agglomeration$shadow:$!4!/39!!...

39
1 / 39 Agglomeration Shadow: Can Investment and Education Alleviate Geographic Disadvantage in Urban Growth? Zhao Chen, Ming Lu and Zheng XuAbstract: Using Chinese citylevel data from 1990 to 2006, this paper provides evidence for the nonlinear CP model of urban systems (Fujita and Krugman, 1995; Fujita, Krugman and Mori (1999). Our results show that a proximity to major ports and international markets is essential for urban growth. Moreover, the geography–growth relationship follows the ∽shaped nonlinear pattern, following which Middle China lies in the agglomeration shadow of Eastern China. We also find that in the long run, geography plays a much more important role than in the short run. Investment and government expenditure can increase shortrun growth, but not significantly in the long run. Only educational investment can help alleviate geographic disadvantage for laggard areas in the long run. Key Words: core–periphery model, urban systems, investment, education, China Zhao Chen: China Center for Economic Studies, Fudan University, Shanghai, 200433, China, Email: [email protected]; Ming Lu: Corresponding author, Department of Economics, Shanghai Jiaotong University and Fudan University, Email: [email protected]; Zheng Xu: University of Connecticut, Storrs, CT 06269, U.S. Email: [email protected]. Financial support from the National Natural Science Foundation (71133004, 71273055), and the National Social Science Foundation (12AZD045) are greatly appreciated. This research is also supported by the Shanghai Leading Academic Discipline Project (B101) and Fudan Lab for China Development Studies. We thank JacquesFrançois Thisse, Stephen L. Ross, Thierry Mayer, DaoZhi Zeng, WingThye Woo, Robert Feenstra, Deborah Swenson, Chun Chung Au and seminar/conference participants at ADB conference in Hawaii, UC Davis, Bank of Finland, Fudan University, Peking University, Chinese University of Hongkong, and Hongkong University of Science and Technology for their useful comments. The content of this article is the sole responsibility of the authors.

Upload: others

Post on 10-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  1  /  39    

   

Agglomeration  Shadow:    Can  Investment  and  Education  Alleviate  Geographic  Disadvantage  in  Urban  Growth?  

 

 

Zhao  Chen,  Ming  Lu  and  Zheng  Xu∗  

 

Abstract:  Using  Chinese  city-­‐level  data  from  1990  to  2006,  this  paper  provides  evidence  for  the  

non-­‐linear   CP  model   of   urban   systems   (Fujita   and   Krugman,   1995;   Fujita,   Krugman   and  Mori  

(1999).  Our  results  show  that  a  proximity  to  major  ports  and  international  markets   is  essential  

for  urban  growth.  Moreover,  the  geography–growth  relationship  follows  the  ∽-­‐shaped  nonlinear  

pattern,   following  which  Middle   China   lies   in   the   agglomeration   shadow   of   Eastern   China.  We  

also  find  that  in  the  long  run,  geography  plays  a  much  more  important  role  than  in  the  short  run.  

Investment  and  government  expenditure  can  increase  short-­‐run  growth,  but  not  significantly  in  

the  long  run.  Only  educational  investment  can  help  alleviate  geographic  disadvantage  for  laggard  

areas  in  the  long  run.  

 

Key  Words:  core–periphery  model,  urban  systems,  investment,  education,  China  

 

 

           

                                                                                                                                       ∗   Zhao   Chen:   China   Center   for   Economic   Studies,   Fudan   University,   Shanghai,   200433,   China,   Email:  [email protected];   Ming   Lu:   Corresponding   author,   Department   of   Economics,   Shanghai   Jiaotong  University  and  Fudan  University,  Email:   [email protected];  Zheng  Xu:  University  of  Connecticut,  Storrs,  CT  06269,  U.S.  E-­‐mail:   [email protected].  Financial   support   from  the  National  Natural  Science  Foundation  (71133004,   71273055),   and   the  National   Social   Science   Foundation   (12AZD045)   are   greatly   appreciated.  This  research  is  also  supported  by  the  Shanghai  Leading  Academic  Discipline  Project  (B101)  and  Fudan  Lab  for  China  Development  Studies.  We  thank  Jacques-­‐François  Thisse,  Stephen  L.  Ross,  Thierry  Mayer,  Dao-­‐Zhi  Zeng,   Wing-­‐Thye   Woo,   Robert   Feenstra,   Deborah   Swenson,   Chun   Chung   Au   and   seminar/conference  participants  at  ADB  conference   in  Hawaii,  UC  Davis,  Bank  of  Finland,  Fudan  University,  Peking  University,  Chinese   University   of   Hongkong,   and   Hongkong   University   of   Science   and   Technology   for   their   useful  comments.  The  content  of  this  article  is  the  sole  responsibility  of  the  authors.  

Page 2: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  2  /  39    

I.     Introduction  

For  countries  with  vast  territory,  interregional  balanced  development  is  an  essential  policy  

goal.   However,   in   a   modern   economy,   industrial   agglomeration   and   uneven   distribution   of  

production  lead  to  interregional  inequality,  especially  when  labor  is  not  perfectly  mobile.  In  the  

globalization   era,   coastal   regions   near   ports   are   more   advantageous   to   develop   international  

trade  and  attract  FDI  than  interior  regions  are.  To  counteract  the  agglomeration  forces  of  trade,  

central  governments  usually  pursue  interregional  balanced  development  by  central-­‐to-­‐local  fiscal  

transfer   and   government-­‐sponsored   projects.   However,   some   regions   stay   poorer   persistently  

than  others.  Therefore,  how  important  geography  is  in  shaping  interregional  growth  pattern  and  

what  kind  of  policies  can  help  laggard  regions  grow  faster  remain  questions  to  be  explored.    

From   its   position   as   the   backbone   of   new   economic   geography   (NEG)   theory   (Krugman,  

1991),   the   core–periphery   (CP)   model   suggests   the   existence   of   an   uneven   distribution   of  

economic  activities  in  spatial  economy  caused  by  the  interplay  of  scale  economies  and  transport  

costs.  As  proved  by  Fujita   and  Krugman   (1995),   Fujita,  Krugman  and  Mori   (1999),  a  nonlinear  

urban  system  indicates  a  ∽-­‐shaped  correlation  between  the  distance  to  the  core  and  local  market  

potential.  In  this  urban  system,  regions  close  to  the  core  are  under  the  “agglomeration  shadow”,  

so  their  economic  resources  are  absorbed  by  the  core.  However,  current  empirical  studies  using  

US   and   European   data   barely   test   the   presence   of   such   nonlinearities   (Black   and   Henderson,  

1999;  Dobkins  and  Ioannides,  2004;  Brülhart  and  Koenig,  2006).  As  Krugman  (1991)  points  out,  

the   share   of  manufacturing   in  national   income  matters   in   the  presence  of   the  CP  pattern.  As   a  

consequence,   the  decreasing  share  of  manufacturing   in  both  the  US  and  Europe  may  give  some  

indication  as  to  why  previous  studies  have  not  filled  the  gap  between  theory  and  reality.  

Using  Chinese  city-­‐level  data  from  1990  to  2006,  this  paper  proves  the  nonlinear  CP  pattern  

in   Chinese   urban   systems   by   estimating   the   impact   of   the   distance   to   major   ports   on   urban  

economic   growth.   Industrialization   and   globalization   have   been   two   important   forces  

underpinning   rapid   economic   growth   in   China   since   the   1980s.   Being   a   rapidly   industrializing  

country  with  a  vast  geographic  territory,  China  provides  an  appropriate  context  to  examine  how  

geography  influences  the  spatial  distribution  of  economic  activities.  

More   particularly,   when   joined   with   globalization   and   developments   in   export-­‐led  

manufacturing,  coastal  ports  and  nearby  cities  have  greater  access  to  international  markets,  thus  

providing   key   advantages   for   economic   growth   (Hanson,   1998).   Therefore,   in   this   paper,   we  

assume   that   there   are   two  national-­‐level  hierarchical  monocentric  urban   systems   in  China,   the  

cores   of   which   are   the   major   ports   and   megacities   of   Shanghai   and   Hong   Kong.   Further,   as  

predicted  by  the  CP  model,  we  hypothesize  that  the  spatial  interaction  within  each  urban  system  

follows  a  ∽-­‐shaped  nonlinear   relationship  between   the  distance   to   the  port  and  urban  growth,  

and  test   this  using  empirical  methods.  Our  key   finding   is   that  a  ∽-­‐shaped  nonlinear  correlation  

indeed  exists  in  relation  between  the  geographic  distance  of  cities  to  major  ports  and  economic  

growth  in  China’s  urban  systems.  Consequently,   the  economic  forces  entailed  by  the  CP  pattern  

are  currently  reshaping  Chinese  economic  geography.  

Page 3: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  3  /  39    

The   empirical   CP  model   also   enables   us   to   compare   the   impacts   of   geography   and   other  

growth  factors.  We  find  that  the  distances  to  major  ports  and  regional  agglomeration  centers  are  

much   more   powerful   than   other   variables.   In   the   long   run   growth   over   the   time   period   of  

1990-­‐2006,  only  the  two  distance  variables  explain 6.9% of the growth variances, while a full model

comprising all the growth factors can explain 40.4% of the growth. In contrast, investment-to-GDP

ratio and government expenditure-to-GDP ratio are growth-enhancing factors in the short-run growth,

but they are insignificant in the long run. Only education investment measured by teacher-student ratio

can boost long-run growth and help periphery regions alleviate their geographic disadvantage.  

The  remainder  of  the  paper  is  structured  as  follows.  Section  II  briefly  reviews  the  theoretical  

and  empirical  work  on  spatial  interaction  between  cities.  Section  III  introduces  details  of  China’s  

urban  system  and  explains  why   it   represents  a   feasible  application  of   the  CP  theory.  Section   IV  

discusses   the  data   and  our   chosen   econometric   approach.   Section  V  presents   the  basic   results.  

Section  VI   extends   the  model   to  medium-­‐   and   long-­‐run   growth   regressions,   and   compares   the  

relative   importance   of   geography   and   other   variables.   Section   VII   provides   some   concluding  

remarks.  

