

     axes

     of the condenser fans of the dehu-

    midifiers.  In this  figure,   the two horizontally  oriented grid-

    surfaces represent the condenser fans. It can be

     seen

     that air

    flow   eddies are produced at the top side-corners of the  k i ln

    and

      in the downstream

     spaces

     between the condenser fans.

    More

      generally, the CFD results indicate that air   flow

    eddies are produced at all the top and  bottom   corners of

    the

      k i ln

      and at the corners of the timber packets. The

    eddies represent dissipative processes  that reduce the  effi

    ciency

      of

      both

      the

      k i l n

      fans and the

      dehumidifier

      fans.

    The   calculated  mass  flow

      rates

     of the two condenser fans

    are the same, at 4.89 kg s _  .

    Figures 6 and 7 show  profiles  of the

      x-velocity

      along

    lines from

      the stack inlet to stack outlet on two  typical

      hori

    zontal

      planes, at the top ( z = 3.71m) and   bottom

    (z = 0.11 m) of the stack.

    I t  is

     seen  from

      Figure 6 that the

     velocity profiles

     on the

    top   plane  z  3.71 m) are not  uniform   at the entrance

    region

      of the

      first

      packet. The   x-velocity

      spans  from

      0.5

    to   1.5 m s~ approximately.  This

      variation

      in the

      velocity

    appears  to be caused by   non-uniform  flow  in the   ceiling

    space

     of the

      k i l n  illustrated

      in Figure 4. The large range

    in   the   x-velocity  indicates that there are large recircula

    t ion

      eddies in the top entrance

      region

      of the

      first

      packet.

    Th e  flow  patterns of the

      airflow

      on the top plane of the

    second packet are  similar  to those of the  first  packet, but

    the velocities are larger. At the entrance of the

      third

    packet, the  x-velocity   span is smaller than those at the

    .  s . m m

    -  -  > i

      i \

    • A)

      • 4 1

    1

    Figure  5 Vector  of

      velocity

      magnitude on the   vertical   plane where

    x  = 8.725 m.

    3.50e+00 -|

    3.00e+00 -

    2.50e+00 -

    2.00e+00-

    E,

    1.50e+00-

      ?

    o

    o

    1.00e+00-

    >

    5.00e-01 -

    0.00e+00-

    -5.00e-01 -

    -1.00e+00-

    0 1 2 3 4 5 6 7 8

    x-coordinate (m)

    Figure  6 .r-velocity  profiles  on the plane   z = 3.71 m.

    entrances of the  first  and second packets. However, the

    large  span in

      x-velocity

      in the

      exit

      region

      of the

      third

    packet indicates the presence of  recirculation  eddies at

    the  exit  of the stack. These appear to be caused by the

    k i ln

      fans   installed   in the   ceiling  space  of the

      k i l n

      and by

    the strong resistance of the airflow  impelled by the conden

    ser fans

      illustrated

      in Figure 5. Since the effects of the

    longitudinal

      stickers inside the stack have been neglected

    in   the   simulation,   the air   velocity   spans  in the cross y-

    direction

      may be overestimated. However, this   would  not

    produce serious errors in the average  mass  flow  rates.

    The

      x-velocities averaged over the cross-sectional

      area

     of

    the top  airflow  channel at the locations of  1 m  from  the

    leading  edge

      of each of the packets are 0.94, 1.93, and

    2.39 m s~ in the

      first,

      second and

      third

      packets,

    respectively.

    A s  shown in Figure 7, unlike  the air

     velocity

      profiles on

    the top plane,  which  increase

      from

      the

      first

      packet to the

    third packet, the air

     velocity

     on the  bottom  plane  decreases.

    The

      average values of the x-velocity  in the

      bottom   airflow

    channel are 1.92, 1.59 and 1.37 ms~ in the

      first,

      second

    and  third packets, respectively.

