agullo tesis

Upload: lucho-n

Post on 04-Jun-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/13/2019 Agullo Tesis

    1/184

    Universidad de Valencia

    Departamento de Fsica Teorica

    Tesis doctoral

    Agujeros negros cuanticos,

    cosmologa inflacionariay la escala de Planck

    Ivan Agullo RodenasAbril 2009

  • 8/13/2019 Agullo Tesis

    2/184

  • 8/13/2019 Agullo Tesis

    3/184

    JOSE NAVARRO SALAS, Profesor Titular del Departamento de Fsica Teoricade la Universitat de Valencia,

    CERTIFICA:

    Que la presente memoria AGUJEROS NEGROS CUANTICOS, COS-MOLOGIA INFLACIONARIA Y LA ESCALA DE PLANCK ha sidorealizada bajo su direccion en el Departamento de Fsica Teorica de laUniversitat de Valencia, por IVAN AGULLO RODENAS y constituyesu Tesis para optar al grado de Doctor en Fsica.

    Y para que as conste, en cumplimiento de la legislacion vigente, presenta en

    el Departamento de Fsica Teorica de la Universitat de Valencia la referida TesisDoctoral, y firma el presente certificado.

    Valencia, a 18 de Mayo de 2009.

    Jose Navarro Salas

  • 8/13/2019 Agullo Tesis

    4/184

  • 8/13/2019 Agullo Tesis

    5/184

    A mis padres, Jose y Mara.

  • 8/13/2019 Agullo Tesis

    6/184

  • 8/13/2019 Agullo Tesis

    7/184

    Contents

    Introduccion 11

    1 Quantum field theory in curved spacetimes and two-point func-

    tions 211.1 Quantum field theory in curved spacetimes . . . . . . . . . . . . . . . 211.2 Bogoliubov transformations and particle creation . . . . . . . . . . . 241.3 Two-point functions and particle creation . . . . . . . . . . . . . . . . 26

    2 Thermal effects and two-point functions 292.1 Hawking effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

    2.1.1 Bogoliubov coefficients and black hole radiance . . . . . . . . 292.1.2 Two-point functions and black hole radiance . . . . . . . . . 32

    2.2 Unruh effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

    2.2.1 Bogoliubov coefficients . . . . . . . . . . . . . . . . . . . . . . 392.2.2 Particles detectors . . . . . . . . . . . . . . . . . . . . . . . . 402.2.3 Two-point functions . . . . . . . . . . . . . . . . . . . . . . . 42

    2.3 Gibbons-Hawking effect . . . . . . . . . . . . . . . . . . . . . . . . . 44

    3 The transplanckian question and two-point functions 473.1 Black Hole radiance and the transplanckian question . . . . . . . . . 48

    3.1.1 Bogoliubov coefficients and transplanckian physics . . . . . . 483.1.2 Two-point functions and transplanckian physics . . . . . . . . 503.1.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    3.2 Unruh effect and transplanckian physics . . . . . . . . . . . . . . . . 57

    4 Invariant Planck scale, symmetries and the transplanckian ques-tion 614.1 Non linear Lorentz action and an invariant Planck scale . . . . . . . . 614.2 Deformed two point functions and nonlinear actions . . . . . . . . . . 63

    4.2.1 Conformal field theories . . . . . . . . . . . . . . . . . . . . . 634.2.2 Deforming the conformal two-point functions . . . . . . . . . . 644.2.3 Massive scalar field . . . . . . . . . . . . . . . . . . . . . . . . 664.2.4 Relation to other approaches . . . . . . . . . . . . . . . . . . . 66

    4.3 Unruh effect and Lorentz symmetry . . . . . . . . . . . . . . . . . . . 67

  • 8/13/2019 Agullo Tesis

    8/184

    8 Contents

    4.4 Gibbons-Hawking effect and de Sitter symmetry . . . . . . . . . . . . 68

    4.5 Hawking effect and conformal symmetry . . . . . . . . . . . . . . . . 69

    4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

    5 Inflationary cosmology and QFT in curved spacetimes 71

    5.1 Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

    5.2 Primordial perturbations . . . . . . . . . . . . . . . . . . . . . . . . . 72

    5.3 Reexamining the power spectrum in de Sitter inflation . . . . . . . . 75

    5.4 Reexamining the power spectrum in slow-roll inflation . . . . . . . . 79

    6 Loop Quantum Gravity and black hole entropy 85

    6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

    6.2 The combinatorial problem(s) . . . . . . . . . . . . . . . . . . . . . . 88

    6.2.1 Domagala-Lewandowski implementation . . . . . . . . . . . . 886.2.2 The Ghosh-Mitra counting . . . . . . . . . . . . . . . . . . . 90

    6.3 Previous analytical results . . . . . . . . . . . . . . . . . . . . . . . . 90

    6.3.1 Domagala-Lewandoswski counting . . . . . . . . . . . . . . . 90

    6.3.2 Ghosh and Mitra counting . . . . . . . . . . . . . . . . . . . 93

    6.4 Previous computational results: The band structure . . . . . . . . . 96

    7 The origin of the band structure: the richness of discreteness 101

    7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

    7.2 Classifying states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

    7.3 Highly degenerate integer configurations . . . . . . . . . . . . . . . . 1047.4 Computation of A . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

    7.5 Analysis of the results . . . . . . . . . . . . . . . . . . . . . . . . . . 107

    7.6 Conclusion and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 110

    8 Black hole entropy and number theory 113

    8.1 DL counting and number theory . . . . . . . . . . . . . . . . . . . . 113

    8.2 GM counting and number theory . . . . . . . . . . . . . . . . . . . . 118

    8.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

    8.4 Analysis of the results . . . . . . . . . . . . . . . . . . . . . . . . . . 123

    8.4.1 Hierarchy in thekI relevance . . . . . . . . . . . . . . . . . . . 1238.4.2 r-degeneracy vs m-degeneracy . . . . . . . . . . . . . . . . . . 126

    8.5 Improving the standard entropy counting . . . . . . . . . . . . . . . 129

    9 Towards the asymptotical expansion 133

    9.1 Generating functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

    9.1.1 Generating function for ther-degeneracy . . . . . . . . . . . . 134

    9.1.2 Adding the m-degeneracy . . . . . . . . . . . . . . . . . . . . 137

    9.2 Black hole entropy from generating functions . . . . . . . . . . . . . 138

    9.3 Asymptotical expansion of the entropy . . . . . . . . . . . . . . . . . 141

  • 8/13/2019 Agullo Tesis

    9/184

    Contents 9

    10 Conformal field theory and Black Hole entropy in LQG 14310. 1 Introducti on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14310.2 Implementing the analogy between Chern-Simons and Wess-Zumino-

    Witten . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14410.3 Remarks and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 146

    Conclusiones 149

    Appendix A: Dirac equation in the Schwarzschild geometry 153

    Appendix B: Classical and quantum properties of de Sitter spacetime157

    Appendix C 167

    Appendix D 169

    Appendix E: Adiabatic counterterms 173

    Bibliography 175

    Agradecimientos 183

  • 8/13/2019 Agullo Tesis

    10/184

    10 Contents

  • 8/13/2019 Agullo Tesis

    11/184

    Introduccion y Resumen

    Historicamente, la gravedad fue la primera interaccion en ser entendida y formu-lada matematicamente. Sin embargo, trescientos anos despues se han invertido lospapeles y la aparicion de la teora cuantica ha relegado a la gravitacion a ser la in-teraccion mas desconocida en el panorama de la fsica actual. Consecuentemente, en

    los ultimos treinta anos se han realizado grandes esfuerzos para paliar esta situacion.Por un lado, existen varias propuestas consolidadas de teoras de gravedad cuantica,encontrandose la Teora de Cuerdas [1] y la Geometra Cuantica no perturbativa[2] entre las mas destacadas. Sin embargo, aunque se han conseguido importantesavances, ninguna de las propuestas existentes puede ser considerada, a da de hoy,como una teora completa.

    Por otro lado, dada la enorme dificultad en formular una teora consistente degravedad cuantica, resulta util profundizar en la Teora Cuantica de Campos (TCC)en espacios curvos. Este esquema estudia el comportamiento de los campos demateria en situaciones donde, tanto la gravitacion como el caracter cuantico de los

    campos, sean ambos importantes, pero donde el caracter cuantico de la gravitacionmisma no juega, a priori, un papel relevante. Actualmente la TCC en espacioscurvos puede ser considerada como un paradigma robustamente establecido [3], [4],[5] y sus predicciones constituyen, sin duda, claves tremendamente valiosas en labusqueda de una teora de gravedad cuantica.

    La principal caracterstica que aparece en la formulacion de la TCC cuandoes generalizada a espaciotiempos arbitrarios esta relacionada con el concepto departcula y su caracter no absoluto. La formulacion usual de la TCC en el espaciode Minkowski esta fuertemente basada en la simetra Poincare que este espacioposee. Esta simetra, y en particular la simetra bajo translaciones temporales,

    juega un papel fundamental en la eleccion de un estado de vaco privilegiado y en laconsecuente formulacion del espacio de Hilbert en terminos de estados de partcula.Esta formulacion ha resultado ser tremendamente fructfera, constituyendo una piezaclave en la epoca dorada de la fsica de partculas en las decadas 60 y 70 con laformulacion, y posterior comprobacion experimental, del Modelo Estandar. Sinembargo, en un espaciotiempo generico que no posee simetra bajo translacionestemporales, no es en absoluto obvio como la nocion de partculas puede ser definidade manera no ambigua. Las investigaciones iniciadas a finales de los anos 60 yprincipios de los 70 mostraron que la noci on de partcula no es un concepto niabsoluto, ni fundamental en la teora, y que la TCC es, en esencia, una teora decampos y no de partculas. Aunque en circunstancias apropiadas una interpretacion

  • 8/13/2019 Agullo Tesis

    12/184

    12 Introduccion

    en terminos de partculas puede ser de mucha utilidad, la nocion de partcula nojuega ningun papel ineludible en la teora. Las primeras consecuencias fsicas deeste hecho fueron puestas de manifiesto por L. Parker [6, 7], quien establecio, por

    primera vez, el fenomeno de creacion de partculas por espaciotiempos cambiantes enun contexto cosmologico. Este hecho, que no tiene cabida en el espacio de Minkowskicuando se consideran observadores inerciales, esta en la raz de las predicciones masfundamentales de la TCC en espacios curvos.