 

II. Literature  Review  

The   NEG   theory   emphasizes   the   interplay   of   centripetal   and   centrifugal   forces   in  

determining   spatial   economies   (Krugman   and   Elizondo,   1996).   Centripetal   forces   here   include  

both   pure   external   economies   and   a   variety   of   market   scale   effects,   such   as   forward   and  

backward   linkages,   while   centrifugal   forces   comprise   pure   external   diseconomies,   such   as  

transport  costs  and  land  rents  (Krugman,  1991).  For  the  most  part,  the  CP  model  formalizes  the  

role  of  agglomeration  and  dispersion  in  the  dynamic  formation  of  a  monocentric  urban  system,  of  

which  a  prominent   feature   is   the  emergence  of  a  hierarchy  of  cities  based  on  market  potential,  

featuring  especially  a  symbiotic  relationship  among  cities  (Fujita,  Krugman,  and  Mori,  1999).  

Fujita  and  Krugman  (1995),  Fujita  and  Mori  (1997),  and  Fujita,  Krugman,  and  Mori  (1999)  

assume  that  manufacturing  concentrates  in  the  core  of  these  systems  because  of  the  presence  of  

scale   economies,   while   the   periphery   is   the   agricultural   hinterland.   Near   the   core,   the  market  

potential  curve  decreases  by  distance  as  the  ever-­‐closer  proximity  to  demand  and  supply  brings  

about   scale   economies   and   lowers   transportation   costs   (Venables,   1996).   However,   as  

transportation  costs   increase  by  distance,   firms  producing  goods  that  are  close  substitutes  may  

find  that  they  will  earn  more  if  moving  away  from  the  core  city  and  instead  serve  customers  in  

fringe  areas  (Fujita  and  Krugman,  1995).  

In  this  case,  the  market  potential  curve  will  increase  at  distances  further  away  from  the  core.  

However,  as  distance  increases,  the  potential  curve  will  eventually  fall  again  for  similar  reasons  

as   it   did   nearer   the   core.   Using   numerical   simulation,   the   CP   pattern   is   then   a   ∽-­‐shaped  

relationship   between   the   distance   to   the   core   and   market   potential   in   the   periphery   in   a  

monocentric   urban   system.   This   curve   shows   that   as   the   distance   to   the   core   increases,   the  

market  potential  in  the  hinterland  first  declines,  when  the  agglomeration  effects  are  stronger  and  

Page 4: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  4  /  39    

later   rises   as   dispersion   forces   dominate.   Later,   the   curve   will   again   decline   for  more   remote  

areas.   Consequently,   an   agglomeration   shadow  exists   for   places   not   far   enough   away   from   the  

core  (Fujita  and  Krugman,  1995;  Fujita  and  Mori,  1997;  Fujita,  Krugman,  and  Mori,  1999).  

As  Fujita  and  Krugman  (2004)  conclude,  “…buttressing  the  approach  with  empirical  work”  is  

one  of  the  most  important  directions  for  future  research  in  NEG.  Based  on  the  implications  of  CP  

theory,   Dobkins   and   Ioannides   (2001)   suggest   that   nonlinearities   should   appear   in   the   spatial  

interactions   in  urban  systems.  Consequently,  directly  examining   the   spatial   interactions  among  

cities  in  relation  to  the  geographic  distance  between  them,  their  urban  economy,  or  their  place  in  

the   urban   hierarchy,   has   generally   become   one   of   the   streams   of   empirical   research,   not   only  

concerning  agglomeration  (Hanson,  2001),  but  also  the  spatial  distribution  of  cities  (Partridge  et  

al.,  2010).  However,   “…due   to   the  highly  nonlinear  nature  of  geographical  phenomena”,   it’s  not  

easy  “…to  make  the  models  consistent  with  the  data”  (Fujita  and  Krugman,  2004).  

For  the  most  part,  the  empirical  work  on  spatial  interaction  has  partly  verified  the  CP  model  

and  the  role  of  agglomeration  forces  in  urban  systems,  more  or  less  finding  that  closer  (to  core)  is  

better.  Nonetheless,   the  nonlinearity  of   the  CP  model  remains  unverified.  For   instance,  Combes  

and  Overman  (2004)  use  a  geographic  information  system  map  to  depict  gross  domestic  product  

(GDP)   per   capita   at   the   country   level   in   Europe   in   1996,   thereby   suggesting   the   spatial  

distribution  of  economic  activity  in  the  European  Union  follows  the  CP  pattern.  However,  there  is  

no   evidence   of   nonlinearity.   More   to   the   point,   although  maps   of   wages   and   employment   can  

display  similar  patterns,  they  also  suggest  that  this  pattern  may  not  as  marked  in  terms  of  total  

GDP.   Using   regional   data   over   1996–2000,   Brülhart   and   Koenig   (2006)   analyze   the   internal  

spatial  wage  structures  of  the  Czech  Republic,  Hungary,  Poland,  Slovakia,  and  Slovenia,  and  find  

that   real   wages   fall   with   distance   to   the   national   capital   and   Brussels.   However,   none   of   the  

estimates  is  statistically  significant.  

The   empirical   evidence   drawn   from   the   US   urban   system   is   even   more   complex   and  

puzzling.  For  example,  Black  and  Henderson  (1999)  examine  the  correlation  between  population  

growth   in   US   metropolitan   areas   and   initial   conditions   over   the   period   1950–1990.   They  

conclude   that   population   growth   is   faster   in   cities   closer   to   the   coast   and   to   cities  with   larger  

initial  populations;  though  this  effect  weakens  as  neighboring  population  masses  become  larger.  

Similarly,   Dobkins   and   Ioannides   (2001)   and   Ioannides   and   Overman   (2004)   employ   US  

metropolitan   data   over   the   period   1900–1990   and   conclude   that   distance   from   the   nearest  

higher-­‐tier  city  is  not  always  a  significant  determinant  of  urban  size  and  growth.  Moreover,  there  

is  no  evidence  of  the  nonlinear  effects  of  either  size  or  distance  on  urban  growth  over  such  a  long  

sample   period.   Finally,   Partridge   et   al.   (2010)   explore   whether   the   proximity   to   higher-­‐tiered  

urban   centers   affected  US   county  population  growth  over   the  period  1990–2000.  Their   results  

suggest   that   larger   urban   centers   indeed   promote   growth   in  more   proximate   places,   but   only  

those  with   fewer   than  250,000  persons.   As   a   result,   Partridge   et   al.   (2010)   conclude   that  NEG  

theory  (and  the  CP  model)  only  partly  explains  modern  US  urban  growth,  thereby  suggesting  the  

need  for  a  broader  framework.  

Page 5: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  5  /  39    

Encouraged   by   the   above   studies,   we   believe   the   time   is   right   to   clarify   whether   the   CP  

model   is  relevant   in  explaining  contemporary  urban  systems.  We  also  believe  that  an  empirical  

study   of   the   Chinese   urban   system   is  most   suitable   for   testing   nonlinearities   in   the   CP  model,  

especially   as   unlike   the   US   and   Europe,   China   is   still   experiencing   urbanization   and  

industrialization.  During   this  critical  process,   transport  costs  and  scale  economies  are  essential  

determinants  of  the  spatial  distribution  of  urban  economies.  Besides,  the  globalization  process  is  

also   helping   to   reshape   China’s   economic   geography   and   urban   system,   making   coastal   areas  

advantageous   in   attracting   foreign   direct   investment   (FDI)   and   developing   export-­‐led  

manufacturing  (Wan,  Lu,  and  Chen,  2007).  Whether  the  evolution  of   the  urban  system  in  China  

approximates   the   purported   nonlinear   CP   pattern   is   then   an   interesting   topic   and   a   useful  

empirical  exercise.  If  China’s  urban  growth  indeed  follows  a  nonlinear  CP  pattern,  it  is  relevant  to  

explore   how   important   geography   is   relative   to   other   growth   factors   and  whether   investment  

and  education  can  alleviate  geographic  disadvantage  of  the  cities  in  the  agglomeration  shadow.  

 

III. China’s  Urban  System  Evolution  and  an  International  Comparison  

Krugman  (1991)  questions,  “…how  far  will  the  tendency  toward  geographical  concentration  

proceed?”   Taking   early   nineteenth-­‐century   America   as   an   example,   with   a   small   share   of  

manufacturing   employees,   a   combination   of  weak   economies   of   scale,   and   high   transportation  

costs,  Krugman  (1991)  believes  that  pre-­‐industrial  society  was  satisfied  by  small  towns  serving  

local   market   areas.   Consequently,   the   answer   to   the   question   posed   earlier   depends   on   the  

underlying   parameters   of   the   economy,   such   as   the   share   of   manufacturing,   the   presence   of  

economies   of   scale,   and   transportation   costs.  However,   Fujita   and  Krugman   (1995)   find   that   a  

reduction  in  transportation  costs  is  most  likely  to  cause  a  population  migration  from  the  city  to  

the   hinterland.   Therefore,   with   the   dramatic   development   of   transportation   technology   and  

declining  manufacturing  shares,  postindustrial  societies,   like   the  US  and  Europe,  have  since   the  

late  1970s  begun  to  exhibit  a  trend  in  “anti-­‐urbanization”  (Frey  and  Speare,  1992).  

When   compared   with   the   US   or   Europe   (e.g.   France),   China   is   still   in   the   process   of  

industrialization.   According   to   the   World   Bank   (2011),   in   2008   the   share   of   industrial  

value-­‐added   in  GDP1   in  China  was  47.4%,   significantly  more   than   in   the  US   (21.3%)  or  France  

(20.3%),   both   of   which   were   continuing   to   decrease   year   by   year,   as   shown   in   Figure   1.  

Consequently,   the   large   share   of  manufacturing   in   the   Chinese   economy   combined  with   rapid  

economic  growth  makes  China  a  better  trial  to  test  the  CP  model  of  urban  systems.  Besides,  with  

the   force   of   spatial   agglomeration   brought   about   by  manufacturing,   the   rapid   development   of  

international   trade   continues   to   reconstruct   China’s   urban   economies,   especially   with   China’s  

increased   openness   to   the  world   starting   in   the   1990s.   This   opening   process   is   also   a   natural  

experiment  to  consider  the  role  of  distance  to  major  ports  and  access  to  international  markets  in  

changing  the  urban  system.  

                                                                                                                                       1   Industry   value-­‐added   corresponds   to   ISIC   divisions   10–45,   including   manufacturing   (ISIC   divisions  15–37).  It  therefore  includes  value  added  in  the  mining,  manufacturing,  construction,  and  electricity,  water,  and  gas  industries.  