    2.50e+00

    2.25e+00

    2.00e+00

      1.756+00

    |  1.50e+00

    £ •  1.258+00

    o

    g  1.00e+00

    7.50e-01

    5.00e-01

    2.50e-01

    0.00e+00

    . y

      = 0

    4

    - y

     = 0.45

    • y = 0.9

    o

      y=1.35

    o  y =  1.8

    1

    = y = 2.25

    a  y = 2.7

    1   2

    3

    4  5 6

    x-coordinate (m)

    Figure  7

    .v-velocity

      profiles

     on the plane z = 0.11 m.

    Trans  I C h emE

    Part  A,

     Chemical Engineering Research and Design,

     2004, 82(A10): 1344-1352

  • 8/18/2019 Air Flow Patterns

    6/9

    A IR  FLOW

      PATTERNS

    1349

    Th e  velocity

      profiles

      for the

      middle

      plane of the stack

    z

      = 1.91 m),  which  are not shown here, are  similar  to

    the

      velocity

      profiles  at z = 3.71 m and z = 0.11 m shown

    in  Figures 6 and 7. However, the  profiles  of x-velocity  on

    the middle plane of the stack are more  uniform  than those

    on  the top plane (z = 3.71 m) and on the

      bottom

      plane

    z

      = 0.11 m). The average values of the  x-velocity  in the

    middle

      airflow  channel are 1.96, 1.88 and 1.89 m s 1  in

    the  first,  second and  th i rd packets respectively.

    Profiles  of the x- and  y-velocity  along lines  from  the

    stack  inlet  to stack outlet indicate that, in the

      vertical

      z-

    direction,  the  velocity

      profiles

      are also not

      uniform.

    Figure 8 shows the  vertical profiles of the x-velocities aver

    aged over the cross-sectional  areas  of the corresponding

    flow

      channels at the locations of  1 m  from  the leading

    edge of each of the three packets  (solid  lines, test 1). It is

    seen that, in the  first  packet,

      w i t h

      increasing in the height

    o f

      the stack, the air velocity  increases  from  1.92 m

     s>~

      at

    the  bottom  of the stack to 2.20 m s

    _

      at z = 0.53 m, and

    then

      decreases to 0.94 m s 1  at the top of the stack. The

    vertical

      profile  of the air

      velocity

      in the second packet is

    more

      uniform  than that in the  first  stack, and the  velocity

    in

      the top  region  is much larger than that in the  first

    packet. The

      vertical

      profile  of the air

      velocity

      in the

      third

    packet shows that the air  velocity  in this packet gradually

    increases  w i t h  the height of the stack

      from

      1.37 m s~ at

    the

      bottom

      of the packet to 2.39 njs. at the top of the

    packet. The increase in the air velocity  in the  th i rd  packet

    may  be due to the effect of the  k i l n  fans, since the upper

    part of the  th i rd  packet is close to the  k i l n  fans. It appears

    that the empty spaces between successive packets have the

    effect  of

     redistributing

      the airflow rate through the packets.

    The

      variations and fluctuations of the

     vertical

     profiles of the

    ai r  velocity  in the  first  and second packets are consistent

    wi th  the measurements by  Nijdam  and Keey (2002) in a

    traditional

      peak-top

      k i l n

      and in a newer barrel-top

      k i ln .

    Nijdam

      and Keey (2002)

     found

      that the upper part of the

    stacks were  normally  starved of

      airflow

      at the air entry

    end,  due to a

      recirculation

      zone adjacent to the stack

    wi th i n  the  inlet  plenum chamber.

    A i r

      flow  recirculation

     between the outlet of the dehumi

    difier

      and its  inlet  is also  illustrated  in Figure 9,  which

    shows pathlines of

     massless

     particles discharged

      from

      the

    condenser fans. Here, the three  vertically  oriented  gr id-

    surfaces represent the

      k i l n

      fans, the two  horizontally

    1  2 3

    Height

      from

      base of timber stack  (z-direction) (m)

    igur 8 Ai r velocity profile  along height of the stack.

    igur 9 Illustrative pathlines of particles  leaving  condenser fans.  Par

    ticles are coded by the grey colour.

    oriented  grid-surfaces denote the condenser fans, and the

    grid-box  represents

      the

      dehumidifier

      walls.