    Los resultados mas revolucionarios vinieron de la mano de S. Hawking [8, 9]quien aplico las tecnicas de TCC en espacios curvos al escenario de formacion deun agujero negro de Schwarzschild por colapso gravitatorio. En esta situacion, elfenomeno de creacion de partculas mostrado por Parker en contextos cosmologicostambien tiene lugar, pero la presencia del horizonte de suceso del agujero negrohace el resultado mas interesante si cabe. Hawking demostro que la creacion de

    partculas en este contexto es tal que el horizonte de sucesos aparece rodeado deun flujo saliente de partculas con un espectro muy caracterstico. Debido a estaradiacion saliente, el agujero negro va perdiendo masa en su evoluci on, hasta que,presumiblemente, tiende a desaparecer. Es decir, los agujeros negros dejan de serobjetos eternos que no pueden hacer mas que engullir masa, para ser, por contra,objetos que se evaporanemitiendo radiacion.

    Una de las principales caractersticas del resultado de Hawking reside en laforma del espectro de la radiacion emitida. Sorprendentemente, esta radiacion es decaractertermico, esto es, con un espectro de cuerpo negro a una temperatura biendefinida, inversamente proporcional a la masa del agujero

    TH= c3

    8kBGM , (1)

    siendo M la masa del agujero negro ykB la constante de Boltzman. Este resultadoestablecio una clara evidencia de que la similitud existente entre las leyes de lamecanica de los agujeros negros [10], deducidas en el contexto de relatividad generalclasica, y las leyes ordinarias de la termodinamica, es mucho mas que una meraanaloga formal. Esta analoga fsica se resume en la Segunda Ley Generalizada[11], la cual dota a los agujeros negros con entropa fsica en el mas puro sentidotermodinamico, dada por

    S=

    kB

    2P

    A

    4 , (2)

    siendo A el area clasica del horizonte de sucesos y P =

    G/c3 la longiud dePlanck. Esta entropa es conocida como entropa de Bekenstein-Hawking. Estosresultados cambiaron de forma radical el papel que los agujeros negros tendran enlos anos venideros. En particular situa a las leyes de la mecanica de los agujerosnegros, su temperatura y su entropa, como apectos termodinamicos de los mismos.En este sentido es esperable que una descripcion mas fundametal ponga de mani-fiesto los grados de libertad subyacentes que dan lugar a este comportamiento en elcorrespondiente lmite termodinamico. Puesto que la presencia de fue fundamen-tal en la deduccion de estas propiedades, es esperable que dichos grados de libertad

  • 8/13/2019 Agullo Tesis

    13/184

    Introduccion y Resumen 13

    provengan de un apropiado matrimonio entre las leyes que describen la gravedad ylas de la mecanica cuantica.

    La primera parte de esta Tesis (captulos 1-5) se dedica en gran parte al estudiodetallado de la radiacion Hawking y de los diferentes escenarios de aplicabilidadde la TCC en espaciotiempos curvos. Los metodos, introducidos en este contextopor Parker, que se emplean para la deduccion de la produccion de partculas porespaciotiempos cambiantes, estan basados en las conocidas transformaciones de Bo-goliubov. Las transformaciones de Bogoliubov relacionan diferentes elecciones debases de modos para la construccion del espacio de Hilbert fsico, siendo capaces asde relacionar diferentes cuantizaciones propuestas por diferentes observadores y, enparticular, de relacionar diferentes estados de vaco. Sin embargo, la produccion departculas por campos gravitatorios puede reexpresarse en terminos de funciones decorrelacion de los campos de materia considerados [12]. Aunque la relacion con el

    metodo de transformaciones de Bogoliubov es particularmente simple, el empleo defunciones de correlacion es especialmente util tanto matematica como fsicamente, ypermite deducir de forma unificada el efecto Hawking con el efecto Unruh en el es-pacio de Minkowski y el efecto Gibbons-Hawking en el espacio de de Sitter (captulo2).

    Uno de los objetivos principales de esta Tesis es explotar esta nueva formulaci onpara abordar uno de los interrogantes presentes en la derivacion del efecto Hawkingy sus efectos asociados Unruh y Gibbons-Hawking. Nos referimos al denominadoproblema transplanckiano. Este problema surge al analizar el papel aparentementefundamental que juegan las frecuencias ultra-altas, o equivalentemente las distan-

    cias ultra-cortas, en los pasos intermedios de la derivaci on. Cualquier cuanto deradiacion observado lejos del agujero negro con energa finita, experimenta un in-cremento exponencial en su frecuencia medida por un observador en cada libre,cuando es propagado hacia atras en el tiempo en busca de su origen. La razonse encuentra en el corrimiento al azul gravitatorio intrnseco al horizonte, lo cualconduce a pensar que el origen de los cuantos de radiacion Hawking esta en escalasde energa arbitrariamente alta. Por encima de la frecuencias de Planck se estafuera del rango de aplicabilidad de la teora cuantica de campos en espacios curvos.La pregunta natural es pues radiara un agujero negro si fuesen eliminadas de laderivacion las frecuencias por encima de la frecuencia de Planck (transplanckianas),

    o se modificasen las leyes de la fsica a tales escalas? Dicho de otro modo, es elresultado de Hawking un efecto de altas energas, o por el contrario tiene su origenen fsica a la escala del problema (la masa del agujero negro, por ejemplo) comosugiere la analoga termodinamica? Esta cuestion es conocida como el problematransplanckiano. Este problema no es exclusivo de agujeros negros y tambien estapresente en la derivacion del efecto Unruh y del efecto Gibbons-Hawking debido,precisamente, a la comun presencia de un horizonte.

    Mediante la formulacion en terminos de coeficientes de Bogoliubov no esta clarocomo introducir un cut-off en el formalismo para tratar de eliminar la fsica trans-plankiana de la derivacion y, cuando se hace de forma ingenua, el resultado termicousual queda totalmente modificado. Sin embargo, en este contexto el cut-off aparece

  • 8/13/2019 Agullo Tesis

    14/184

    14 Introduccion

    en frecuencias virtuales, lo cual no hace completamente claro su papel. La formu-lacion basada en terminos de funciones de correlacion permite plantear el problemaen terminos de cantidades definidas en las regiones asintoticas, lo cual se muestra

    especialmente util para analizar esta situacion. Por un lado permite re-calcularlos efectos termicos simplemente excluyendo de la derivacion las correlaciones exis-tentes a distancias por debajo de la escala de Planck. El estudio permite concluirque, cuando se elimina de la derivacion las correlaciones transplankianas medidaspor el observador que detecta la radiacion, el resultado es insensible ante la presenciade dicho cut-off. Este es el objetivo del captulo 3.

    Los resultados previos sugieren analizar el problema desde otro punto de vista.En el captulo 4 pretendemos analizar el problema transplanckiano mediante unamodificacion explcita de las funciones de correlacion a la escala de Planck, inten-tando dilucidar si el resultado es sensible a estas modificaciones. De esta forma

    modificaremos los correladores de forma que estos saturen a un valor constantecuando la distancia entre los dos puntos considerados este por debajo de la escalade Planck

    |(x1)(x2)||x1x2

    2P. (3)

    Sin embargo, motivados por el papel que juegan las simetras fundamentales encada problema, pretendemos realizar esta modificacion de forma que no se rompande forma explcita tales simetras. Para ello introducimos una accion no lineal delgrupo de simetra sobre las funciones de correlacion. Estas tecnicas fueron intro-

    ducidas en el contexto de relaciones de dispersion modificadas, deformando la acciondel grupo de Lorentz de forma que la escala de Planck fuera un nuevo invariante. Enesta Tesis transladaremos parcialmente esta idea a las funciones de correlacion. Enel captulo 4 pretendemos demostrar como, si la accion de las simetras relativistases tal que la escala a la que satura el correlador es invariante, los resultados termicosson insensibles bajo tal modificacion, corroborando as los resultados del captulo 3.

    En esta Tesis queremos tambien analizar otro de los escenarios de interes fsicodonde la TCC en espacios curvos tiene un papel relevante: la Cosmologa Infla-cionaria. La cosmologa actual [14] contiene muchos de los problemas mas desafi-

    antes en fsica, entre los cuales se encuentra el entender la parte oscura del uni-verso y dilucidar si el universo sufrio un periodo de expansion acelerada en susetapas mas tempranas. La proxima generacion de misiones observacionales, conPLANCK destacada entre ellos, esperan clarificar si las estructuras teoricas actualesestan capturando, en algun grado, el comportamiento del universo. En particular lamision PLANCK espera escudrinar las anisotropas del fondo cosmico de microondas(CMB), con un grado de precision tal que las predicciones del paradigma generalde inflacion, y los diferentes modelos particulares, pueden estar dentro del rangode medidas. Por este motivo es de gran importancia inspeccionar, desde todos lospuntos de vista, las predicciones del paradigma inflacionario.

    En esta Tesis queremos re-examinar las predicciones de inflacion desde el punto

  • 8/13/2019 Agullo Tesis

    15/184

    Introduccion y Resumen 15

    de vista de TCC en espacios curvos. Un periodo suficientemente largo de inflacionen el universo temprano es capaz de solventar muchas de las cuestiones no resueltaspor el modelo cosmologico del Bing Bang. Ademas inflacion explica de forma simple

    y elegante el origen de las inhomogeneidades presentes en el CMB que dieron lugara la formacion de grandes estructuras en nuestro universo. Inflacion predice la pro-duccion de variaciones primordiales de densidad como amplificacion de fluctuacionescuanticas del vaco por la geometra rapidamente cambiante, junto una transicioncuantico-clasico a la escala de salida del horizonte de Hubble. Las fluctuaciones pri-mordiales de densidad dejan su huella en las anisotropas del CMB, las cuales son,por tanto, de crucial importancia para entender el origen de nuestro universo.

    La amplificacion de fluctuaciones del vaco por la geometra inflacionaria estantimamente relacionada con el fenomeno de produccion de partculas por espaci-otiempos rapidamente cambiantes. El analisis de los efectos termicos en los captulos

    anteriores muestran como el origen de estas fluctuaciones reside en la comparaci onde fluctuaciones cuanticas de los dos estados de vaco involucrados. En la primeraparte del captulo 5 pretendemos reexaminar las predicciones para el espectro deinhomogeneidades teniendo en cuenta los dos estados de vaco involucrados en elproblema, para un universo que se expande de forma exactamente exponencial. Deesta forma proponemos como fluctuaciones cuanticas responsables del espectro deinhomogeneidades no las fluctuaciones del estado de vaco global del universo (es-tado de Bunch-Davies), sino las fluctuaciones de este vaco con respecto a las delvaco del observador, tal y como ocurre en todos los efectos termicos.