Page 6: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  6  /  39    

 [Insert  Figure  1  here]  

 

3.1. Economic  Openness  and  Urban  System  Adjustment  

International  trade  changes  the  reference  market  for  firms  in  a  country  by  shifting  resources  

to  locations  with  low-­‐cost  access  to  foreign  markets,  such  as  border  regions  and  port  cities.  Fujita  

and   Mori   (1996)   propose   a   model   of   spatial   economic   development   in   which   agglomeration  

economies   and   the   hub   effect   of   transport   nodes   interplay.   Their   simulation   of   a  monocentric  

urban  system  shows  a  nonlinear  relationship  between  market  potential  and  distance  to  the  core  

city.  In  this  model,  if  the  core  city  is  a  port,  openness  and  international  trade  will  strengthen  the  

agglomeration   effects   of   the   core   city   and   reshape   the   urban   system   within   a   country.  

Corresponding  to   the   theoretical   implications,  Hanson  (1998)   finds   that   following  trade  reform  

and  increased  global  openness,  especially  with  the  US,  firms  in  Mexico  began  to  locate  in  regions  

with  good  access  to  foreign  markets,  such  as  Mexican  cities  bordering  the  US.  

A   similar   process   of   economic   reform   and   openness   began   in   China   in   1978.   After   1992,  

China  quickly  opened  its  doors  to  the  world  market,  with  reforms  invoking  a  widespread  opening  

up  of  markets  and  a  commitment  to  the  market  economy  (Ho  and  Li,  2010).  Figure  2  depicts  the  

increasing  importance  of  international  trade  in  China,  especially  after  1992.  In  1994,  the  official  

and  black  market  exchange  rate  for  Renminbi  (RMB)  combined.  Since  then,  China  has  exhibited  

an  export-­‐led  growth  pattern  and  has  continuously  increased  its  trade  surplus  to  the  present  day.  

 [Insert  Figure  2  here]  

 

Besides   the   dramatic   development   in   international   trade   and   the   rapid   and   steady   GDP  

growth,   another   remarkable  phenomenon   in  China   is   the   rate   of   urbanization,   increasing   from  

17.9%   in  1978   to  49.68%   in  2010,2   almost  one  percentage  point  per  year.  What  exactly   is   the  

linkage   between   international   trade   and   urban   system   adjustment?   Again   taking  Mexico   as   an  

example,  Krugman  and  Elizondo  (1996)  find  that  the  trade  policies  of  developing  countries  and  

their   tendency   to   develop   huge   metropolitan   centers   closely   link.   Fujita,   Krugman,   and   Mori  

(1999)  also  argue  that  rapid  urbanization  in  the  world  economy  infers  the  increasing  importance  

of   cities   as   the   basic   unit   of   international   trade.   Therefore,   international   trade   may   not   only  

reshape   regional   and  national   economic   geography,   but   also   greatly   affect   the   evolution   of   the  

urban  system.  

Ever   since   the   mid-­‐1990s,   with   China   increasingly   open   to   the   international   market,  

international   trade  has  become  more  and  more   important   for  Chinese  urban  development.  For  

instance,  Wei   (1995)   finds   that   Chinese   cities  with   large   export   sectors   generally   grow   faster.  

Further,   international   trade   strengthens   the   agglomeration   force   in   major   ports   in   China.   For  

example,  Wei  (1995)  and  Anderson  and  Ge  (2005)  provide  some  evidence  that  many  emerging  

                                                                                                                                       2   Source:  NBS,  The  Statistical  Summary  of  the  6th  Population  Census,  http://www.stats.gov.cn/tjfx/jdfx/t20110428_402722253.htm.  

Page 7: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  7  /  39    

cities  locate  in  coastal  areas  in  the  Pearl  River  Delta  near  Hong  Kong.  More  and  more  empirical  

studies  are   finding   that  recent  economic  agglomeration  has  changed   the  distribution  of  China’s  

regional  and  urban  economies,   thus  coastal  and   large  cities  have  higher  economic  growth  rates  

(Chen  et  al.,  2008;  Bao  et  al.,  2002).  

For  China’s  cities,  which  had  hitherto  developed  evenly  under  central  government  planning  

before   economic   reform,   the   open-­‐door   policy   represented   an   exogenous   shock   to   city   growth  

and  the  urban  system.  Unlike  the  1980s,  when  China  selected  several  coastal  cities  for  opening,  in  

the   1990s,   the   national   policy   was   an   open   door.   The   geographic   difference   between   cities,  

mainly   the  distances   to  major  ports   in  determining   international   trade  costs,  plays  an  essential  

role   in   international   trade,   FDI   inflow,   and   city   growth.   Therefore,   the   opening   process   in   the  

1990s  is  a  natural  experiment  for  economists  to  see  whether  and  how  the  urban  system  evolves  

following  a  CP  model.  

 

3.2.  Geography  and  Growth:  Why  China  Can  Contribute  to  NEG  Studies?  

Partridge   et   al.   (2010)   believe   agglomeration   economies   may   have   a   greater   geographic  

scope   than   usually   assumed   by   economists.   From   this   perspective,   economic   geography,  

particularly   the   role   of   nonlinear   spatial   agglomeration,   may   require   wide   spaces   and   a   long  

timeframe  for  accumulation,  while  national  and  geographic  boundaries,  wars,  and  other   factors  

often   limit   the   free   flow   of   resources.   As   a   result,   it   is   sometimes   difficult   to   use   econometric  

models  and  real-­‐world  data  to  portray  how  agglomeration  actually  works.  Therefore,  studies  of  

stably   developing   large   countries,   such   as   the   US   (and   China   after   1978)   are   particularly  

important  for  empirical  research  on  NEG  theory.  

Research  using  Chinese  data  may  helpfully  contribute  to  the  empirical  study  of  NEG  for  the  

following   reasons:   First,   China   has   a   vast   territory,   as   well   as   a   large   population.   The   vast  

territory  not  only  provides  the  space  required  by  agglomeration,  but  also  plenty  of  samples   for  

empirical   study.   Meanwhile,   a   large   population   provides   sufficient   market   potential.   Second,  

compared   with   the   US,   China   has   a   larger   interregional   geographical   diversity   and   a   more  

obvious  geographical  heterogeneity  because  of  the  concentration  of  ports  along  the  eastern  coast.  

Interregional  geographic  differences  are  significantly  less  in  the  US,  which  has  large  ports  on  both  

its  western  and  eastern  coasts.  Finally,  China  has  witnessed  rapid  economic  development  in  the  

past  thirty  years,  especially  after  1992,  with  corresponding  changes  in  the  spatial  distribution  of  

economic  activities.  This  allows  us  to  better  observe  the  impact  of  spatial  agglomeration  on  the  

urban  system.  

 

3.3.  China’s  Urban  System  

In  China,  a  “city”  is  a  local  administrative  and  jurisdictional  entity,  and  there  are  comparable  

historical  data  and  large  enough  cross-­‐sectional  observations  of  cities.  There  are  three  different  

administrative  levels  of  cities  in  the  Chinese  urban  system:  municipalities,  prefecture-­‐level  cities,  

and   county-­‐level   cities.   This   does   not   include   smaller   settlements   with   townships   or   lower  

Page 8: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  8  /  39    

administrative   levels.  The  major  administrative  criteria  announced  in  1963  defined  a  city  as  an  

urban   agglomeration   with   a   total   urban   population   of   greater   than   100,000   inhabitants.   The  

economic   and   political   importance   of   urban   agglomeration   is   also   one   of   the   government’s  

considerations   in  defining  cities.  However,   the  definition  of  cities  has  generally  been  consistent  

since   at   least   1949   when   the   People’s   Republic   of   China   was   established   (Anderson   and   Ge,  

2005).  

China’s  National  Bureau  of  Statistics  (NBS)  reports   information  about  both  prefecture-­‐  and  

county-­‐level  cities,  but  we  use  only  data  on  prefecture-­‐level  and  above  cities  in  our  research.  As  

for  county-­‐level  cities,  their  boundaries  and  number  have  fluctuated  greatly  in  recent  history  (see  

Table   1).   The   number   of   prefecture-­‐level   cities   has   also   increased   greatly   since   1990,   so   the  

boundaries   of   the   prefecture-­‐level   cities   may   also   have   changed.   However,   for   cities   at   the  

prefecture  level  and  above,  NBS  reports  information  on  both  Diqu  (urban  area  plus  rural  counties  

within   the   same   administration)   and   Shiqu   (urban   area   only).   In   general,   Shiqu   is   a   good  

definition   of   the   metropolitan   area   by   international   standards   (Fujita   et   al.,   2004),   and   the  

entities   implied  by  new  cities  usually  arise  outside  the  Shiqu,  so  this   information  is  comparable  

across  time  and  is  thus  used  in  our  study.  

 [Insert  Table  1  here]  

 

The   definition   of   China’s   urban   hierarchy   is   another   problem.   As  mentioned   above,   three  

administrative   levels   of   cities   are   included   in   China’s   urban   system:   municipalities   (or  

province-­‐level  cities),  and  prefecture-­‐  and  county-­‐level  cities;  provincial  capitals  also  comprise  a  

special   administrative   level   in   prefecture-­‐level   cities.   Cities   of   different   levels   have   different  

population   sizes.   However,   corresponding   to   the   CP   model,   our   study   focuses   on   the   spatial  

agglomeration  in  urban  system,  for  which  urban  size  (e.g.  population)  and  market  potential  are  

much  more  important  than  administrative  level.  Accordingly,  we  distinguish  between  cities  using  

different  definitions  and  sizes,  as  shown  in  Table  2.  In  the  model  specification,  we  use  dummies  

to  control  for  administrative  level,  special  economic  zones  (SEZ),  and  city  size,  etc.  