      This

      figure

    shows that a significant  fraction  of air leaving the dehumi

    difier

      mixes  w i t h  the

      airflow

      out of the stack and re-enters

    the

      dehumidifier,

      because the  k i l n  fans and the condenser

    fans are not  configured  in an integrated way. Indeed, part

    o f  the  airflow  recycles several times  from  the outlet of

    the  dehumidifier  to its inlet.

    Overall  calculated results for the  k i l n

      w i t h

      the present

    configuration  (Figure 1) are  listed  in Table 1 along  w i t h

    results for a  modified  configuration  discussed below. In

    Table

      1, ws  is the  x-velocity  averaged over the whole

    cross-sectional  area  of the stack at the locations inside

    each of the three packets,  1 m  from  the  inlet  of each

    packet. It is seen  that, for this

      k i ln

      (test 1 in Table 1), the

    total mass

     flow rate (19.55 kg s~ ) delivered by the conden

    ser fans is larger than that (15.70 kg s_  ) delivered by the

    k i l n

      fans. The difference (3.85 kg s~ ) between the

      mass

    flow

      rates  delivered by the condenser fans and  k i l n  fans

    represents  the  minimum  amount of

      airflow

      recirculation

    from

      the

      exit

      of the  dehumidifier  to its

      inlet.

      This  would

    happen i f all the

      airflow

      leaving  the stack were to enter

    the  dehumidifier.  For the present

      k i l n ,

      the  minimum

    amount

      of the  airflow

      recirculation

      is 19.7% of the  total

    ai r  mass

      flow  rate delivered by the condenser fans.  How

    ever, the

      simulation

      indicates that the real

      recirculation

    mass  flow  rate is  l ike ly  to be much larger than this

      m i n i

    mum

      value, since much of the

      airflow

      delivered by the

    k i l n  fans comes  from  the stack  directly.

    Figures 10 and

      11

     show the pathlines

     o f massless

     particles

    which  are discharged  from  the upper and

      lower

      rear-end

    surfaces of the stack respectively. In Figures 10 and 11,

    the  vertical  rectangular gray surfaces represent the rear-

    end

      surfaces of the upper 21 board layers and  lower  39

    board layers of the stack, respectively. It can be

      seen  from

    Trans  I C h emE

    Part  A, Chemical Engineering Research and Design 2004, 82 A10): 1344-1352

  • 8/18/2019 Air Flow Patterns

    7/9

    1350 SUN

     et

      al.

    Table

      I Calculated results for different  k i l n  configurations.

    Number of Number dehumidifier

    AP

    wk fan

    Test

    k i l n

      fans modules Duct

    (Pa)

    k g s

      ')

    k g s

      ')

    (kgs

    - 1

    )

    ( ms

    _ 1

    )

    1

    6

    2 4

     condenser fans) No 31 34

    15.70 19.55 15.70 <

    1.91

    2

    0

    2 4

     condenser fans)

    Yes

    38.58

    18 26

    18 26

    2.23

    Figure

      10 that all the air  flow  discharged

      from

      the  f low

    channels of the upper 21 board layers of the stack,

      wi th

    some local recirculation

      in

     the space above the dehumidifier,

    enters the

      k i l n

      fans

      directly.

     Figure 11 shows that, although

    most of the air  flow  discharged  from  the  lower  39 board

    layers enters the condenser and then passes

     across

     the dehu

    midifier fans, part of the air  flow discharged  from  the

     lower

    part of the  staGk

     goes

     to the

      k i l n

      fans

      directly.