    Los resultados anteriores motivan el analisis del caso menos ideal (conocido como

    escenario deSlow-roll inflation) en la segunda parte del captulo 5. La sustraccionde las fluctuaciones del vaco del observador puede verse como una particular formade renormalizar las divergencias que aparecen en el formalismo. En concreto, lavariancia de las fluctuaciones gaussianas del campo de inhomogeneidades produci-das durante inflacion se corresponde con la funcion de dos puntos((t, x))2, eval-uada en el punto de coincidencia, de las fluctuaciones cuanticas del inflaton (t, x).Como sucede con valores esperados de operados cuadraticos, esta variancia es di-vergente. Para darle sentido fsico a esta cantidad y a las cantidades relacionadascon ella, metodos de renormalizacion en espacios curvos han de ser aplicados. Estasdivergencias han sido senaladas previamente [15], [16], pero en ningun caso se han

    tratado de forma consistente con los principios de la teora de campos. Si se aplicana esta situacion los metodos bien establecidos de renormalizacion en espaciotiemposcurvos (como se sugiere en [13]), las predicciones fundamentales de inflacion, comoson elpower spectrum asociado a los modos escalares y tensoriales de la metricay los correspondientes ndices espectrales, se ven modificados de forma significa-tiva. El objetivo de esta parte de la Tesis es analizar de forma detallada las nuevaspredicciones para las cantidades que van a ser observadas en los futuros experimentos(PLANK) cuando se tiene en cuenta efectos de renormalizacion en teora de campos.

    La segunda parte de esta Tesis (captulos 6-10) esta dedicada al estudio de laspropiedades termodinamicas de agujeros negros desde un punto de vista mas funda-

  • 8/13/2019 Agullo Tesis

    16/184

    16 Introduccion

    mental. En particular, se pretende realizar un estudio pormenorizado de la forma enla que la entropa de un agujero negro de Schwarzschild emerge a partir de una de-scripcion microscopica de los grados de libertad cuanticos del mismo, en el contexto

    de Loop Quantum Gravity (LQG).LQG se presenta como una teora que pretende cuantizar los grados de liber-

    tad gravitatorios de forma consistente [2], cuantizando relatividad general de formacanonica y no perturbativa. Dentro de este marco la relatividad general es re-escritahaciendo uso de la conexion de Ashtekar, lo cual lleva a un espacio de fases analogo alde una teora de Yang-MillsSU(2), pero con las ligaduras adicionales caractersticasde relatividad general. La cuantizacion en este esquema lleva a la descripcion delespaciotiempo en terminos de estados cuanticos de geometra. En LQG los agu-jeros negros son introducidos en el contexto de Horizontes Aislados. Los grados delibertad del horizonte vienen definidos por una teora de Chern-Simons U(1), los

    cuales, aunque sujetos a ciertas condiciones de frontera, oscilan de forma indepen-diente a los del volumen. Estos grados de libertad intrnsecos al horizonte son losresponsables de la entropa del horizonte. Este marco muestra una, nada trivial,relacion entre tres estructuras matematicas totalmente diferentes: Relatividad Gen-eral, Geometra Cuantica y teoras de Chern-Simons. El numero de microestadosde horizonte compatibles con una configuracion macroscopicada dada (caraterizadapor el area) da lugar a la entropa [17]. El conteo de estos grados de libertad puedeformularse como un problema combinatorio muy bien definido.

    Resolver exactamente este problema combinatorio no es un tarea trivial. Losprimeros trabajos utilizaron, para extraer resultados, aproximaciones extra. En par-

    ticular, el lmite de grandes areas permitio resolver y obtener expresiones analticaspara la solucion del problema combinatorio. El resultado reprodujo la proporcional-idad entre entropa y area y, adicionalmente, produjo una correccion logartmicaadicional con coeficiente1/2, que haba sido predicha en terminos generales enotros contextos

    S(A) =kB

    c

    A

    42P1

    2ln

    A

    2P

    , (4)

    donde es el llamado parametro de Barbero-Immirzi (un parametro real libre en lateora), Pla longitud de Planck yces un constante numerica obtenida del calculo.

    Fijando igual a c se obtiene consistencia con la entropa de Bekenstein-Hawkingen el lmite de grandes areas.Alternativamente, la complejidad del problema combinatorio puede ser soslayada

    empleando un ordenador para realizar un conteo explcito de estados, esto es, generary contar de forma explcita las combinaciones de etiquetas que caracterizan los es-tados de horizonte compatibles con un area fijada [18, 19]. Aunque el crecimientoexponencial de estados con el area limita severamente el conteo a valores modestosdel area del horizonte (menos de doscientas areas de Planck), este conteo confirmolos resultados analticos (4). Mas aun, este conteo directo revelo un comportamientomas rico en el espectro de degeneracion cuando se evita cualquier aproximacion. Losestados cuanticos mas degenerados se acumulan alrededor de ciertos valores del area

  • 8/13/2019 Agullo Tesis

    17/184

    Introduccion y Resumen 17

    equiespaciados, con una degeneracion varios ordenes de magnitud menor entre ellos.Esto da lugar a un espectro de area quasi-discreto, efectivamente equiespaciado(con un equiespaciado de aproximadamente 2.42P), aun cuando el espectro de areas

    de LQG no es equidistante (ver figura 1). Este resultado establece un punto decontacto, de forma altamente no trivial, con propuestas realizadas por Bekenstein yMukhanov en un contexto mas general sobre el equiespaciado del espectro de areasde agujeros negros. Adicionalmente este resultado tiene importantes consecuenciasfsicas para las propiedades de agujeros negros, tales como la entropa, la cual pre-senta una discretizacion efectiva, o la radiacion Hawking, que pudiera presentarsenales caractersticas del espectro de degeneracion subyacente.

    number

    ofstates

    area

    1011

    21011

    31011

    41011

    51011

    61011

    71011

    120 122.5 125 127.5 130 132.5 135 137.5

    Figure 1: El numero de estados diferentes de horizonte en cada intervalo de 0.012Pse muestra en terminos del area en unidades de Planck. Los estados acumulanalrededor de ciertos valores equidistantes.

    Ante esta situacion es natural preguntarse cual es el origen, dentro del formal-ismo, de la aparicion de esta estructura. Este es el objetivo del captulo 7, donde se

    pone de manifiesto que la estructura discreta de la geometra cuantica y del espectrode areas de LQG esta en la raz de dicho fenomeno. De esta forma se puede entien-der por que en trabajos anteriores esta estructura paso inadvertida, debido a que loscalculos en el lmite de grades areas aproximan al continuo muchas de las cantidadesdiscretas fundamentales. Adicionalmente, atendiendo a las caractersticas discretasdel espectro, los estados cuanticos pueden clasificarse de tal forma que la estruc-tura en bandas se hace manifiesta. Esta clasificacion permite obtener una expresionanaltica para el area a la que tienen lugar los picos de degeneracion y, por tanto,una expresion para la periodicidad del espectro.

    Un punto importante que ha de ser clarificado es si la periodicidad observadaen el espectro de degeneracion para agujeros negros microscopicos esta presente

  • 8/13/2019 Agullo Tesis

    18/184

    18 Introduccion

    en el lmite macroscopico. El formalismo de horizontes aislados esta justificadopara agujeros negros en equilibrio, donde la evolucion dinamica se puede despreciar.Por tanto, esta definicion es mas rigurosa para agujeros negros macroscopicos. Sin

    embargo, para agujeros negros de areas mayores un conteo explcito se hace invi-able, debido al ingente numero de estados involucrados. Es necesario, por tanto,un analisis mas riguroso del problema, que aporte mas control sobre el intrincadoproblema combinatorio. Este es el objetivo del captulo 8. Esta parte de la Tesistiene como objetivo mostrar como tecnicas procedentes de teora de numeros ymatematica combinatoria discreta pueden ser aplicados para resolver el problemacombinatorio que da lugar a la entropa de agujeros negros en LQG. En concreto,estas tecnicas permiten caracterizar los autovalores del espectro de areas y, paracada uno de ellos, calcular de forma explcita todos y cada uno de los estados degeometra compatibles. Los resultados obtenidos no solo confirman los resultados

    anteriores, sino que son capaces de extenderlos a areas considerablemente mayores.Adicionalmente, los metodos empleados permiten estudiar de forma pormenorizadalas contribuciones provenientes de diferentes partes del problema, arrojando luz so-bre la raz del fenomeno de las bandas en el problema combinatorio.

    Un paso clave para obtener el comportamiento de la degeneraci on en el lmite degrandes areas es codificar la solucion del problema de forma apropiada en terminosde funciones generatrices [20]. Las funciones generatrices son herramientas potentespara resolver problemas combinatorios porque incorporan la solucion en los coefi-cientes de expansiones en serie. Esto permite obtener expresiones cerradas para loscoeficientes como integrales de contorno en el plano complejo, cuyo comportamiento

    asintotico puede ser estudiado por los metodos presentes en la literatura. Dedi-caremos el captulo 9 a la deduccion de las funciones generatrices y su papel en laobtencion de la entropa en el lmite de grandes areas.

    La ultima parte de la Tesis la dedicaremos a la relacion del marco teorico queda lugar a la entropa de agujeros negros en LQG con estructuras mas generales.Por varios anos tras establecerse de forma semiclasica la termodinamica de los agu-jeros negros, ninguna de las propuestas de gravedad cuantica existentes era capazde reproducir la entropa de Bekenstein-Hawking. Por contra, a da de hoy existeuna proliferacion de resultados, provenientes de propuestas muy diversas, que re-producen todos el resultado semiclasico en el lmite termodinamico. De este modo,

    en palabras de S. Carlip, el problema a pasado de ser como reproducir el resultadosemiclasico a, por contra, por que todas las propuestas reproducen el mismo resul-tado. Carlip [21, 22, 23] ha propuesto que la solucion a esta pregunta tiene su origenen una simetra intrnseca al horizonte, la simetra conforme. En particular, muchosde los marcos teoricos que reproducen este resultado, como la Teora de Cuerdas,llevan incorporada y hacen uso de esta simetra. En LQG la estructura matematicainherente al horizonte es la de una teora de Chern-Simons. Sin embargo E. Wittenestablecio en un destacable trabajo [24] la conexion entre el espacio de Hilbert deteoras de Chern-Simons y el espacio de bloques conformes de las teoras de cam-pos conformes. En el captulo 10 queremos mostrar como, al tratar la simetragauge SU(2) de la geometra en LQG de forma conveniente, la entropa del hori-

  • 8/13/2019 Agullo Tesis

    19/184

    Introduccion y Resumen 19

    zonte puede ser calculada empleando la analoga de Witten a traves de un conteodel numero de bloques conformes de una teora SU(2)-Wess-Zumino -Witten. Esteresultado, aunque todava preliminar, es un primer paso haca la definicion cuantica

    de horizonte aislado y a la muy interesante relacion entre la descripcion cuantica dehorizontes aislados y teoras conformes.