 [Insert  Table  2  here]  

 

IV.  Model  Specification  and  Data  

4.1.  Model  Specification  

Our  model   is  used   to  estimate  how  geographical   location,  mainly  distance   to  a  major  port,  

affects  urban  growth.  The  reduced-­‐form  estimation,  where  geography  is  the  focus,  is  widely  used  

in  earlier  empirical  studies  of  the  spatial  interaction  between  cities  (Brülhart  and  Koenig,  2006;  

Dobkins   and   Ioannides,   2000).   We   also   use   cross-­‐sectional   ordinary   least   squares   (OLS)  

regression  for  our  basic  reduced-­‐form  CP  model  of  the  urban  system,  as  based  on  the  economic  

growth  model   in  Barro   (2000).  As   the  urban   system   is   constantly   evolving  during   the  opening  

process,   the   different   growth   rates   of   cities   in   different   locations   will   reflect   the   shifts   in   the  

Page 9: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  9  /  39    

urban  system.  In  addition,  given  all   the  explanatory  variables  are  exogenous  geographic   factors  

or  the  initial  values  of  the  control  variables,  the  potential  endogeneity  problem  in  OLS  estimation  

is  not  a  major  concern.  The  model  specification  is  as  follows:  

Dgdpit = f (lngdpi0, invei0, labi0,edui0,govi0, fdii0,coni0,geoi0,)  

Per  capita  GDP  growth  is  the  dependent  variable.  The  extant  literature  also  uses  urban  per  capita  

GDP   growth   as   a  measure   of   the   urban   economic   activities   (Glaeser   et   al.,   1995;   Dobkins   and  

Ioannides,  2000).  We  do  not  employ  real  wages,   income,  population,  and  per  capita  GDP  in  our  

analysis  for  the  following  reasons.  First,  wage  and  income  data  are  not  available  at  the  city  level  

in  China.  Second,  in  the  early  years  of  our  sample,  the  urban  population  in  China  did  not  include  

migrants  without  local  household  registration  identity  (hukou)  (Au  and  Henderson,  2006b),  so  it  

does  not  well  represent  the  urban  economy  or  size.  Third,  as  we  wish  to  illustrate  the  dynamics  

of   urban   economies   following   China’s   openness   to   the  world,   per   capita   GDP   growth   (not   the  

level   of   GDP),   should   be   a   better  measurement   to   observe   the   evolution   of   the   urban   system.  

Nevertheless,  we  also  estimated  models  specifying  per  capita  GDP  instead  of  GDP  growth  as  the  

dependent   variable.   However,   our   main   results   concerning   the   Chinese   urban   system   were  

unchanged.3  

In  our  study,  we  highlight  the  roles  of  openness  and  international  trade  in  determining  the  

distribution  of   China’s   urban   economic   activities,   so   the   key   variable   of   geography   is   the   city’s  

distance   to   the   nearest   major   port.   We   construct   our   dataset   over   the   period   1990–2006   to  

capture   best   the   drastic   openness   in   place   since   the   early   1990s.   Problematically,  most   of   the  

information  about  China’s   cities   in  1992  and  1993   is  missing   from   the  Chinese  Cities   Statistical  

Yearbook   (National   Bureau   of   Statistics,   1991–2007).   Consequently,   we   use   the   data   for  

1994–2006   to   check   the   robustness   of   our   results   after   1994   (coinciding   with   the   period   of  

far-­‐reaching  openness  and  depreciation  of  the  RMB).  

Hanson  (2001)  suggested  that  three  issues  might  cause  trouble  in  identifying  agglomeration  

effects   in  empirical  studies:  (i)  unobserved  regional  characteristics,   (ii)  simultaneity   in  regional  

data,  and  (iii)  multiple  sources  of  externalities,  of  which  the  former  two  are  particularly  crucial  

when  it  comes  to  the  spatial  interaction  of  cities.  As  for  “unobserved  regional  characteristics,”  we  

attempt  to  control  for  as  many  variables  as  the  data  will  allow  according  to  both  the  literature  on  

economic  growth  and  past  empirical  studies  of  China.   “Simultaneity   in  regional  data,”  however,  

may  be  a  minor  issue  in  our  study,  as  the  core  explanatory  variables  in  our  model  are  geographic  

and  do  not  change.  As  for  the  other  explanatory  variables,  we  use  their  initial  values  in  1990  to  

counter   simultaneity  bias   in   the  model.  As   such,   the   estimated   results   represent   the   long-­‐term  

impact  of  these  explanatory  variables  on  urban  economic  growth.  Besides,  it  is  quite  uncommon  

to   control   for   so   many   initial   state   variables   in   the   empirical   studies   employing   NEG   theory.  

Therefore,  we   also   estimate   several  models   including   only   geographic   variables.   However,   the  

basic   model   follows   the   economic   growth   literature   to   control   for   other   factors   influencing  

growth  and  this  helps  control  for  heterogeneity  across  cities.  

                                                                                                                                       3   For  brevity,  we  do  not  discuss  these  results,  but  they  are  available  from  the  authors  upon  request.  

Page 10: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  10  /  39    

 

4.2.  Data  

In   this   paper,   we   use   China’s   urban   area   (Shiqu)   data   (1990–2006)   complied   from   the  

Chinese  Cities  Statistical  Yearbook  (National  Bureau  of  Statistics,  1991–2007),  including  286  cities  

at  the  prefecture-­‐  and  above  level4   from  30  provinces  across  mainland  China.  Hong  Kong,  Macao,  

Taiwan   and   Tibet   are   not   included.   Local   statistical   bureaus   in   China   have   for   some   years  

collected   data   on   all   enterprises   in   their   local   area,   and   report   GDP   figures   at   the   level   of   the  

appropriately  defined  metropolitan  area  (Fujita  et  al.,  2004;  Au  and  Henderson,  2006a).  Though  

we  may  express  some  doubt  as  to  the  quality  of  statistical  data  in  China,  these  GDP  figures  are  of  

a  high  quality,  as  discussed  by  Au  and  Henderson  (2006a),  especially  when  econometric  models  

find   highly   significant   results   that   are   consistent   with   established   economic   theory.   The  

remaining  data  sources  and  the  construction  of  the  variables  are  as  follows.  

 

4.2.1.  Urban  Economic  Growth  

The   dependent   variable   Ddgpit   is   the   compound   average   annual   growth   rate   of   real   per  

capita  GDP  from  1990–2006  deflated  by  the  urban  consumer  price  index  (CPI)  in  each  province  

for   city   i   over   t   years.   The   theoretical   assumptions   of   NEG   emphasize   the   agglomeration   of  

manufacturing   and   services   (Krugman,   1991),   so   we   correspondingly   removed   agricultural  

output  and  population  from  the  GDP  and  population  indicators,  respectively.  

 

4.2.2.  Spatial  Interactions  among  Cities  

Hanson  (1998,  2005)  approximates  the  access  of  each  region  to  its  principal  markets  using  

geographic  distance.  Therefore,  geographic  distance,  as  well  as  driving  or  road/railway  distance,  

is   used   to   approximate   the   spatial   interaction   among   cities   (Dobkins   and   Ioannides,   2000;  

Brülhart   and   Koenig,   2006;   Partridge   et   al.,   2010).   In   particular,   we   use   straight   geographic  

distances   to   major   ports   as   our   measure   of   spatial   interaction,   which   avoids   the   potential  

endogeneity  bias  brought  about  by  measures  of  traffic  distance,  such  as  driving  hours.  

We  assume  that  there  are  two  hierarchical  monocentric  urban  systems  in  China.  The  first  is  

the  national  urban  system,  the  cores  of  which  are  the  major  ports,  like  Shanghai  and  Hong  Kong.  

The  distances  to  these  ports  measure  the  remoteness  of  cities  to  the  global  market.  The  second  is  

the  regional  urban  system(s),  the  cores  of  which  are  large  cities  like  Guangzhou,  Chongqing,  and  

Wuhan,  etc.  The  spatial  interaction  within  each  urban  system  exhibits  the  CP  structure,  which  we  

testify  to  using  our  empirical  results.  Here,  we  use  the  distance  to  the  nearest  “big”  city  (distbig)  

to  measure  the  interaction  within  regional  urban  systems,  and  the  distance  to  the  nearer  major  

port  (disport)  to  measure  the  interaction  within  national  urban  systems.  

To  exploit  how  the  agglomeration  of  major  ports  affects  urban  economic  activities  in  China’s  

spatial  system,  we  need  to  identify  “major  ports.”  According  to  the  China  Statistical  Abstract  2009,  

in  2008,  Hong  Kong  accounted  for  10.8%  of  overall  Chinese  cargo  throughput,  Shanghai  10.6%,  

                                                                                                                                       4   We  have  data  on  286  cities  in  2006  and  211  cities  in  1990.  

Page 11: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  11  /  39    

and   Tianjin   7.4%.5   As   to   ports   in   different   regions,   the   Bohai   Sea   ports   (Tianjin,   Qingdao,  

Qinhuangdao,   Dalian)   in   total   accounted   for   24%   of   overall   cargo   throughput,   with   the   Pearl  

River  Delta  ports  (Hong  Kong,  Guangzhou,  Shenzhen)  representing  22.4%,  and  the  Yangtze  River  

Delta  ports  (Shanghai,  Ningbo-­‐Zhoushan)  another  21.4%.  The  above  data  clearly  show  that  cargo  

throughput   in  China  mainly  concentrates   in   these   three  areas.  However,   the  distribution  of   the  

Bohai  Sea  ports  is  widely  dispersed.  Therefore,  agglomeration  in  Tianjin  may  not  be  as  strong  as  

in   Shanghai   and  Hong  Kong.   Therefore,  we   initially   define   Shanghai   and  Hong  Kong   as   “major  

ports”  in  our  study  but  include  Tianjin  when  testing  for  robustness.  In  fact,  Shanghai  and  Tianjin  

are  provincial-­‐level  cities  and  respectively  major  ports  in  the  Yangtze  River  Delta  and  Bohai  Belt  

city  cluster.  Likewise,  Hong  Kong  is  the  major  port  of  the  Pearl  River  Delta  and  an  international  

financial   center.   Hong   Kong   is   also   adjacent   to   Shenzhen,   another   economic   center   and  major  

port  in  the  Pearl  River  Delta.  Thus,  the  distance  to  Hong  Kong  actually  represents  the  distance  to  

Hong  Kong  and  Shenzhen.6   See  Figure  3  for  the  location  of  the  major  ports.  

 [Insert  Figure  3  here]  

 

In   Table   2,  we   attempt   to   reveal   a   proper   definition   for   higher-­‐level   cities   in   the   regional  

urban  system  using  their  nonagricultural  population.  To  construct  time-­‐consistent  data,  we  only  

use   the   information   on   cities   in   1990   to   identify   large   cities,   with   the   information   after   1990  

merely   used   to   illustrate   how   quickly   urban   sizes   in   China   have   evolved.   We   identify   a  

nonagricultural  population  of  1.5  million  as  the  lower  boundary  of  large  cities  in  China’s  regional  

urban   hierarchy.   The   reasons   for   this   criterion   are   as   follows.   First,   in   1990,   there  were   nine  

cities  with  a  nonagricultural  population  greater  than  two  million,  eight  of  which  located  in  coastal  

areas.  Accordingly,  this  would  not  well  represent  the  urban  hierarchy  in  inland  areas.  Second,  in  

1990,   there  were  31  cities  with  a  nonagricultural  population  of  more   than  one  million,  most  of  

which  were  municipalities  and  provincial  capitals.  Therefore,  high-­‐level  cities  defined  according  

to   this   criterion   may   correlate   highly   with   municipalities   and   provincial   capitals   in   China.  