    Th e  mass  flow  rate, 6.15 kg s~', of the air discharged

    from

      the upper 21 board layers of the stack is 39.2 of

    the

     total

      flow rate of the

      k i l n

      fans. Hence

     less

     than 60.8

    o f

      the  total  flow  rate of the

      k i l n

      fans comes  from  the

    dehumidifier.  Thus, using the data shown in Table 1 for

    test 1, the mass  flow  rate entering the  k i l n  fans  from  the

    dehumidifier  is

      less

      than 9.55 kg s~' and the

      mass

      f low

    rate of air

     recirculation

      from  the exit of the dehumidifiers

    to

      its inlet is more than 10.0 kg s_ 1 , representing 51.2 of

    the

     total

      flow  rate of the condenser fans. This

     airflow

     recir

    culation would raise the temperature and reduce the humid

    it y

      of air at the  inlet  of the dehumidifiers, which would

    reduce the  efficiency  of the dehumidifiers. In

      addition,

    energy used by the condenser fans to maintain this large

    amount of recirculation  f low,  approximately 51.2 of the

    total  energy used by the condenser fans,  does  not make

    any

     contribution

     to the performance of the

      k i l n .

    MODIFIED CONFIGUR TION

    To

      illustrate the effect of changing the dehumidifier kilns,

    a modified configuration, test 2 in Table 1. was investigated

    using the CFD turbulence model. In test 2, air recirculation

    from

      the

      exit

      to the

      inlet

      of the dehumidifier was  e l im i -

    nated, using an air duct connecting the dehumidifier to

    the top  ceiling  space  of the

      k i l n ,

      shown by the dashed

    lines

     in Figure 1(a).

    The  vertical  profiles  of the average  x-velocity  in test 2

    are shown by the dashed lines in Figure 8. The air velocities

    in  the three packets of the  k i l n  in test 2 are  significantly

    larger than those in test 1. In addition,  the velocity  distri-

    butions

      from

      the

      first

      packet to the

      th i rd

      packet are more

    uniform  than those in test 1 and the air  velocity  profiles

    in

      the

      vertical

      z-direction in test 2 are

      similar

      to those in

    test 1. This indicates that, by using appropriate ducting

    and

      only  the condenser fans, the  drying  performance of

    the

      k i l n  would

      be  improved.

    Overall

      calculated results for test 2 are also

      listed

      in

    Table 1. It is  seen  that,  without  using

      k i l n

      fans but  wi th

    an air duct, the calculated average

     x-velocity

      (2.23 m s

    _

      )

    in  test 2 is larger than that (1.91 m s- 1 ) in test 1. Since

    no

      k i l n

     fans are used, the energy consumption of the

      k i l n

    fans  would  be eliminated in test 2. As shown in Table 1,

    compared  w i th  test 1 the

      overall  mass

      flow  rate of the

    Figure  10

    Pathlines of the particles discharged

      f rom

      the rear-end surface

    o f  the upper

     21

      board layers of the stack. Particles are coded by the grey

    colour.

    Figure

      11

    Pathlines of the particles discharged

      f rom

      the rear-end surface

    o f  the lower

     39

      board layers of the stack. Particles are coded by the grey

    colour.

    Trans  I C h emE

    Part  A, Chemical Engineering Research and Design 2004, 82 A10): 1344-1352

  • 8/18/2019 Air Flow Patterns

    8/9

    A IR  FLOW PATTERNS

    1351

    condenser

     fans  in

     test

      2 has  decreased  by 1.29 kg s~ and

    the  stack  pressure  drop in

     test

      2 has  increased  by 7.4 Pa.

    The volume  flow

      rate

     of

     each condenser

     fan has

      decreased

    from  4.07 to 3.80 m3  s~ , and the power of the

      condenser

    fans

      should

      increase

      by approximately 1 . On the other

    hand, the  adverse  implications of the air recirculation on

    the performance of the dehumidifier, which are

      discussed

    below, do not occur in test 2.

    INFLUENCE OF  RECIRCUL TION ON  DRYER

    PERFORM NCE

    The CFD turbulence model  cannot  be

      used

      to simulate

    the thermodynamic cycle and  mass  and  heat  transfer pro

    cesses  in the dehumidifier or in the wood  boards. Hence,

    to

     assess

     the influence of

     airflow

      recirculation at the dehu

    midifiers  on the performance of the

      k i ln

      system, a dynamic

    dehumidifier wood drying model developed previously

    (Sun et al. 2000) has been used. The model solves the inte

    gral  form

      of the

      unsteady

      state mass,  momentum and

    energy balance equations

     for both the air  flow and the wood

    boards.