    Las unidades han sido escogidas de tal forma que coincidan con las empleadasusualmente en la literatura sobre el tema en cuestion, para facilitar comparaciones.Esto lleva a que en la primera parte de la Tesis (captulos 1-5) se empleen las unidadesgeneralmente empladas en TCC, aunque hemos decidido mantener explctamente para clarificar el significado fsico de algunas expresiones, de forma que empleamosunidades tales que c = G = 1. En el captulo 4 mantenemos tambien G= 1. Enla seccion 5.4, para comparar nuestros resultados con la bibliografa hemos decididoemplear unidades usualmente empleadas en cosmologa en las que c= = 1. En la

    segunda parte de la tesis empleamos unidades de Planck. Por conveniencia en loscalculos tomamos unidades tales que 42P = 1.

  • 8/13/2019 Agullo Tesis

    20/184

    20 Introduccion

  • 8/13/2019 Agullo Tesis

    21/184

    Chapter 1

    Quantum field theory in curvedspacetimes and two-point

    functions

    1.1 Quantum field theory in curved spacetimes

    In this section we want to quickly review the basics of quantum field theory incurved spacetimes. It does not intend at all to be a detailed revision, instead wewill just briefly review the general aspects of this topic. For details see, for instance,[3, 5, 4, 25].

    The idea of the fundamental constituents of matter being described using fieldsdefined in a certain region of the spacetime, instead of localized particles, has beenone of the most successful ideas in modern physics, and have led to the formulationof Quantum Field Theory (QFT) [26]. In this framework the Standard Model wasformulated, which has been spectacularly confirmed experimentally in high energyexperiments in the last decades. It is known that the Standard Model is not the finaltheory of physics, and probably QFT is not the most elemental way of describe thefundamental degrees of freedom, but we have learn a lot about how Nature worksusing these theories and, for sure, they have provided a huge amount of indicationsabout how to look for a more fundamental description.

    One of the missing points in the description of QFT is the consideration of thegravitational interaction. At the present time there are no well defined prescriptionto incorporate gravity, at a fundamental level, in the framework of QFT. In fact,the problem of how to quantize gravity still remains as one of the biggest problemsin fundamental physics, and there is no agreement about which is the appropriatedirection to look for an answer. Then, it makes sense to explore less ambitious ap-proaches that, in spite of being approximate descriptions, will provide some insightsinto the nature of quantum gravity. Quantum field theory in curved spacetimes is aneffective approach that intends to study the behavior of quantum fields in the pres-ence of the classical effects of gravity. Thus, in this semiclassical framework whilethe fields are described by the basic principles of QFT, the spacetime structure is

  • 8/13/2019 Agullo Tesis

    22/184

    22 Quantum field theory in curved spacetimes and two-point functions

    described by a manifold on which is defined a classical, Lorentz signature metric,gab. However, the introduction of a non trivial spacetime geometry establishes im-portant differences with the usual QFT in the Minkowski spacetime, and opens the

    possibility to predict new effects. Very deep results have been obtained from thispoint of view, being remarkable the discovery by Parker of particle production inan expanding universe, the Hawking effect (black hole radiation), and its associ-ated Unruh and Gibbons-Hawking effects. These results, and their implications, areprobably the most valuable clues we have at present about the fundamental featuresthat a quantum theory of gravity likely holds.

    The principal characteristic that one looses when generalizing QFT in Minkoskispacetime to curved spacetimes is the existence of Poincare symmetry that thisspacetime possesses. The conventional formulation of QFT [26] strongly relies inthat symmetry, in particular in the time translation symmetry, describing the theory

    in terms of states of particles. In a general background geometry one does not haveany time translation symmetry and has to formulate the theory in general terms.We want to summarize here this general formulation for the simplest case of a free,massless, minimally coupled, scalar field, and discuss how the usual formulation ofQFT is recovered when Poincare symmetry is present.

    Consider, then, a scalar field satisfying the Klein-Gordon wave equation

    (x) = 0 , (1.1)

    where g, being the covariant derivative associated with the metricg. In the complex space

    S of the solutions to this equation an (non positive

    definite) inner product can be defined as

    (f, g) = i

    d(fg gf) , (1.2)

    for any f, g S. This product is usually called the Klein-Gordon (KG) innerproduct and (f, f) the KG norm off. Iff and g verify the KG equation, its valueis independent of the space-like surface over which it is evaluated, provided thefunctions vanish at spatial infinity.

    To quantize the field(x), and its conjugate momentum(x), they are promotedto hermitian operators and required to satisfy the canonical commutation relation

    [(t0, x), (t0,x)] =i(x x) . (1.3)In order to construct the Hilbert space, we have to find a decomposition of the spaceS into a direct sum of a positive norm subspaceS0 and its complex conjugate S0,such that all KG products between solutions from the two subspaces vanish. Thatis

    S= S0 S0 , (1.4)such that

    (f, f)> 0

    f S0

    , (1.5)

  • 8/13/2019 Agullo Tesis

    23/184

    1.1 Quantum field theory in curved spacetimes 23

    (f, g) = 0 f, g S0 . (1.6)The first condition implies that each f inS0 can be normalized and the followingconstruction can be made. One can define the annihilation operator associated withfas the product offwith the field operator

    a(f) = (, f) . (1.7)

    If one takes into account that the field operator is hermitian, the above definitionimplies

    a(f) = a(f) . (1.8)The canonical commutation relation (1.3), together with the definition of the mo-mentum(x), imply that

    [a(f), a(g)] = (g, f) . (1.9)

    Taking into account (1.8), the similar relations are satisfied

    [a(f), a(g)] = (g, f), [a(f), a(g)] = (g, f) . (1.10)Iff is a positive norm solution with unit norm (f, f) = 1, thena(f) anda(f) satisfythe usual commutations relations for the raising and lowering operators. If thestate| satisfies a(f)| = 0, the state|n, := (1/n!)(a(f))n|, for any nonnegative integer number n, is an eigenstate of the number operator N(f) =a(f)a(f)with eigenvalue n. This is called a state with nf-mode excitations.

    The second condition (1.6) implies that, according to (1.10), the annihilation and

    creation operators for f and g in the subspaceS0, commute amongst themselves[a(f), a(g)] = 0 = [a(f), a(g)] . (1.11)

    Then, given a decomposition (1.4), a total Hilbert space for the field theory can bedefined as the space expanded by all the states of the form

    a(f1)...a(fn)|0 ,where |0 is a state such thata(f)|0 = 0 for allf S0, and is called a Fock vacuum.This vacuum state depends, obviously, on the decomposition (1.4), and in general

    is not the ground state, which is not even defined for a spacetime with no globaltime-translation symmetries. The representation of the field operator on this Fockspace is hermitian and satisfies the canonical commutation relations.

    In a general curved spacetime there does not appear to be any preferred electionfor the decomposition (1.4). In fact, different decompositions (1.4) lead to quantumrepresentations of the canonical commutation relations that are, in general, unitaryinequivalent. In Minkowski spacetime the Poincare symmetry is used to pick outa preferred decomposition (1.4). One chooses f to be positive frequency solutions

    (as, for instance, the plane-wave modes uk = 1/

    163weiwt+kx) with respect to aninertial time. Note that this definition is unaltered if one chooses another inertialtime coordinatet. Because the time translation symmetry, the vacuum state defined

  • 8/13/2019 Agullo Tesis

    24/184

    24 Quantum field theory in curved spacetimes and two-point functions

    in this way,|0M, is the ground state of the Hamiltonian. In addition, because themodesukare eigenstates of the inertial time translation operator,t, with eigenvaluew, the states of the Hilbert space a(uk

    1

    )...a(ukn)|0

    can be interpreted asn-particle

    states.

    1.2 Bogoliubov transformations and particle cre-ation

    The main features introduced by allowing a general non stationary spacetime geom-etry in QFT, namely the existence of inequivalent quantizations, can be exploitedto generate interesting new physical phenomenon. In the pioneering works [6, 7] on

    QFT in curved spacetimes, L. Parker predicted that particles can be created dueto the existence of a time-dependent cosmological background. He introduced thetechniques of Bogoliubov transformations in QFT, which is the basic tool to obtainthe effect of gravitational particle creation. This techniques was latter applied byHawking leading to one of the most important prediction of QFT in curved space-times, the phenomenon of black hole radiation. In this section we want to quicklyreview the basis of Bogoliubov transformations.

    For illustrative purposes, let us consider the interesting physical situation of aspacetime background that is stationary in the past and in the future. The exis-tence of asymptotic stationary regions provide preferred decompositions (1.4) for

    constructing the Hilbert space. One can constructS0 as made of the normalizedsolutions to the wave equation such that they have definite positive frequency in thepast. These are the modes uini , that give rise to a Hilbert space where the vacuumstate,|in, is the ground state of the Hamiltonian in the past, and, in that region,the states

    a(uini1 )...a(uinin)|in ,

    can be interpreted as n-particle states.

    On the other hand, with the same degree of legitimacy, the subspaceS0 can bemade of the normalized solutions to the wave equation such that they have definite

    positive frequency in the future, u

    out

    i . In that way the defined vacuum,|out, is theground state of the Hamiltonian in the future and the states a(uouti1 )...a(uoutin )|outhave a natural particle interpretation in the asymptotic future.

    The problem that we want to tackle is the following. If the state of the quantumfield in the past is|in, what is the state in the asymptotic future? More precisely,sice in the Heisenberg picture the state does not evolve, so what we are really askingis: how is the state|in expressed in the out-Hilbert space?