Moreover,  if  we  set  a  nonagricultural  population  of  one  million  as  the  lower  boundary,  there  are  

simply  too  many  large  cities  defined.  

Considering   these,   we   define   large   cities   in   China’s   urban   hierarchy   as   those   with   a  

nonagricultural   population   of   more   than   1.5   million   in   1990.   Our   assumption   is   that   via  

agglomeration,   these  14   large  cities  either  already  had  or  would  generally  become  the  regional  

centers  of  the  domestic  and  regional  market  and  thus  play  a  central  role  in  China’s  urban  system  

for  each  region  within  the  CP  structure.  Figure  3  depicts  the  distribution  of  large  cities  in  China.7  

                                                                                                                                       5   Because  of  the  different  measurements  of  cargo  throughput  used,  Shanghai  sometimes  ranks  higher  than  Hong  Kong.  Fortunately,  this  is  not  a  major  issue  in  our  study  as  both  are  classified  as  major  ports.  6   We   compile   our   information   about   port   cargo   throughput   from   the   China   Statistical   Abstract   2009  (National   Bureau   of   Statistics,   2009).   Though   this   publication   also   contains   information   on   ports   in  mainland  China  and  Hong  Kong  in  1990,  measurement  differs  and  they  are  therefore  difficult   to  compare.  Therefore,  we  were  obliged  to  use  the  most  recent  year  (e.g.  2008)  of  data  for  cargo  throughput  using  the  same  measurement  (tons).  7   These  are  Shanghai,  Beijing,  Tianjin,   Shenyang,  Wuhan,  Guangzhou,  Ha’erbin,  Chongqing,  Xi’an,  Nanjing,  

Page 12: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  12  /  39    

As   shown,   almost   all   are   provincial   capitals,  with   the   exception   of  Dalian.   To   test  whether   the  

results   are   sensitive   to   our   definition   of   large   cities,  we   substitute   the   distance   to   the   nearest  

large   city   for   the   distance   to   the   nearest   municipality   or   provincial   capital   to   check   the  

robustness  of  our  empirical  results  (as  discussed  in  Section  VI).  We  measure  geographic  distance  

using  China  Map  2008,   issued  by  Beijing  Turing  Software  Technology  Co.,  Ltd.,  China  Transport  

Electronic  &  Audio-­‐Video  Publishing  House.  As  the  CP  model  displays  nonlinear  characteristics,  

we  also  include  the  squared  and  cubed  values  of  distance  in  some  of  our  regressions  to  capture  

any  nonlinearity.  

For   the   14   large   cities   defined,   their   distances   to   the   nearest   large   city   are   all   zero.   Their  

economic  growth  may  benefit  from  their  city  size,  so  we  use  a  dummy  largecity  to  control  for  this  

effect.  However,  this  should  not  be  a  problem  for  our  major  ports  as  Hong  Kong  is  not  included  in  

our  sample  and  the  largecity  dummy  already  controls  for  Shanghai.  In  addition,  the  GDP  level  of  

the   nearest   large   city   in   the   initial   year   is   also   controlled   for   by  gdpofbig,  which   is   ln(GDP)   in  

1990,  exclusive  of  agricultural  output.  

 

4.2.3.  Market  Segmentation  and  Border  Effect  

Policy  is  an  important  factor  affecting  spatial  agglomeration  in  NEG  theory.  When  it  comes  to  

studies  on   the  Chinese  urban  system,  an   important  policy   factor   that  affects   regional  economic  

development  is  interregional  market  segmentation.  For  example,  several  studies  have  suggested  

that   there   is   a   serious  market   segmentation   problem   among   Chinese   provinces   (Young,   2000;  

Ponect,  2005;  Chen,  et  al.,  2007).  Interprovincial  division  is  likely  to  increase  the  actual  distance  

between   cities   in   different   provinces,   and   limit   the   spatial   interaction   among   cities.   Our   study  

attempts   to   reveal   whether   the   administrative   boundary   limits   spatial   interaction   within   the  

urban  system.  Denoted  as  samepro,  the  dummy  variable  represents  whether  a  city  is  in  the  same  

province  as  its  nearest  large  city.  If  the  “border  effect”  of  China’s  provinces  does  not  affect  spatial  

interaction   between   cities   (and   thus   urban   economic   growth)   this   variable   should   be  

insignificant.  

 

4.2.4.  Other  Geography  Variables  

In   fact,   spatial   interaction   is   only   the   second  nature   of   cities.   For   studies   of   China’s   urban  

economy,  there  are  some  other  geographic  factors  of  first  nature  that  we  should  control  for  that  

may,  according  to  Krugman  (1993),  also  indicate  potential  initial  advantages.  

Mainland   China   is   usually   divided   into   three   regions:   East,   Center,   and  West.   The   Eastern  

region  has  eight  provinces  and  three  municipalities,  Central  China  has  seven  provinces,  and  the  

West  has  eleven  provinces  and  one  municipality.  There  are  significant   interregional  differences  

in  climate,  access  to  water,  topography,  and  other  features  of  the  environment  (Ho  and  Li,  2010),  

along   with   economic   development.   National-­‐level   policies   are   also   designed   for   achieving  

interregional  economic  balance  between   the  East,  Center,   and  West.  Therefore,  we  use  dummy  

                                                                                                                                                                                                                                                                                                                                                                                                   Dalian,  Chengdu,  Changchun,  and  Taiyuan.  

Page 13: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  13  /  39    

variables   for   “west”   and   “center”   to   capture   any   interregional   differences   in   geography   and  

policies.8   However,   the   regional  division  of  mainland  China  does  not   strictly   follow  geographic  

location.  For  example,  Guangxi  Province   is  geographically   located   in   the  south  coastal  area,  but  

grouped   by   the   Strategy   of  Western   Region   Development   launched   by   Chinese   government   in  

1999  with  the  West  given  its  poor  economic  performance.  Figure  3  illustrates  the  distribution  of  

China’s  provinces.  

Cities  with  ports  in  coastal  area  or  with  river  ports  along  large  rivers  may  also  benefit  from  

access  to  international  or  domestic  markets,  so  we  also  specify  seaport  and  riverport  as  dummies  

to  control   for   this   initial  geographic  advantage.  The   list  of   cities  with  seaports  or   river  ports   is  

from   “The   First   China   Port   City  Mayors   (International)   Summit   2006”   held   by   the  Development  

and  Research  Center,  the  Ministry  of  Communications,  the  Municipal  Government  of  Tianjin,  and  

the  China  Communications  and  Transportation  Association.9  

 

4.2.5.  Initial  State  of  Economic  Growth  Factors  

Following  the  traditional  economic  growth  literature  (for  example,  Barro,  2000)  and  studies  

on   China’s   economic   growth,   we  will   also  measure   some   other   factors   that  may   contribute   to  

China’s   urban   economic   growth,   such   as   initial   economic   performance,   investment,   labor,  

education,  etc.  

lngdpi0  is  the  logarithm  of  the  per  capita  output  of  manufacturing  and  service  in  1990,  which  

is  controlled  for  to  observe  whether  the  Chinese  economy  experiences  conditional  convergence  

at  the  city  level.  

invei0  is  the  ratio  of  investment  to  GDP,  where  GDP  is  the  total  output  of  manufacturing  and  

services  in  1990.  

We   use   the   ratio   of   teachers   to   students   in   primary   and   junior   schools   (edui0)   in   1990   to  

control  for  the  effect  of  education;  this  may  not  be  a  good  measurement,  but  is  the  best  we  could  

identify.  We  specify  the  ratio  of  employees  to  total  population  (labi0)  in  1990  to  proxy  for  labor.  

China’s   urban   labor  market   reforms   radically   pushed   ahead   in   the  mid-­‐1990s,   so   in   1990   the  

number  of  urban  employees  contained  a  substantial  amount  of  disguised  unemployment  in  state-­‐  

and  collective-­‐owned  enterprises.  Therefore,  a  high  labor  ratio  may  not  be  significantly  positive  

for  urban  economic  growth.    

The   government   expenditure-­‐to-­‐GDP   ratio   and   FDI-­‐to-­‐GDP   ratio   in   1990,   as   usually  

controlled  for  in  the  economic  growth  literature,  are  respectively  govi0  and  fdii0,  where  GDP  is  the  

                                                                                                                                       8   West  includes  cities  from  12  provinces  and  one  municipality,  namely,  Chongqing,  Sichuan,  Yunnan,  Tibet,  Shaanxi,   Gansu,   Qinghai,   Ningxia,   Xinjiang,   Inner   Mongolia,   Guangxi,   and   Guizhou.   Center   includes   cities  from   seven   provinces,   namely,   Hebei,   Anhui,   Jiangxi,   Henan,   Hubei,   Hunan,   and   Shanxi.   The   cities   of   the  remaining  12  provinces  and  municipalities  are   in   the  East.  These  are  Heilongjiang,   Jilin,  Liaoning,  Tianjin,  Beijing,  Shandong,  Jiangsu,  Shanghai,  Zhejiang,  Fujian,  Guangdong,  and  Hainan.  9   There   are   32   cities   with   seaports:   Qingdao,   Yantai,   Weihai,   Rizhao,   Haikou,   Sanya,   Tianjin,   Tangshan,  Qinhuangdao,   Cangzhou,   Dalian,   Jinzhou,   Yinkou,   Lianyungang,   Fuzhou,   Xiamen,   Quanzhou,   Zhangzhou,  Guangzhou,   Shenzhen,   Zhuhai,   Shantou,   Zhanjiang,   Zhongshan,   Shanghai,   Ningbo,   Wenzhou,   Zhoushan,  Taizhou,  Beihai,  Fangchenggang,  and  Qinzhou.  There  are  another  22  cities  with  river  ports:  Ha’erbin,  Jiamusi,  Wuhu,  Ma’anshan,  Tonglin,  Anqinq,  Yueyang,  Nanjing,  Wuxi,  Suzhou,  Nantong,  Yangzhou,  Zhenjiang,  Foshan,  Dongguan,  Luzhou,  Wuhan,  Yichang,  Nanchang,  Jiujiang,  Nanning,  Wuzhou,  and  Chongqing.  