      The distributions of the

      average  mass

      fractions,

    temperature,  pressure  and velocity of the air

      stream,

      as

    wel l  as the  average  moisture content of the wood  boards

    and their  temperature,  can be estimated using this model.

    For illustrative  purposes,  the timber is  Pinus

      radiata

     sap-

    wood

      wi th  an

      i n i t i a l

      moisture content 140 . The  final

    moisture content is 13 , and the volume of timber is

    70 m3 .  There  are two dehumidifier  modules  in the  k i ln ,

    and the external  heat  and

      mass

     transfer

      rates

     between  air

    flow

      and the  surfaces  of wood  boards  were calculated

    using correlations  established  on the  basis  of modified

    boundary layer

      theories

      which

      take account

      of the

      separ

    ation and  reattachment  flows (Sun, 2002). The maximum

    condensing  temperature,  maximum evaporating

      tempera

    ture, and minimum

     stack

     inlet relative humidity are

      l imi ted

    to be  75 °C ,  25=C and 40 respectively (Carrington  et al

    1995). An air

      preheater

     of 30 kW is

     used,

     which is turned

    of f  when the  stack  inlet dry-bulb  temperature  reaches

    50°C .  The

      stack

      inlet air velocity is 2 m s ' ,  based  on the

    CF D  results as shown in Table  1 for the

     present

     k i l n (test 1).

    The calculated overall dehumidifier

      energy

      use,

      k i ln

      fan

    energy,  heater  energy,  and drying time are shown in

    Figures 12 and 13, respectively. It is

     seen from  these

     figures

    1.6

    1.5

    f 1.4

    Z

    g

    *  1.3

    >,

    at

    CD

    c  1  2

    1 1

  • 8/18/2019 Air Flow Patterns

    9/9

    1352

    SUN  et  al.

    22

    141 , , 1

    14 16 18 20

    Model Power (kW)

    Figure

      15. Comparison of

     measured

     dehumidifier power consumption

      wi th

    a model benchmark under conditions

      w i t h

      and witho ut recirculation.

    the temperature and humidity when the  measurements

    were made. This difficulty  is avoided by comparing the

     mea

    sured  data

      w i th

     dehumidifier model predictions, the model

    assuming no recirculation, to provide a common perform

    ance

     reference for the

      measured data.

     Accurate

      agreement

    wi th

     the model is not  necessary for this comparison. In the

    results, shown in Figures 14 and 15, the

      measured

     drying

    rate is consistently below the model prediction when there

    is no baffle, but close to the model results when the baffle

    is  present.  In addition the  data  indicates that the power

    use is higher when the baffle is not present.

    CONCLUSION

    A i r  flow

      patterns  in an industrial dehumidifier wood

    drying  k i ln

      have been

      investigated using a CFD model. In

    order to solve the computational

      difficulties

      for simulation

    of

      a practical  k i ln a  simplified  procedure has  been  devel

    oped in which the spaces between the board layers are trea

    ted as an isotropic porous medium. A momentum  source

    term describing the  pressure  drop  w i th in  the porous

    medium

     has been added to the standard

      fluid   flow

      equations.

    The results obtained show that, without suitable air duct

    ing at the dehumidifier air discharge, a large fraction of the

    dehumidifier

      airflow recycles back to the inlet of the dehu

    midifiers. Using a dehumidifier wood drying k i l n model, it

    has  been  demonstrated that such air recirculation

     reduces

    the efficiency of the dehumidifiers and  increases  drying

    time,

      by 18 and 14%, respectively, for the example

    presented.

    A  modified

      k i ln

     configuration, in which an air duct con

    nects the dehumidifier

     w i th

     the upper

     airflow

     channel of the

    k i l n has been analysed. The results show that this configur

    ation

      significantly improves the dehumidifier performance.