    To answer this question we need to relate the annihilation and creation operatorsassociated with the in and out normalized frequency modes. To do this we wantto express the out modes in terms of the in ones. However, it is not guaranteedthat positive frequency solutions uout

    i can be expanded in terms of pure positive

  • 8/13/2019 Agullo Tesis

    25/184

    1.2 Bogoliubov transformations and particle creation 25

    frequency solutions uini , and in general we have

    uout

    j

    =i

    (jiuin

    i

    + jiuini

    ) . (1.12)

    This sort of linear relations between the two sets of modes is called a Bogoliubovtransformation, and the matrices ij, ij are called the Bogoliubov coefficients. Ifthe elements in set{uini} are taken normalized with respect to the Klein-Gordonproduct

    (uini , uinj ) =ij , (1.13)

    the scalar product between both sets of modes gives directly the Bogoliubov coeffi-

    cients

    ij = (uouti , u

    inj ) , ij = (uouti , uinj ) . (1.14)

    The orthonormality relation of the modes also leads to the conditions

    k

    (ikjk + ik

    jk) =ij , (1.15)

    and

    k

    (ikjk ikjk) = 0 . (1.16)

    One can also invert the relations (1.12) and obtain

    uini =j

    (jiuouti jiuouti ) , (1.17)

    and using the fact that a(uini ) aini = (, uini ) and a(uouti ) aouti = (, uouti ) we canexpand one of the two sets of creation and annihilation operators in terms of theother

    aini =j

    (jiaoutj + jiaoutj ) , (1.18)

    or

    aouti =j

    (ijainj ijainj ) . (1.19)

    If the coefficients ij do not vanish the vacuum states|in and|out are different.One can realize this immediately by computing the expectation value of the outparticle number operator for the ith mode

    Nouti

    1aout

    i aout

    i , (1.20)

  • 8/13/2019 Agullo Tesis

    26/184

    26 Quantum field theory in curved spacetimes and two-point functions

    in the state|in

    in

    |Noutj

    |in

    = 1

    in

    |aoutj a

    outj

    |in

    |=

    = 1in|i

    (jiaini )k

    (jkaink )|in =

    =i

    |ji|2 . (1.21)

    If any of the ij coefficients are different from zero, the|in vacuum state is a nontrivial state in theoutFock space. In particular, in the future it will be considered asa state of in|Noutj |in particles in the mode uoutj . In contrast, if all the coefficientsij vanish, the relation (1.15) turns out to be

    k

    ikjk =ij , (1.22)

    which means that the positive frequency modes inandoutare related by a unitarytransformation, with matrix ij, and therefore both vacuum states|in, |out areequivalent.

    The physical consequences of this result are clear, the vacuum state defined inthe asymptotic past appears to an static observer at the future as an state with anon trivial content of particles given by the coefficients ij. This phenomenon ofparticle creation by time dependent spacetimes has no place in the usual formulationof QFT in flat space in terms of inertial observers, and is one of the most remarkable

    physical consequences of quantum field theory in curved spacetimes.

    1.3 Two-point functions and particle creation

    This section will be devoted to present an alternative formulation for the phe-nomenon of particle creation based on two-point functions instead of Bogoliubovtransformations [12, 27, 28]. Intuitively the idea is simple. In the conventional anal-ysis in terms of Bogoliubov coefficients, we first perform the spatial integrals (tocompute the scalar product required for the coefficients), and leave to the endthe integration in frequencies w (1.21). In contrast, we can invert the order andperform first the integration in frequencies (which naturally leads to introduce thetwo-point function of the matter field) and perform the integration in distances atthe end.

    Let us rewrite the basic expression (1.21), or more precisely, the expectation

    values of the operator Nouti1i2 1 aouti1aouti2 , as follows

    in|Nouti1i2|in =k

    i1ki2k

    = k

    (uouti1 , uink )(u

    outi2 , u

    ink ) =

    = k d

    1 u

    outi1

    (x1)u

    ink (x1) d

    2u

    outi2

    (x2)u

    ink (x2) . (1.23)

  • 8/13/2019 Agullo Tesis

    27/184

    1.3 Two-point functions and particle creation 27

    If we now consider the sum in modes before computing the integrals given by twoscalar products, and take into account that

    in|(x1)(x2)|in = k

    uink(x1)uink (x2) , (1.24)

    we obtain a simple expression for the particle production number in terms of thetwo-point function

    in|Nouti1i2|in = 1

    d1 d2[u

    outi1 (x1)

    ][u

    outi2 (x2)

    ]in|(x1)(x2)|in . (1.25)

    In the above expression the two-point function should be then interpreted in thedistributional sense. The i-prescription is therefore assumed for the two-point

    distributionin|(x1)(x2)|in, and it verifies the Hadamard condition1

    [4, 29].Alternatively, taking into account the trivial identityout|aouti1aouti2|out = 0 we

    can rewrite the above expression as

    in|Nouti1i2|in = 1

    d1 d2 [u

    outi1

    (x1)][u

    outi2

    (x2)]in| :(x1)(x2) : |in ,

    (1.26)wherein| :(x1)(x2) : |in in|(x1)(x2)|in out|(x1)(x2)|out. Now theHadamard condition for both |in and |out states guaranties that in| :(x1)(x2) :|in is a smooth function, and the i-prescription is now redundant.

    The expression (1.26) presents several advantages with respect to the more con-

    ventional expression (1.21). It explicitly shows the origin of the process of particlecreation as the difference between vacuum fluctuation of the two physical vacuumstates involved. In the following chapters we want to exploit this formulation apply-ing it to the derivation of the most important effects of particle production. We willshow how within this framework one can easily derive the conventional results fordifferent quantum fields and, in particular, how this formulation is very convenientto evaluate explicitly how much these results depend on ultrahigh energy physics:the so called transplanckian problem.

    1The two-point distribution should have, for all physical states, a short-distance structure sim-ilar to that of the ordinary vacuum state in Minkowski space: (2)2( + 2it+ 2)1, where(x1, x2) is the squared geodesic distance.

  • 8/13/2019 Agullo Tesis

    28/184

    28 Quantum field theory in curved spacetimes and two-point functions

  • 8/13/2019 Agullo Tesis

    29/184

    Chapter 2

    Thermal effects and two-pointfunctions

    The objective of this chapter is to apply the techniques presented in the previouschapter to the most relevant scenarios where thermal effects are present. The phe-nomenon of particle production by time-dependent gravitational fields was firstlyintroduced and applied to cosmological scenarios in [6, 7] by using the techniques ofBogoliubov transformations. For spacetimes containing an event horizon this phe-nomenon has a thermal character which has important physical consequences. Aphysical temperature and entropy can be defined for the horizon providing a deepconnection with termodynamics. The Hawking effect [9] in black holes, the Unruh

    effect [30] in Minkowski spacetimes and the Gibbons-Hawking effect [31] in de Sitterspace are three physical situations where thermal effects are naturally associatedwith horizons. In this chapter we want to give an alternative derivation of thesethermal effects using as central objects the two-point function of the correspondingquantum fields in the context of quantum field theory in curved spacetimes.

    2.1 Hawking effect

    In this section we want to review the quantitative arguments leading to the Hawkingresult of radiation by Schwarzschild black holes [9, 8, 32, 33]. We first reproducethe usual derivation based on Bogoliubov transformation to later show how thisproblem can be reformulated in the basis of two-point functions. We will show howusing this new formulation the thermal result can be recovered in a smooth way, forbosonic and fermionic fields, that makes manifest its physical content.

    2.1.1 Bogoliubov coefficients and black hole radiance

    Let us consider the formation process of a Schwarzschild black hole, as depictedin Figure 2.1, and a massless real scalar field propagating in this background.The equation of motion obeyed by the field is = 0 and the Klein-Gordon scalar

  • 8/13/2019 Agullo Tesis

    30/184

    30 Thermal effects and two-point functions

    product is given by

    (1,

    2) =

    i

    d(1

    2

    2

    1) , (2.1)

    where is a suitable initial data hypersurface. A natural choice for is the(asymptotically flat) past null infinity I and therefore one can express the field ina set of modes uinj (x), which have positive frequency in I

    =i

    (aini uini + a

    ini u

    ini ) . (2.2)

    Alternatively, we can choose as =I+ H+, whereI+ is the future null infinity

    !

    !

    !

    !

    #$ %

    "

    &'

    !

    Figure 2.1: Penrose diagram of a collapsing body producing a Schwarzschild blackhole.

    and H+ is the event horizon. According to this we can then expand the field in anorthonormal set of modes uouti (x), which have positive frequency with respect to theinertial time at I+ and have zero Cauchy data in H+, together with a set of modes

    uint

    i (x) with null outgoing component at I+

    . Therefore we can write

    =i

    (aouti uouti + a

    outi u

    outi ) + (a

    inti u

    inti + a

    inti u

    inti ) . (2.3)

    The particular choice of modes uinti does not affect the computation of particleproduction at I+, so we leave them unspecified.

    Considering for simplicity that the background is spherically symmetric we canchoose the following basis for the ingoing and outgoing modes

    uinwlm|I =

    1

    4weiwv

    r

    Yml (, ) , (2.4)

  • 8/13/2019 Agullo Tesis

    31/184

    2.1 Hawking effect 31

    uoutwlm|I+ = 1

    4w

    eiwu

    r Yml (, ) , (2.5)

    where u = t r and v = t + r are null coordinates. Here Ym

    l (, ) are the sphericalharmonics. One can evaluate the Bogoliubov coefficients wlm,wlm according toprevious expressions by making the convenient choice = I

    wlm,wlm = (uoutwlm, uinwlm) =iI

    dvr2d(uoutwlmvuinwlm uinwlmvuoutwlm) . (2.6)

    The angular integration is straightforward and leads to delta functions ll m,mfor the coefficients. The relevant point is to realize that the coefficients can beevaluated and have a unique answer, which turns out to be independent of the detailsof the collapse, ifuouti represents a late-time wave-packet mode (i.e., centered aroundan instantuwithu

    +

    alongI+). When these modes are propagated backwards

    in time they are largely blueshifted when they approach the event horizon. Afterpassing through the collapsing body they are scattered to Iin a very small intervaljust before vH. To know how they behave on I

    (as needed to evaluate the scalarproduct with uinwlm) one can apply the geometric optics approximation since theeffective frequency, as measured by freely falling observers, is very large. The (late-time) mode uoutwlm, which is of the form (2.5) at I

    +, evolves and arrives at I withthe form

    uoutwlm|I = tl(w)

    4w

    eiwu(v)

    r Yml (, )(vH v) , (2.7)

    where tl(w) is the transmission coefficient for the Schwarzschild metric and the

    relation between null inertial coordinates u at I+ and v at I is typically given bythe logarithmic term

    u= vH 1 ln |vH v| , (2.8)where, for the Schwarzschild black hole, = 1/4M is the surface gravity and vHrepresents the location of the null ray that will form the event horizon H+ (see Fig.2.1). One has then all ingredients to work out the (late-time) Bogoliubov coefficients

    wlm,wlm =()mtl(w)