Page 14: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  14  /  39    

total   output   of   three   sectors,   as  we   cannot   distinguish   between   the   final   flows   of   government  

expenditure  and  foreign  direct  investment  across  sectors.  The  effects  of  government  expenditure  

and   foreign   direct   investment   on   economic   growth   are   conventionally   difficult   to   predict  

beforehand  (Barro,  2000;  Clarke,  1995;  Partridge,  1997).  

coni0  represents  several  other  control  variables  related  to  Chinese  urban  economic  growth,  

including  the  ratio  of  the  nonagricultural  population  to  the  total  population  (urb)  (to  account  for  

the   level   of   urbanization)   and   population   density   (density)   and   its   square   (density2)   (to   reflect  

internal   population   agglomeration   in   urban   areas).   We   also   use   the   ratio   of   service   GDP   to  

manufacturing  to  proxy  for  the  industrial  structure  of  the  urban  sector  (SM).  

 

4.2.6.  Policy  

We   can   never   ignore   policy   in   empirical   studies   of   agglomeration   and   urban   economies.  

Other  than  the  administrative  boundaries  mentioned,  there  may  be  some  other  policy  advantages  

affecting  China’s  urban  economic  growth  that  are  controlled  for  in  the  literature  (Bao  et  al.,  2002;  

Ho  and  Li,  2010).  

As  discussed  earlier,  in  our  prefecture-­‐level  database,  different  administrative  levels  of  cities  

remain,  namely,  municipalities,  provincial   capitals,   and  other   cities.  Because  municipalities  and  

provincial  capitals  potentially  enjoy  special  policies  from  the  central  and  provincial  governments,  

we  use  a  dummy  variable  (capital)  to  capture  any  benefits.  For  example,  in  1997  Chongqing  rose  

from   an   ordinary   prefecture-­‐level   city   to   become   a   municipality.   After   considering   its   special  

history,10   we  define  Chongqing  as  a  provincial  capital  in  1990.  

Likewise,   in   the   process   of   Chinese   reform   and   openness,   starting   in   1980   four   special  

economic  zones  (SEZs)  were  created  in  China’s  coastal  areas,  and  14  cities  later  chosen  as  open  

coastal  cities  (OCCs)  in  1994.11   The  intention  of  these  SEZs  and  OCCs  was  to  attract  FDI,  obtain  

access  to  international  markets,  and  gain  special  policy  advantages.  We  use  the  dummies  SEZ  and  

open  to  measure  the  effects  of  this  preferential  policy.  However,  as  we  expect  these  variables  to  

correlate  highly  with  distance  to  the  nearest  large  city  and  major  port,  FDI,  seaport  dummy  and  

some   others,  we   do   not   expect   significant   estimated   coefficients.   Table   3   provides   descriptive  

statistics  for  all  the  variables.  

 [Insert  Table  3  here]  

 

V.  Estimation  Results  

Table   4   reports   the   estimated   results   of   the  model.   In   addition   to   the  more   conventional  

economic  growth  factors,  we   include  the  geographic  variables   in  equations  (1)–(3).   In  equation  

(1),  we  only  add  the  linear  item  of  distance  to  the  nearest  large  city  and  major  port,  while  we  add  

                                                                                                                                       10   Chongqing   was   the   capital   of   the   Republic   of   China   during  World  War   II   and   is   an   important   city   in  western  China.  11   The   four  SEZ  established   in  1980  are  Shenzhen,  Zhuhai,  Xiamen,  and  Shantou.  The  14  OCC   in  1994  are  Tianjin,  Shanghai,  Dalian,  Qinhuangdao,  Yantai,  Qingdao,  Lianyungang,  Nantong,  Ningbo,  Wenzhou,  Fuzhou,  Guangzhou,  Zhanjiang,  and  Beihai.  

Page 15: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  15  /  39    

the  squares  and  cubes  of  distances  in  equation  (2)  and  drop  the  insignificant  cube  of  distance  to  a  

large  city  in  equation  (3).  

 [Insert  Table  4  here]  

 

5.1.  Nonlinearity  of  the  CP  Structure  in  China’s  Urban  System  

In   equation   (1),   both   of   the   distances   are   insignificantly   negative,   which   means   urban  

economic  growth  decreases  away  from  large  cities  and  major  ports,  but  the  effect  is  statistically  

insignificant.  As  discussed,  the  nonlinearity  of  the  CP  model  may  exist  in  China’s  urban  system.  If  

so,   and   as   Fujita   and   Mori   (1997)   and   Fujita,   Krugman,   and   Mori   (1999)   have   showed,   the  

∽-­‐shaped  correlation  between  distance  and  economic  activity  may  be  present   in  our  estimated  

results.  Consequently,  we  add  the  squares  and  cubes  of  distance  in  equation  (2).  

The  results  of  equation  (2)  show  that  the  distance  to  a  major  port  and  its  square  and  cube  

are  all  significant,  which  proves  nonlinearity  in  China’s  urban  system.  However,  none  of  the  three  

terms   for  distance   to  a   large   city   is   significant.  We  surmise  a  ∽-­‐shaped  curve   could  only  occur  

when  the  distance  to  a  large  city  is  sufficiently  long,  otherwise,  we  would  only  observe  a  U-­‐shape  

when  using  real  data.  Therefore,  we  drop  the  cube  of  the  distance  to  a   large  city  from  equation  

(3).  Obviously,  in  equation  (3)  all  distance  variables  are  significant:  the  distance  to  the  large  city  

is  negative,  its  squared  term  is  positive.  In  contrast,  the  distance  to  a  major  port  is  negative,  while  

the  squared  term  is  positive  and  the  cubed  term  is  negative.  

Based  on  estimated  results,  we  respectively  simulate  the  correlation  between  the  distances  

to   the  major  ports  or   large   cities   and   the  urban  economic   growth   rate   in  Figures  4   and  6.  The  

horizontal  axis  represents  the  distance  (kilometers)  away  from  major  ports,  and  the  vertical  axis  

is   the   urban   economic   growth   rate   (%).  We   discover   a   CP   pattern   of   urban   system   evolution  

consistent  with  theory.  

 [Insert  Figure  4  here]  

 

The   dashed   line   in   Figure   4   suggests   that   the   impact   of   distance   to  major   port   on   urban  

economic  growth  has  basically  the  same  shape  as  the  market  potential  curve  of  the  CP  model  in  

the  urban  system  (Fujita  and  Mori,  1997;  Fujita,  Krugman,  and  Mori,  1999).  While  a  city  is  located  

within  about  600  km  away  from  a  major  port,  the  closer  it  is  to  the  major  port  and  international  

markets,   the   larger   market   potential   and   the   higher   economic   growth   rate   it   has.   When   the  

distance   is   farther   away,   international  market   access   is   no   longer   that   important.   Therefore,   a  

location   far  away   from  a  port  may  promote   the  accumulation  of   regional   and  domestic  market  

potential,   as   well   as   the   development   of   local   economies.   When   distance   is   sufficiently   long  

(farther   than   1,500   km   from   a   port),   cities   remote   from   both   the   domestic   and   international  

markets  suffer  from  low  market  potential  and  a  lower  economic  growth  rate.  In  addition,  when  

we  follow  economic  geography  studies  (Dobkins  and  Ioannides,  2001;  Partridge  et  al.,  2009)  and  

only  control  for  the  geographic  variables  in  model  (4),  the  results  do  not  change  much  and  all  the  

Page 16: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  16  /  39    

coefficients  are  statistically  more  significant.  Interestingly,  the  model  including  only  two  distance  

variables   explains   6.9%   of   the   variance   in   city   growth,   compared   with   42.8%   when   all   the  

variables  are  included  in  model  (3).  

To  make  the  effects  of  the  distances  to  major  ports  clearer,  we  mark  the  two  turning  points  

of  economic  growth  curve  on   the  map  of  mainland  China   in  Figure  5.  Here,  600  km  from  Hong  

Kong  and  Shanghai,  denoted  with  a  dashed  curve,  is  the  location  with  the  lowest  average  growth,  

all   other   things   being   equal,  while   1,500   km   away,  marked   by   a   solid   curve,   is   the   place  with  

second-­‐highest  growth  rate.  

 [Insert  Figure  5  here]  

 

In  Figure  6,  we  simulate  the  correlation  between  the  distance  to  the  nearest   large  city  and  

urban  economic  growth  using  the  results  of  our  regressions.  When  a  city  is  close  to  a  large  city,  

spatial   agglomeration   effects   promote   large   cities   to   absorb   economic   resources   from   their  

surroundings,  which  is  a  significant  centripetal  force.  Meanwhile,  being  closer  to  a  large  city,  also  

means  greater  market  access  for  a  regional  economic  center.  Therefore,  the  closer  to  the  central  

cities,   the   faster   a   city   grows.   However,   when   further   away   from   large   cities,   instead   of   the  

centripetal   force,   the   centrifugal   force   plays   the   dominant   role.   Therefore,   the   further   the  

distance,  the  faster  a  city  grows.  Our  estimated  result  shows  the  turning  point  is  about  300  km,  

which  means   that  within   about   300   kilometers,   the   interplay   between   cities   displays   a   strong  

centripetal  force,  which  is  similar  to  the  findings  in  Hanson  (2005).  The  difference  is  that  we  also  

find   that  when   the  distance   is   greater   than  300  km,   because   of   transportation   costs   and  other  

external   diseconomies,   centrifugal   force   dominates   the   spatial   interaction   between   cities  

performance.  

 [Insert  Figure  6  here]  

 

However,   in   the   regional   urban   systems,   there   is   no   sign   of   the   possibility   of  multicentric  

systems.  This  may  be  because  of  the  limited  population  or  scope  surrounding  the  cores.  In  Figure  

4,  the  complete  ∽-­‐shaped  curve  requires  at  least  1,400  km  distance,  while  the  real  distance  to  the  

nearest  large  city  in  regional  systems  is  not  sufficiently  long.  In  fact,  China’s  urban  system  today  

is  the  result  of  a  long-­‐term  evolution,  thus  new  large  cities  may  have  emerged  where  there  was  a  

greater   market   potential   because   of   the   spatial   agglomeration   of   established   large   cities,   as  

shown  by  the  numerical  simulation  in  Fujita,  Krugman,  and  Mori  (1999).  Therefore,  in  Figure  4,  

what  we  can  see  may  be  only   the   left  half  of   the  ∽-­‐shaped  curve,  not   the  whole.  Moreover,   the  

impact  of  major  ports  is  stronger  than  large  cities  on  urban  economies  because  within  a  certain  

distance  economic  growth  decreases  much  faster  as  distance  from  major  ports  increases  than  it  

does  away  from  a  large  city.  