    I t is concluded that, for dehumidifier wood drying kilns to

    achieve high efficiency, it is important to (a)  ensure  the

    airflow  is properly ducted to prevent recirculation and

    (b)  avoid using two

     sets

     of air fans in series.

    NOMENCL TURE

    k  turbulent kine tic energy (m s~~)

    M

      mass  flow

      rate  (kg s )

    P

      pressure (N trT

    -

    )

    A f s  pressure drop of air

      flow

      passing through stack (N m~

    2

    )

    S/

      momentum  source  term for porous media (N m ~ )

    r  time (s)

    it  veloci ty component or velocity in jr-direction (m s ')

    s  average x-velocity in stack (m s~ )

    v  velocity (m s

    _ l

    )

    x  coordinate (m)

    coordinate (m)

    z  coordinate (m)

    Greek  symbols

    ak  inverse effective Prandtl number for turbulent kinetic

    energy

    ct€  inverse effective Prandtl number for turbulent dissipa

    t ion  rate

    e  turbulent dissipation  rate  (m

    2

      s

    - 3

    )

    iu eff  effective viscosity  p., + p.) (kg m

    -

    ' s

    - 1

    )

    fj. y  turbulent viscosity (kg m _ 1  s_ l )

    p

      density (kg m~

    3

    )

    Subscripts

    c,fan  condenser  fans

    i  /-direction

    j  /-direction

    k  k i l n

    k,fan

      k i l n

      fans

    REFERENCES

    Carrington, C.G., Bannister, P. and Li u, Q., Performance analysis of a

    dehumidifier using HFC-134a,  Int J  Refrig,  18: 477-485.

    Fantech Pty Ltd, 1993.

      Fans

      by

      Fantech,

      1st edn (The Craftsman  Press,

    Australia).

    Fluent Incorporated, 1997,  Fluent/Uns  and Rampant 4.2  User s  Guide

    (Fluent Incorporated, Lebanon, NH).

    Fluent Incorporated, 1998,

      GAMBIT

      Modeling Guide (Fluent Incorporated,

    Lebanon, NH).

    Keey. R.B. Langrish, T A G . and Walker. J.C.F.. 2000,  Kiln-drying  of

    Lumber

      (Springer,  B e r l i n Germany).

    Langrish,

      T . A .G .  and Keey, R.B. 1996, The effects of air bypassing in

    timber kilns on fan power consumption, in Proceedings of

      CHEMECA

    1996,  Sydney, 30 September-2  October, pp. 103-108.

    Nijdam. J.J. and Keey, R.B. , 2002. New timber

      k i l n

      designs for promoting

    uniform  airflows w i t h i n  the wood stack.  Trans IChemE,  Part  A, Chem

    En g

      Res Des,  80(A7):  739-744.

    Sun. Z.F., 2001. Numerical simulation of

      flow

      in an array of in-line  blunt

    boards: mass transfer and  flow patterns. Chem Eng Sci. 56(5): 1883-1896.

    Sun, Z.F., 2002, Correlations for

      mass

      transfer coefficients over blunt

    boards based  on modified boundary layer theories,  Chem Eng Sci,

    57(11), 2029-2033.

    Sun, Z.F. and Carrington, C.G., 1999, Effect of stack configuration on

    wood

      drying

      processes,

      in  Proceedings of 6th International

      IUFRO

    Wood

      Drying  Conference.  Stellenbosch, South  Af r ica 25-28  January.

    pp. 89-98.

    Sun, Z.F. . Carrington, C.G. and Bannister, P., 2000, Dynamic modell ing of

    the wood stack in a wood drying k i l n Trans IChemE.  Pi A, Chem Eng

    Res  Des,  78: 107-117.

    CKNOWLEDGEMENTS

    The authors gratefully acknowledge the New Zealand Foundation for

    Research Science and Technology for supporting this work  under contract

    UOOX0004.

    The

      manuscript was  received  I  July  2002 and accepted for publication

    after revision 18 June 2004.

    Trans  I C h emE

    Part  A,

     Chemical Engineering Research and Design

    2004, 82 A10):  1344-1352