    2

    w

    w

    vH

    dveiw(vH1 ln|vHv|)iwvllmm . (2.9)

    They can be evaluated explicitly

    wlm,wlm =()mtl(w)

    2

    w

    w

    ei(w+w)vH

    (1wi + )1+1wi (1+ 1wi)llmm , (2.10)

    where we have introduced a negative real part () into the exponent of (2.9) toensure convergence of the corresponding integrals. To compute the particle produc-tion at I+ one has to evaluate the integral (from now on in this section we shallomit, for simplicity, the subscripts l, m)

    +

    0

    dww1ww2w

    . (2.11)

  • 8/13/2019 Agullo Tesis

    32/184

    32 Thermal effects and two-point functions

    The integration in w reduces to

    +0

    dw

    w e1w1i ln(

    1w

    i)

    e1w2i ln(1w

    i)

    = 2e1w1

    (w1 w2) , (2.12)from which we finally get +

    0

    dww1ww2w

    = |tl(w1)|2e21w1 1 (w1 w2) , (2.13)

    where the coefficient in front of (w1w2) represents a steady thermal flow ofradiation of frequency w= w1

    dNlm(w)

    dwdt 1

    2 in

    |Nout

    wlm|in

    =

    1

    2

    l(w)

    e2

    1w 1 , (2.14)

    and the grey-body factor is given by l(w) |tl(w)|2. This expectation valuecoincides exactly with a Planck distribution (modulated by the grey-body factors)of thermal radiation for bosons (kB is the Boltzman constant)

    1

    ew/kBT 1 ,

    with a temperature

    TH=

    2kB

    . (2.15)

    2.1.2 Two-point functions and black hole radiance

    Thermal spectrum for a scalar field

    Let us now apply the scheme presented in section 1.3 to the formation process of aspherically symmetric black hole, and restrict the out region to I+ [27],[28]. Thein region is, as usual, defined by I. At I+ we can consider the conventionalradial plane-wave modes

    uoutwlm(t,r,,)|I+ =u

    outw (u)

    Yml (, )

    r , (2.16)

    where uoutw (u) = eiwu

    4w. We shall now evaluate the matrix coefficientsin|Nouti1i2|in

    where i1,2 (w1,2, l1,2, m1,2). Taking in expression (1.25) I as the initial valuehypersurface, and integrating by parts we obtain

    in|Nouti1i2|in = 4

    I

    r21dv1d1

    I

    r22dv2d2uoutw1

    uoutw2 Ym1l1 (1, 1)

    r1

    Ym2l2 (2, 2)

    r2v1v2

    in

    |(x1)(x2)

    |in

    . (2.17)

  • 8/13/2019 Agullo Tesis

    33/184

    2.1 Hawking effect 33

    The two-point function above can be now expanded at I as

    in|(x1)(x2)|in =

    0 dwl,m

    eiwv1

    4wYml (1, 1)

    r1

    eiwv2

    4wYml (2, 2)

    r2 . (2.18)

    Recall that the radial part of the late-time out modes uoutwlm, when they are prop-agated backward in time and reach I, takes the form

    uoutw|I =tl(w)eiwu(v)

    4w(vH v) (2.19)

    whereu(v) vH1 ln (vHv). Performing now angular integrations and takinginto account that

    v1v2

    0

    dw eiw(v1v2)

    4w = lim

    0+ 1

    41

    (v1 v2 i)2 , (2.20)

    we get

    in|Nouti1i2|in = tl1(w1)t

    l2

    (w2)

    42

    w1w2

    vH

    dv1dv2eiw1u(v1)+iw2u(v2)

    (v1 v2 i)2 l1l2m1m2 (2.21)

    where the limit 0+ is understood. Alternatively, since we are interested inquantities measured at = I+, we could use this latter hypersurface to carry outthe calculations. In this case, the expression for the particle production rate becomes

    in|Nouti1i2|in = tl1(w1)t

    l2

    (w2)

    42

    w1w2 (2.22)

    du1du2

    dvdu

    (u1)dvdu

    (u2)

    [v(u1) v(u2) i]2 eiw1u1+iw2u1l1l2m1m2 ,

    and leads to

    in|Nouti1i2|in =tl1(w1)tl2(w2)

    42

    w1w2

    +

    du1du2(

    2)2eiw1u1+iw2u2

    [sinh 2

    (u1 u2 i)]2 l1l2m1m2 .(2.23)

    This last expression is more convenient for computational purposes. Since the func-tion in the integral depends only on the differencez u2u1, the integral inu2 +u1can be performed immediately and leads to a delta function in frequencies

    in|Nouti1i2|in = tl1(w1)t

    l2

    (w2)(w1 w2)2

    w1w2

    +

    dzeiw1+w2

    2 z (

    2)2l1l2m1m2

    [sinh 2

    (z i)]2 ,(2.24)

    Performing the integration in zwe recover the Planckian spectrum and the particleproduction rate

    in

    |Noutwlm

    |in

    =

    |tl(w)|2

    e21

    w 1 . (2.25)

  • 8/13/2019 Agullo Tesis

    34/184

  • 8/13/2019 Agullo Tesis

    35/184

    2.1 Hawking effect 35

    The integral in distances zalso leads, as expected, to the Hawking formula2

    in

    |Noutwlm

    |in

    =

    |tl(w)|2

    2w

    +

    dzeiwz (

    2

    )2

    (sinh

    2 z)2

    1

    z2

    = |tl(w)|2e2w1 1 . (2.30)

    Thermal spectrum for a s= 1/2 field

    In this subsection we shall extend the analysis of the scalar field to a fermionics = 1/2 field [28]. For simplicity we take a massless Dirac field, obeying the waveequation

    = 0 , (2.31)where = V

    a

    a are the curved space counterparts of the Dirac matrices a (seeAppendix A for calculations omitted in this section). The Klein-Gordon scalarproduct (2.1) is now replaced by

    (1, 2) =

    d12 . (2.32)

    Therefore the expression for the expectation values (1.25) is replaced by

    in|Nouti1i2|in = 1

    d1 d2[u

    outi2 (x2)]b[u

    outi1 (x1)]

    ain|a(x1)b(x2)|in .(2.33)

    AtI+ we can consider the normalized radial plane-wave modes3

    uoutwjmj (t,r,,)|I+ eiwu4r

    (r)mjj(r)(r)

    mjj

    , (2.34)

    where (r)mjj are two-component spinor harmonics (see Appendix A). Note that

    the angular momentum quantum number j is uniquely determined by the relationj = (j+ 1/2). The above modes, when propagated backwards in time and reachI, turn into

    uoutwjmj(t,r,,)|I tj(w)eiwu(v)

    4r

    (r)

    mjj

    (r)(r)mjj

    (vH v)

    du(v)

    dv ,(2.35)

    where the last term du(v)/dvappears due to the fermionic character of the field4.Proceeding as in the bosonic case we can expand the two-point function as

    in|a(x1)b(x2)|in = k

    vink,a(x1)vin,bk (x2) (2.36)

    2For Kerr-Newman black holes the calculation is similar up to a shift in the wave function eiwz ,which should be now replaced by ei(wmHqH)z, as an effect of wave propagation through thecorresponding potential barrier.

    3On physical grounds we should use left-handed spinors uoutL,wjmj 12(uoutw|j |mj uoutw|j |mj ).The final result is not changed. See Appendix B.

    4The vierbein fields needed to properly write the field equation in a curved spacetime have beentrivially fixed in the asymptotic flat regions, so its transformation law under change of coordinatesis then translated to the spinor itself (see also Appendix A).

  • 8/13/2019 Agullo Tesis

    36/184

    36 Thermal effects and two-point functions

    where vink are negative-energy solutions which inI take the form

    vink

    vinwjm

    (t,r,,)|I

    eiwv

    4r (r)

    mjj

    (r)(r)mjj . (2.37)

    Performing first the angular integrations and taking into account the orthonormalityrelations of the spinor harmonics (r)

    mjj , the above formulas get simplified and

    become

    in|Nouti1i2|in = itj1 (w1)t

    j2

    (w2)

    42 mj1mj2j1j2

    vH

    dv1dv2

    du(v1)

    dv

    du(v2)

    dv

    eiw1u(v1)+iw2u(v2)

    (v1 v2 i) (2.38)

    As in the bosonic case, we rewrite this expression as an integral over I+

    in|Nouti1i2|in = itj1 (w1)t

    j2

    (w2)

    42 mj1mj2j1j2

    du1du2eiw1u1+iw2u2 (

    2

    )

    sinh[2

    (u1 u2 i)] . (2.39)

    We can also split the integral in a product of a function dependent on u2+u1 andanother function which depends onz u2u1. The former leads to a delta functionin frequencies and we are left with

    in|Nout

    i1i2 |in = i

    2 tj1 (w1)tj2 (w2)mj1mj2j1j2(w1 w2) +

    dzeiw1+w2

    2 z (

    2

    )

    sinh[2

    (z i)] . (2.40)

    Performing now the integration in z

    i2

    +

    dzeiwz (

    2)

    sinh[2

    (z i)] = 1

    e2w1 + 1 , (2.41)

    we recover the Planckian spectrum, with the Dirac-Fermi statistics, and the corre-sponding particle production rate

    in|Noutwmjj |in = |tj(w)|2e21w + 1

    . (2.42)

    Analogously as in the bosonic case, if we use the normal-ordering prescriptioninstead of the ione we find

    in|Nouti1i2 |in = itj1 (w1)tj2 (w2)

    42

    vH

    dv1dv2

    du(v1)

    dv

    du(v2)

    dv (2.43)

    eiw1u(v1)+iw2u(v2)

    1

    [v1

    v2]

    du(v1)dv

    du(v2)dv

    [u(v1)

    u(v2)]

    j1j2mj1mj2 .

  • 8/13/2019 Agullo Tesis

    37/184

    2.2 Unruh effect 37

    Changing the integration surface to I+ we get

    in|Nout

    i1i2 |in = itj1 (w1)tj2 (w2)

    42I+ du1du2

    dv(u1)du

    dv(u2)

    du (2.44)

    eiw1u1+iw2u2

    dv(u1)du

    dv(u2)du

    [v(u1) v(u2)] 1

    [u1 u2]

    j1j2mj1mj2 .