Based   on   the   above,   we   can   safely   conclude   that   the   national   urban   system   in   China   has  

presented   a   complete   CP   structure   because   of   the   adjustment   of   urban   economies   to  

Page 17: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  17  /  39    

international  markets.  The  importance  of  large  cities  in  regional  urban  systems  is  less  significant  

but   also   verified.   We   also   find   evidence   for   the   agglomeration   shadow   modeled   by   Krugman  

(1993)  in  the  Chinese  urban  system.  This  suggests  that  being  closer  to  an  agglomeration  center  is  

not  always  good  news  for  the  local  economy.  This  finding  adds  new  evidence  in  helping  solve  the  

paradox   that  Partridge  et  al.   (2009)   found  between   the  positive   closeness–growth   relationship  

when  using  real  data  and  the  theoretical  hypothesis  of  an  “agglomeration  shadow.”  

 

5.2.  Border  Effect  

The   same-­‐province   dummy   (samepro)   is   always   significantly   negative,  which  means   cities  

have   a   lower   growth   rate   if   they   are   in   the   same   province   as   their   nearest   large   city.   This   is  

because  the  absorptive  effects  of  large  cities  will  be  larger  in  this  circumstance.  This  means  that  

the   border   effect,   similar   to   the   findings   in   Parsley   and  Wei   (2001)   and   Poncet   (2005)   exists  

between   Chinese   provinces,   which   is   likely   to   increase   the   actual   distances   between   cities   in  

different  provinces.  Based  on  our  estimates,  China’s  interprovincial  border  effect  is  equivalent  to  

as   much   as   260   km12   for   two   neighboring   cities.   Poncet   (2005)   finds   that   the   interprovincial  

border  in  China  is   like  an  international  border  in  Europe,  so  our  estimate  of  the  interprovincial  

border  effect  is  acceptable.  

The  border   effect   in   this  paper  presents   as   the  distortion  of   the   spatial   concentration.  We  

believe   this   is   consistent   with   China’s   history   of   province-­‐level   market   segmentation   (Young,  

2000;   Ponect,   2005)   and  migration   restrictions   (Au   and  Henderson,   2006a,   2006b).  Moreover,  

Chen   et   al.   (2007)   argue   that   provincial   governments   have   an   incentive   to   restrict   the  

agglomeration  effects   from   large   cities   in  other  provinces  using  administrative   force   to  protect  

their  own  economic  development.  Further,  Lu  and  Chen  (2009)  find  that  for  most  observations  at  

provincial   level   market   segmentation   increases   economic   growth.   These   conclusions   are   also  

consistent  with  the  findings  in  this  paper.  Although  in  cities  of  the  same  province  segmentation  

can   prevent   them   from   the   absorptive   effects   of   large   cities   in   other   provinces,   market  

segmentation   always   brings   losses   in   resource   allocative   efficiency.   In   turn,   this   lowers   the  

growth   rate   for   the   whole   economy,   resulting   in   an   underdeveloped   city   scale   (Au   and  

Henderson,  2006a),  and  a  smaller  scale  inequality  among  Chinese  cities  (Fujita  et  al.,  2004).  

 

5.3.  Geography  and  Policy  

We   also   note   that   in   equations   (1)–(3),   the   center,   west,   and   capital   dummies   are   not  

significant.  This  differs  from  the  findings  in  previous  research,  including  Bao  et  al.  (2002)  and  Ho  

and   Li   (2010).   This   is   because   with   the   spatial   interaction   among   cities   controlled   for   in   our  

paper,  no  other  growth  disadvantages   significantly  exist   in   the  western  or   central   regions,   and  

there   are  no  other   obvious   advantages   in  provincial   capitals   or  municipalities.   In   other  words,  

spatial   agglomeration   in   China’s   urban   system   contributes   most   to   interregional   economic  

                                                                                                                                       12   We   simply   estimate   this   border   effect   by   dividing   the   coefficient   of   the   same-­‐province   dummy   by   the  linear  term  of  the  distance  to  the  nearest  large  city  in  equation  (3).  

Page 18: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  18  /  39    

disparity  in  China.  

Though   correlated   with   the   dummy   variables   for   open   and   SEZ,   the   dummy   seaport   is  

significantly   positive,   whereas   open   and   SEZ   are   insignificant.   This   implies   the   possibility   that  

geography   is  more   important   than  policy   for  China’s   long-­‐run  urban  growth.  Nevertheless,   this  

needs  further  study.  Furthermore,  the  riverport  dummy  is  insignificantly  positive.  

 

5.4.  Other  Economic  Growth  Factors  

In  our  regressions,  we  also  control  for  other  urban  economic  growth  factors,  the  impacts  of  

which   do   not   vary   significantly   across   equations   (1)–(3).   Most   of   the   factors   are   insignificant,  

except   for  education  as  measured  by   the   teacher–student   ratio.  Education  (edu)   is   significantly  

positive.   This   is   because   education   investment   in   the   initial   stage   promotes   human   capital  

accumulation  and  economic  growth  in  the  long  run.  

Our   regression   results   also   imply   that   the   impact   of   investment   (inve)   is   insignificantly  

negative  which  may  be  because  Chinese  cities  with  high   investment  have  no  obvious  economic  

advantage  in  the  long  term  because,  as  a  whole,  the  Chinese  economy  suffers  from  low  efficiency  

spawned  by  overinvestment  (Zhang,  2003).  

Some  other   factors,   like   labor   (lab),   government   expenditure   (gov),   FDI   (fdi),   urbanization  

(urb),   population  density   (density,   density2),   and   industrial   structure   (SM)   all   have   insignificant  

impacts  on  urban  economic  growth  in  the  long  run  based  on  our  regression  results.  Finally,  the  

initial   level   of   per   capita   GDP   has   an   insignificant   negative   impact   on   China’s   urban   economic  

growth,   showing  no   significant   trend   in   conditional   convergence   at   city   level.   The   insignificant  

variables  do  not  become  significant  even  if  we  drop  the  variables  for  distance  to  major  ports  and  

large   cities.   We   also   exercised   estimation   by   substituting   right-­‐hand-­‐side   variables   with   their  

average  values  across  the  time  span  of  our  data,  and  the  results  do  not  change  significantly.13    

 

5.5.  Robustness  Checks  

We  estimate  several  models  based  on  equation  (3)  to  test  the  robustness  of  our  key  findings  

in   Table   5.   In   equations   (5)   and   (6),   we   change   the   definition   of   a   large   city   to   retest   the  

hypothesis   about   regional   urban   systems.   In   particular,   we   redefine   large   cities   as   provincial  

capitals  and  municipalities.  Thus,  distance  to  the  nearest  large  city  is  replaced  by  distance  to  the  

provincial   capital   (distcap).  We   again  measure   the   geographic   distance   using   China  Map   2008  

(Beijing   Turing   Software   Technology   Co.,   Ltd.,   China   Transport   Electronic   &   Audio-­‐Video  

Publishing  House,  2008).  We  only  include  the  linear  term  of  distance  to  the  provincial  capital  in  

equation   (5)   and   add   the   squared   term   to   equation   (6).   For   consistency  with   the   variable   for  

which  we  control,  we  drop  the  dummies  samepro  and  largecity,  and  replace  the  variable  gdpofbig  

by   gdpofcap   (the   economic   scale   of   the   provincial   capitals,   that   is,   ln(GDP)   in   1990   excluding  

agricultural  output).  

In  equation  (7),  we  add  Tianjin  into  our  definition  of  major  ports  and  replace  distance  to  the  

                                                                                                                                       13   Results  available  from  authors  upon  request.  

Page 19: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  19  /  39    

nearer  major  port  between  Shanghai  and  Hong  Kong  (disport)  by  distance  to  the  nearest  major  

port  among  Shanghai,  Hong  Kong  and  Tianjin  (disport3).  

Time   span   is   also   an   important   issue   for   our   study   as   we   highlight   the   role   of   China’s  

openness   and   international   trade   in   the   changing   urban   system.   However,   a   large   amount   of  

information  in  1992  and  1993  are  missing  from  the  Chinese  Urban  Statistical  Yearbooks  (National  

Bureau   of   Statistics,   1993–94).   Therefore,   we   use   the   urban   data   from   1994   and   replace   the  

dependent   variable  with   the   average   annual   growth   rate   of   real   per   capita   GDP   from   1994   to  

2006  (dgdp2)  deflated  by  provincial  urban  CPI,  where  agricultural  output  and  population  are  also  

excluded.   Another   benefit   of   this   robustness   check   is   the   greater   number   of   observations,  

increasing   from  133   in   equation   (3)   to  193   in   equation   (8).  Table  5   includes   the   results  of   the  

robustness  checks,  with  only  the  variables  relevant  to  spatial  interaction  reported  to  save  space.  

 [Insert  Table  5  here]  

 

As  shown  in  Table  5,  in  equation  (5),  instead  of  distance  to  nearest  large  city  and  its  square,  

we  only  include  distance  to  the  provincial  capital,  which  is  significantly  negative,  suggesting  the  

provincial  capitals  have  strong  absorptive  effects  on  the  surrounding  cities.   In  equation  (6),  we  

include   both   the   distance   to   the   provincial   capital   and   its   square,   both   of   which   are   not  

significant.  Consequently,  provincial  capitals  have  only  significant  centripetal  forces,  which  is  not  

conducive   to   the   economic   growth   of   remote   cities.   One   explanation   is   that   the   number   of  

provincial  capitals  is  about  twice  that  of  large  cities,  so  that  for  most  observations  the  distance  to  

the   provincial   capital   is   much   shorter   than   to   the   nearest   large   city.   In   this   context,   only   a  

negative  distance–growth   relationship  would   appear,  which  we   can   see   as   the   first   part   of   the  

U-­‐shape  we   find   for   the   relationship   between   the   distance   to   the   nearest   large   city   and   urban  

growth.  Moreover,  the  larger  initial  economic  scale  of  the  provincial  capital,  the  slower  its  urban  

economic  growth,  as  gdpofcap   is  significantly  negative.  This  result  shows  a  stronger  absorptive  

effect  for  larger  central  cities.  The  variables  for  the  distance  to  major  ports  are  usually  significant.  