    Note again that the short-distance divergence of the two-point function of theout state 1

    [u1u2] is exactly canceled by the corresponding one of the in stateqdv(u1)du

    dv(u2)du

    [v(u1)v(u2)] , since both vacua are Hadamard states. After some trivial algebra weget

    in|Noutwjmj |in = i|tj(w)|2

    2

    +

    dzeiwz

    (2

    )

    sinh(2

    z)1

    z

    , (2.45)

    and taking into account

    i2

    +

    dzeiwz

    (2

    )

    sinh(2

    z)1

    z

    =

    1

    e2w1 + 1 , (2.46)

    we recover again the fermionic thermal spectrum.

    2.2 Unruh effectThe Unruh effect was discovered in an attempt to better understand the nature ofthe Hawking effect. This effect exploits the non absolute meaning of the particlenotion in Minkowski spacetime. Firstly pointed out in [35], continued in [36], andcrucially understood in terms of particle detectors in [30], the Unruh effect states,in short, that in Minkowski spacetime, when a quantum field is in its ordinary (in-ertial) vacuum state, a particle detector carried by an accelerating observer will getexited. Indeed, an uniformly accelerating observer will feel himself immersed in athermal bath of particles, at temperature T=a/2, being a the acceleration of the

    observer. In spite of the fact that Unruh effect is both physically and mathemati-cally distinct from the Hawkings one, the two effects are very close related, and theunderstanding of the Unruh effect crucially helped to better understand quantumfield theory in curved spacetimes and black hole radiance. For a complete accountof the Unruh effect and its close relation with black hole radiation see [4].

    Let us consider the usual construction of quantum field theory in Minkowskispacetime. This formulation relies in Poincare symmetry, since the constructionmakes use of the inertial observers as central elements. In this way, the Fock spacestates are expanded in terms of states of particles, which are defined using theordinary (inertial) time translation Killing vector field of the Minkoski spacetime.

  • 8/13/2019 Agullo Tesis

    38/184

    38 Thermal effects and two-point functions

    Poincare symmetry ensures that different selections of inertial time translation giverise to equivalent quantizations, obtaining the usual formulation of quantum fieldtheory in flat spacetime.

    However, in Minkowski spacetime we can extend the formulation of quantum fieldtheory to a wider class of observers. Of particular physical interest are stationaryobservers, which can use the Killing vector field defining its trajectory to interpretthe states of the quantum Fock space in terms of particles. In Minkowski spacetimethe (e.g. X-direction) boost generator

    IIII

    IV

    II

    X

    T

    H+

    H

    t= constant

    = constant

    ,

    t

    ,

    t

    Figure 2.2: Minkowski spacetime diagram. The orbits of the X-direction boostgenerator are showed.

    b =a

    X

    T

    + T

    X

    , (2.47)

    is a Killing vector field, where a is an arbitrary constant and X and T are globalinertial coordinates. Figure 2.2 shows the orbit structure of these isometries. As wecan observe,b is not globally timelike, but it is timelike and future directed in theregion labeled asI. In addition, the region Iis globally hyperbolic [37], then we canconstruct a quantum field theory considering it as a spacetime itself. The observersfollowing orbits ofb, called Rindler observers, are stationary, and they can describethe Fock space of the quantum field in terms of particles associated with the timetranslation b. These observers have coordinates, (t , , y, z ), adapted to b, whichare related with the inertial ones (T , X , Y , Z ) by:

    t= a1 tanh1 T/X , =a1 ln a

    X2 T2 , Y =Y0 , Z=Z0 ,o equivalently

    T =ea

    a sinh at , X=

    ea

    a cosh at , Y =Y0 , Z=Z0 (2.48)

  • 8/13/2019 Agullo Tesis

    39/184

    2.2 Unruh effect 39

    This chart coordinate covers the regionIof the Minkowski spacetime, usually calledthe Rindler wedge. The lines of constant undergo uniform proper accelerationaea, which is equal to a at = 0, and diverges for

    . It is conventional

    to view the lines of constant , orbits ofb, corresponding to a system of referenceassociated with the observer who accelerates uniformly with acceleration a. Then,the quantization constructed using b =

    t as time translation Killing vector field

    corresponds to the quantization of an accelerated observer (Rindler observer). Thevacuum state associated with this construction is known as the Rindler vacuum |0R,and states in the Fock space have a natural particle interpretation associated withb.

    The question we want analyze is, given the usual Minkowski vacuum definedin the whole spacetime, how is it described by the Rindler observer?, i.e. how isit expressed as a state in the Fock space constructed by the accelerated observer

    restricted to region I?

    2.2.1 Bogoliubov coefficients

    We shall present in this section the main aspects of the standard derivation of theacceleration radiation. Let us consider a massless scalar field propagating in theMinkowski spacetime. The wave equation (x) = 0 in the coordinates of theRindler observer becomes

    (e2a(

    2t +

    2 ) +

    2Y +

    2Z)(t , , Y , Z) = 0 . (2.49)

    The Y, Z dependence can be trivially integrated using plane waves (t , , Y , Z) =(t, )eikYYeikZZ. Introducing this ansatz in the equation, we find

    [(2t + 2 ) e2a(k2Y + k2Z)2](t, ) = 0 . (2.50)

    This equation indicates that the free scalar field of the Minkowski observer appearslike a scalar field in a repulsive potential V() e2ak2, where k2 = k2Y +k2Z,for the uniformly accelerated observer. The exact form of the normalized modes,with natural support on the accessible region for the accelerated observer (Rindler

    wedge), can be expressed as

    uRw,k

    = eiwt

    22

    asinh

    12

    wa

    Kiw/a

    |k|a

    ea

    ei

    k X , (2.51)

    where K(x) is a modified Bessel function. The important point is that the abovepositive frequency modes cannot be expanded in terms of the standard purely pos-itive frequency modes of the inertial observer

    uMkX ,k

    = 1

    2(2)

    3

    k0

    eik0T+i(kXX+k X) , (2.52)

  • 8/13/2019 Agullo Tesis

    40/184

    40 Thermal effects and two-point functions

    where k0 =

    k2X+

    k2. The detailed analysis requires one to compute the corre-sponding Bogoliubov coefficients. They are found to be [35, 38]

    wk,kXk= 2ak 0(e2w/a 1)1/2

    k0+ k

    X

    k0 kX

    iw/2a(k k) . (2.53)

    The mean number of Rindler particles in the Minkowski vacuum is obtained as theintegral +

    dkw1k,k

    w2k,k

    . (2.54)

    The integration in kXreduces to

    + dkX(2ak 0)1k0+ k

    X

    k0 kXi(w1w2)/a

    =(w1

    w2) , (2.55)

    and taking into account the remaining terms one easily gets +

    dkw1k1,kw2k2,k

    = 1

    e2w1/a 1 (w1 w2)(k1 k2) . (2.56)

    The final outcome is then extremely simple. A uniformly accelerated observer feelshimself immersed in a thermal bath of radiation at temperature kBT =a/2.

    2.2.2 Particles detectors

    The previous result is reinforced by Unruhs operational interpretation [30]. In short,the particle content of the vacuum perceived by an accelerated observer with motionx= x() can be described by the response function of an ideal quantum mechanicaldetector (see also ([3]).

    The particle content of the vacuum perceived by an observer with trajectory x =x() and equipped with a detector, can be analyzed by considering the interactionof the matter field(x) with the detector, modeled, for instance, by the interactionlagrangian (see, for instance, [3, 4])

    g d m()(x()) , (2.57)where m() represents the detectors monopole moment and g is the strength ofthe coupling. It is assumed that the detector has some internal energy eigenstates|E, providing the internal matrix elementsE|m(0)|E0, with the detector groundstate|E0. For a general trajectory, the detector will not remain in its groundstate|E0, but will undergo a transition to an excited state|E. To first order inperturbation theory, the transition amplitude from|E0|0M to|E|, where|0Mis the Minkowski vacuum state of the scalar field and | an arbitrary field state, isgiven by

    g dE |m()(x())|E00M . (2.58)

  • 8/13/2019 Agullo Tesis

    41/184

    2.2 Unruh effect 41

    The probability for the detector to make the transition from|E0 to|E(summingover all final states of the scalar field) is then given by

    g2|E|m(0)|E0|2F(E E0) , (2.59)where F(w), (w= (E E0)/), is the so-called response function of the detector

    F(w) =

    +

    d1

    +

    d2eiw(12)0M|(x(1))(x(2))|0M . (2.60)

    To compute the response rate per unit time, it is useful to introduce the responserate function

    F(w) =

    + d e

    iw

    0M|(x(1))(x(2))|0M. (2.61)To work out the above expressions one should be careful when dealing with thetypical short-distance singularity of the two-point function. Usually one considersthe i-prescription to give a well define distributional meaning to the two-pointfunction.

    For an inertial detector trajectory the response rate is given by

    F(w) = +

    d eiw/

    42(

    i)2 =

    w

    2(w) , (2.62)

    in agreement with the principle of relativity. If the detectors initial state is theground state,Ei=E0, thenw >0 and the probability for an inertial detector to beexcited is exactly zero, irrespective of the velocity of the detector (when w

  • 8/13/2019 Agullo Tesis

    42/184

    42 Thermal effects and two-point functions

    which implies, via the detailed balance relation P(w) = P(w)e2w/a, that a uni-formly accelerated observer in Minkowski space feels himself immersed in a thermalbath at the temperature kBT =

    a

    2

    .

    We would like to remark that the use of the iprescription in treating thetwo-point function in the distributional sense guarantees the vanishing of the re-sponse function for an inertial observer. However, there is an alternative, and morenatural, way to enforce the vanishing of the response function for inertial detectors.Essentially, for w >0, we can calibrate the detector with the accelerated (Rindler)vacuum|0R

    F(w) =

    +

    d eiw[0M|(x(1))(x(2))|0M 0R|(x(1))(x(2))|0R].(2.66)

    The integrand is now a smooth function, thanks to the universal short-distancebehavior of the two-point function, and the result is equivalent to (2.65)

    F(w) =

    +

    d eiw

    (a2

    )2

    42 sinh2 a2

    +

    42()2

    =

    1

    2

    w

    e2wa 1 . (2.67)

    Although both expressions are mathematically equivalent, they lead to differentresults when the correlation functions are deformed, as we will see in next chapters.

    2.2.3 Two-point functionsWe shall now explain with some detail how the Unruh effect can be derived usingthe two-point functions of the field [39]. We want to apply the formalism presentedin section 1.3 to compute the number of particles for the accelerated observer in theMinkowski vacuum|0M. To apply the expression (1.26) one can naturally choosea hyperplane T X = constant, with|| < 1, as the initial Cauchy surface.However, it is convenient to consider the limiting case = 1 and the null planeH+0 , defined as U T X = U0 < 0 (or the analogous null plane H0 , defined asV T+ X=V0 > 0) as our initial data hypersurface. As emphasized in [4] (section5.1), any solution of the massless Klein-Gordon equation in Minkowski space, having

    any dimension greater than two, is uniquely determined by its restriction to thehyperplane H+0 alone (or H

    0 alone). So H

    +0 (or H

    0 ) is enough to characterize the

    field configuration5 and can be used as the initial value surface . Therefore, weconvert (1.26) into

    M0|NRi1,i2|0M =4

    H+0

    dv1dx1dv2dx2uRi1(x1)uRi2

    (x2)

    v1v2[M0|(x1)(x2)|0M R0|(x1)(x2)|0R] . (2.68)5In two dimensions H+

    0 is not enough and we needH+

    0H

    0 to have a proper initial surface.

  • 8/13/2019 Agullo Tesis

    43/184

    2.2 Unruh effect 43

    Since the accelerated modesuRi (x) have support on the right-handed Rindler wedgethe above integral is naturally restricted to the right wedge part ofH+0. The relevantderivatives of the two-point functions in the Minkowski vacuum can be expressed,using the inertial null coordinates V, U, as:

    M0|V1(x1)V2(x2)|0M = 1

    42

    dkGMk(x1, x2)e

    ik(x1x2) , (2.69)

    where, at the region H+0 :

    GMk(x1, x2)|H+0 = V1V2

    2K0(|k|

    (V1 V2)(U1 U2))|H+0

    = 4

    1

    (V1

    V2)2

    , (2.70)

    where K0(x) is a modified Bessel function. Therefore,

    M0|V1(x1)V2(x2)|0M|H+0 =

    4

    1

    (V1 V2)2 (x1 x2) . (2.71)

    It is now convenient to perform the calculation on the null plane H+, obtained by thelimiting case U0 0. Close to H+ ( ), the potential decays exponentiallyand the (right)-Rindler modes can be approximated as

    uRw,k

    = ei(w,|k|)

    (2)3/22w(eiwu + reiwv)ei

    kx , (2.72)

    wherev =t+,u= t,ei(w,|k|) = [1+iwa

    ]1|k|2a

    iwa

    , andr(w, k) =ei2(w,|k|)

    is the reflection amplitude.Moreover, the two-point function in the accelerated Rindler vacuum can also be

    worked out as

    R0|v1(x1)v2(x2)|0R|H+ = 1

    42

    dkGRk(x1, x2)|H+e

    ikx

    =

    4

    1

    (v1 v2)2

    (x1

    x2) . (2.73)

    Taking this into account, the equation (2.68) becomes:

    M0|NRi1,i2 |0M = |r|2

    42

    w1w2

    V1,V2>0

    eiw1v1+iw2v2 dV1dV2(V1 V2)2

    dv1dv2(v1 v2)2

    (k1 k2) , (2.74)

    where the transversal (Y, Z) dependence has been trivially integrated, producingthe delta function. We would like to emphasize again the physical meaning of the

  • 8/13/2019 Agullo Tesis

    44/184

    44 Thermal effects and two-point functions

    above expression. The particle content of the Minkowski vacuum, as perceived bythe accelerated observer, is displayed as an integral measuring the different vacuumcorrelations of inertial and accelerating observers, weighted by the form of the modesof the accelerated observer.

    Taking into account that the relation between the null inertial coordinateV andthe accelerated one v is V =a1eav we then have

    M0|NRi1,i2|0M = |r|2

    42

    w1w2

    dv1dv2eiw1v1eiw2v2

    (a/2)2

    sinh2 a2

    (v1 v2) 1

    (v1 v2)2

    (k1 k2) . (2.75)

    Note that

    |r

    |= 1 because the reflection amplitude r is a pure phase. Integrating

    overv1+ v2 we are left with (we define v v1 v2)

    M0|NRi1,i2 |0M = 1

    42w1

    d(v) eiw1v

    (a/2)2

    sinh2 a2

    v 1

    (v)2

    (w1 w2)(k1 k2) = 1e2w1/a 1 (

    k1 k2) . (2.76)

    Alternatively, we can choose the null hypersurface H (defined as V0 = 0),instead ofH+, as our initial hypersurface. Then one finds

    M0|NRi1,i2|0M =

    1

    42w1w2U1,U2

  • 8/13/2019 Agullo Tesis

    45/184

    2.3 Gibbons-Hawking effect 45

    origin in the presence of an event horizon for a geodesic observer following the orbitof the Killing vector field t defined in the Appendix B. One can derive this result[31] in parallel to acceleration radiation effect of the previous section by making useof particle detectors. We shall now consider a scalar field in de Sitter space

    ( m2

    2 R)= 0 , (2.78)

    where m is the mass and stands for the coupling to the curvature. The responserate function is also given by the general expression

    F(w) =

    +

    d eiw(x(1))(x(2)) , (2.79)

    where now the expectation value is understood with respect to the (global) Bunch-Davies vacuum

    |0dS

    , invariant under the S O(4, 1) isometries of the de Sitter space-

    time (Appendix B). For simplicity, without loss of generality, we shall restrict ourdiscussion to conformal coupling= 1/6 andm = 0. In this situation the two-pointfunction takes the simple form

    (x1)(x2) = H212

    42[(1 2 i)2 + (x1 x2)2] , (2.80)

    where = H1eHt is the conformal time, for which the metric takes the formds2 =

    1

    H22(d2 + dx2) . (2.81)

    Freely falling detectors with trajectoriest= x= x0 , (2.82)

    will have a response function with rate

    F(w) =

    +

    d eiw H2

    162 sinh2 H2( i) . (2.83)

    This is exactly the same integral as (2.65), producing now, via the detailed balancerelation, thermal radiation at the temperature kBT =

    H2

    . As in previous sectionswe can eliminate the i-prescription in expression (2.79) by just subtracting thetwo-point function of the observer carrying the detector. This (geodesic) observer is

    usually called comoving observer and its two-point function evaluated over its worldlinex() was showed in the Appendix B to be:

    0C|(x(1)(x(2)|0C = 42( i)2 . (2.84)

    With this the detector response rate takes the form

    F(w) =

    +

    d ei(w)/

    (H2)2

    42 sinh2 H2

    +

    42()2

    , (2.85)

    which is the same integral as (2.67) giving the thermal result.

  • 8/13/2019 Agullo Tesis

    46/184

    46 Thermal effects and two-point functions

  • 8/13/2019 Agullo Tesis

    47/184

    Chapter 3

    The transplanckian question andtwo-point functions

    As we saw in chapter 2 semiclassical gravity predicts the radiation of quanta byblack holes [9]. The emission rate is given by the product of the Planckian factortimes the grey-body coefficient lm(w)

    dNlm(w)

    dwdt =

    1

    2lm(w)

    1

    e21w 1 , (3.1)

    where is the surface gravity. The signs in the denominator account for theBose or Fermi statistics, andm is the corresponding axial angular momentum of the

    radiated particle.The deep connection of this result with thermodynamics [40] and, in particular, witha generalized second law [41] strongly supports its robustness [4, 42, 43]. However,as stressed in [44, 45, 46], a crucial ingredient in deriving Hawking radiation viasemiclassical gravity is the fact that any emitted quanta, even those with very lowfrequency at future infinity, will suffer a divergent blueshift when propagated back-wards in time and measured by a freely falling observer. Also, in the derivation ofFredenhagen and Haag [34], the role of the short-distance behavior of the two-pointfunction is fundamental. All derivations seem to invoke Planck-scale physics. Theexponential blueshift effect of the horizon of the black hole could, thus, be regarded

    as a magnifying glass that makes visible the ultrashort distance physics to externalobservers. In this regime, it is difficult to believe in the accuracy of free quantumfield theory, and this point constitutes a delicate point in the Hawking derivation.

    An approach to investigating this issue was first suggested by Unruh [47] in thebasis of the analogy of condensed matter physical models and effective field theo-ries with a fundamental cutoff. Unruh realized that a close analog of the Hawkingeffect occurs for quantized sound waves in a fluid undergoing supersonic flow. Asimilar blueshifting of the modes quickly brings the sound waves into a regimen welloutside the domain of validity of the continuum fluid equation. Unruh investigatedthe effect of the natural cutoff present in the fluid in the analog Hawking radia-

    tion. Proposing a modification of the dispersion relation at ultra-high frequencies

  • 8/13/2019 Agullo Tesis

    48/184

    48 The transplanckian question and two-point functions

    he found no deviation from the Hawking predictions [48]. It has been further studiedfor different authors in various field theoretic models [49, 50, 51, 52, 53] obtainingsimilar results, however none are fully satisfactory since the unphysical short dis-tance behavior of the field is always eventually called into play. In addition, it isnot completely trivial that this arguments based on condensed matter models canbe translated to gravitational black holes.

    Then, the tranplanckian question raises the possibility that the microscopicstructure offered by a quantum gravity theory could leave some imprint or sig-nal in the emission rate. However, the results of string theory seem to agree withHawkings prediction. For the emission of low-energy quanta (with wavelength largecompared to the black hole radius), and for some particular near-extremal chargedblack holes, the prediction of string theory [54, 55, 56, 57, 58] coincides with therate (3.1). This agreement is complete, despite the fact that the two calculations are

    very different. For instance, whereas in semiclassical gravity one can naturally splitthe emission rate into two factors (pure Planckian black-body term and grey-bodyfactor), in the D-brane derivation one gets directly the final answer without theabove mentioned splitting.

    From the perspective of quantum field theory in curved spacetime, it is unclearhow to introduce a cutoff in the scheme (parameterizing our ignorance on trans-planckian physics) in such a way that, for low-energy emitted quanta, the decayrate (3.1) is kept unaltered.

    The transplanckian question also is present for the Unruh effect. The outgoingmodes of a given frequency w as seen by the accelerating observer at proper time

    along his worldline correspond to the modes of frequencyw exp(a) in a fixedinertial frame. Therefore, at time 1/aone might worry about the accuracy offree quantum field theory. In the Gibbons-Hawking effect one has to face the samequestion due to the exponential blueshift associated with the horizon.

    In this chapter we want to address the question of how to evaluate the contri-bution of transplanckian physics to the thermal spectrum of event horizons [28, 39].To do this we will take advantage of the formalism presented in chapter 2 based ontwo point functions.

    3.1 Black Hole radiance and the transplanckianquestion

    3.1.1 Bogoliubov coefficients and transplanckian physics

    Let begin studying the role of transplanckian frequencies in the conventional deriva-tion of Hawking radiation in terms of Bogoliubov transformations. In the der