In   equation   (7)   where   Tianjin   is   included   as   a   major   port   in   China’s   urban   system,   the  

variables   for   distance   to   major   ports   are   still   significant,   but   the   significance   levels   decrease,  

which  proves  that  the  economic  agglomeration  of  Tianjin  is  not  as  strong  as  Shanghai  and  Hong  

Kong.  We  also  estimated   three  separate   regressions  using   the  data  within  each  city  group.  The  

∽-­‐shaped   relationship   between   distance-­‐to-­‐port   and   urban   growth   is   robust   in   city   groups  

centered   on   Shanghai   and   Hong   Kong.   However,   for   the   cities   centered   on   Tianjin,   the  

relationship   is   insignificant.  This   is  understandable  as  Tianjin   is  not  comparable  with  Shanghai  

and  Hong  Kong   in   terms  of  economic  scale  and  cargo   throughput.  What   is  more,   the  difference  

between   Tianjin   and   other   leading   ports   in   the   Bohai   Belt   is   not   huge   in   terms   of   cargo  

throughput.   If   we   construct   a   variable   of   distance   to   the   four   major   ports   in   the   Bohai   Belt  

weighted   by   their   cargo   throughputs,   then   the   distance–growth   relationship   becomes  

Page 20: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  20  /  39    

significant.14   This  indicates  again  that  Tianjin  is  not  strong  enough  to  act  as  a  core  of  a  national  

level  urban  system.   In  addition,   the  variables   for  distance   to  nearest   large  city  are   insignificant  

with   the   same   sign   as   in   equation   (3).   This   suggests   that   the   robustness   of   the   importance   of  

large  cities  and  regional  urban  systems  is  less  than  major  ports  and  the  national  urban  system.  

In   equation   (8)   with   the   dependent   variable   now   specified   as   economic   growth   during  

1994–2006,  the  significance  of  the  distance-­‐to-­‐port  variables  are  almost  the  same  as  in  equation  

(3),  while  the  significance  of  the  distance  to  large  cities  decreases  substantially.  It  is  then  possible  

that   ever   since   China’s   rapid   openness   to   the   international  market   in   1994,   the   agglomeration  

patterns  of  China’s  urban  system  change  to  meet  the  needs  of  developing  international  trade,  so  

that  the  distance  to  major  ports  is  becoming  more  and  more  important,  at  least  when  compared  

with   that   to   large   cities.   However,   this   is   beyond   the   scope   of   this   paper   and   further   study   is  

required.  

In   existing   NEG   literature,   per   capita   GDP,   rather   than   its   growth,   usually   serves   as   the  

dependent  variable.  In  our  study,  we  also  attempt  to  substitute  the  growth  rate  of  per  capita  GDP  

with  its  level,  and  conduct  panel  data  regression  and  year-­‐by-­‐year  estimation.  To  ensure  that  our  

results  are  robust,  even  if  we  only  consider  the  manufacturing  and  service  sector,  we  regress  GDP  

per   worker   for   secondary   and   tertiary   industries   on   the   geographic   and   other   explanatory  

variables.  These  additional  regression  exercises  do  not  alter  our  major  findings  significantly.15  

 

VI.  How  Important  Is  Geography?  Long-­‐Run,  Medium-­‐Run  and  Short-­‐Run  Comparison  

There  are  three  possible  explanations  for  the  insignificance  of  the  growth  factors  in  the  long  

run.   First,   the   most   obvious   is   that   these   factors   may   have   no   long-­‐term   impact   on   urban  

economic  growth.  Second,  measurement  error   in   the  variables  and  small  sample  size  may  have  

reduced  their   levels  of  significance.  To  expand  the  sample  size,  we  extend  our   long-­‐run  growth  

regression  to  medium-­‐  and  short-­‐run  analyses.  

In  Table  6,  there  are  three  equations  for  urban  economic  growth  in  the  short,  medium  and  

long  run,   respectively.   In  equation  9,   to  minimize   the  simultaneity  bias,  we   lag   the  explanatory  

variables  by  1  year  and  use  the  city-­‐level  panel  data  during  1990-­‐2006  to  run  the  regression  for  

yearly   growth.   In   equation   10,   per   capita   compound   average   GDP   growth   rate   over   5-­‐year  

periods,   namely,   1990-­‐1995,   1996-­‐2000,   and   2001-­‐2005,   is   used   as   dependent   variable.   The  

explanatory   variables   are   initial   values   over   those   5-­‐year   periods.   Again,   random-­‐effects   GLS  

estimations  are  employed,  since  geographic  variables  are  time-­‐invariant.  Equation  3  is  duplicated  

for  easy  comparison  with  short-­‐  and  medium-­‐run  growth  regressions.  In  all  the  three  equations,  

both   distance-­‐to-­‐ports   and   distance-­‐to-­‐large   cities   are   significant,   showing   the   importance   of  

geography  through  short  to  long  run.  In  equation  3  duplicated  from  Table  4,  the  sample  size  is  the  

smallest,  but  the  distance-­‐to-­‐ports  variables  have  the  most  significant  effects.  So  in  the  long  run,  

international  market  is  more  important.  

                                                                                                                                       14   These  results  are  not  reported  to  conserve  space,  but  available  upon  request.  15   We  do  not  report  these  results  to  save  space,  but  they  are  available  upon  request.  

Page 21: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  21  /  39    

 [Insert  Table  6  here]  

 

Based  on  the  estimation  results,  we  add  to  Figure  4  a  solid  line  simulating  the  relationship  

between  distance-­‐to-­‐ports  and  growth   in   the  short   run.  The   two  curves   lie   close   to  each  other,  

showing  that  the  long-­‐run  relationship  between  distance  and  growth  is  the  accumulative  effect  of  

that  in  the  short  run.    

It’s  quite  interesting  to  compare  other  variables’  effects  on  growth  in  the  short,  medium  and  

long   run.   Investment-­‐to-­‐GDP   ratio   has   positive   effect   on   growth   in   the   short   run,   but   the  

magnitude  of  the  coefficient  shrinks  in  the  medium  run,  and  it  becomes  insignificant  and  negative  

in   the   long   run.   This   is   alarming   for   China’s   growth   pattern   that   highly   relies   on   investment.  

Although   in   the   short   run   investment  enhances  growth,   in   the   long   run,  more   investment  does  

not  generate  higher  growth.   Inefficiency  and  poor  returns  to   investment  might  be  the  potential  

reason  (Zhang,  2003).  More  recent  data  analysis  shows  that  Middle  and  Western  China  has  seen  a  

faster  capital  deepening  process  during  1997-­‐2007,  which  worsens  the  efficiency  and  returns  to  

investment   (Brandt,   Tombe   and   Zhu,   2010;   Lu,   2013).   Similarly,   government   intervention  

significantly   increases   growth   in   the   short   run,   since   it   may   boost   demand.   But   it   has   no  

significant   effects   in   the   long   run,   because   government   intervention   distorts   the   market   and  

offsets  its  growth-­‐enhancing  effects.   16   In  the  medium-­‐  and  long-­‐run  regressions,  we  substitute  

the  initial  value  of  those  time-­‐variant  variables  by  their  average  values  of  over  5  or  16  years,  the  

insignificant   coefficients  don’t   change   into   significant.   So,   the   insignificant  effect   is  not  because  

the  short-­‐run  positive  effect  fades  away  as  time  goes  by.17  

Labor  has  negative  effects  on  growth  in  the  short  run,  as  in  the  period  we  study  China  still  

had  surplus  labor.  And  labor  is  not  significant  in  the  long-­‐run.  In  contrast,  education  significantly  

increases  growth,  and  the  effect  is  even  greater  and  more  statistically  significant  in  the  long  run.  

The   education  measurement,   teacher-­‐student   ratio,   is   actually   an   investment   variable   that   has  

lagged   effects   on   growth,   and   this  may  partly   explain  why   education   is  more   important   in   the  

long  run.  According  to  our  estimation,  if  the  number  of  teacher  is  increased  by  1  per  100  students,  

the   long-­‐run  growth  would  be  1.07  percentage  points  higher.  FDI  does  not  affect  growth,   since  

FDI   correlates  with   geography.   After   controlling   for   a   lot   of   geography   variables,   FDI   does   not  

have  separable  growth-­‐enhancing  effects.  Finally,  cities  with  lower  initial  per  capita  income  level  

grow  faster,  showing  a  conditional  convergence  in  the  short  run,  but  this  convergence  effect  does  

not  exist  in  the  long  run.    

For  a  comparison,  we  drop  the  distance  variables  and  the  dummy  for  whether   the  nearest  

big  city   is   in   the  same  province,  and  run  traditional  growth  regressions.   In   the   long-­‐run  model,  

the   labor   and   investment   variables   become   significant   at   10%   level,   and   the   provincial   capital  

dummy   turns   significant   at   5%   level.   In   other   words,   some   traditional   growth   factors   are  

                                                                                                                                       16   Usually,  in  the  long-­‐run  growth  regression,  government  expenditure-­‐to-­‐GDP  ratio  has  negative  effects  (Barro, 2000)。  17   This  result  is  available  upon  request.  

Page 22: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  22  /  39    

correlated  with  the  geographic  variables  we  construct  for  the  locations  of  cities.  So,  geography  is  

a  more  fundamental  factor  to  explain  urban  economic  growth.   18  

Furthermore,  we  want  to  know  how  important  geography  is  relative  to  other  variables.  Can  

other  growth-­‐enhancing  factors  alleviate  geographic  disadvantages?  This  is  relevant  for  regional  

development  policy  making.  To   answer   this  question,  we  only   control   variables  other   than   the  

distance-­‐to-­‐ports,   distance-­‐to-­‐large   cities   variables   and   their   non-­‐linear   terms.   The   results   are  

reported  in  Table  7.  In  the  short-­‐run  growth  model,  34.6%  of  variations  in  growth  are  explained  

by  model   (9),   and   in  model   (11)   the   two  distance  variables  explain  0.2%  of   growth  variations.  

Another   comparison   is   between   model   (3)   and   (4)   for   long-­‐run   growth.   In   model   (3),   all   the  

explanatory  variables  explain  40.4%  of  growth,  while   the   two  distances  explain  6.9%   in  model  

(4).  This  is  another  signal  that  geography  plays  an  essential  role  in  long-­‐run  economic  growth  at  

city  level,  and  much  more  powerful  than  its  short-­‐run  role.  

 [Insert  Table  7  here]  

 

To   compare   the   effects   of   distances   with   and   without   other   variables   more   visible,   we  

simulate  the  distance-­‐growth  relationship  in  Figure  7.  It  shows  that  without  controlling  for  other  

variables,  the  effect  of  distance-­‐to-­‐ports  is  much  smaller  than  that  with  other  factors  controlled  

for.  The  difference   is   greater   in  middle  China   than   the   remote   interior   areas,   so   there  must  be  

something   that   can   help   counteract   the   geographic   disadvantages.   Based   on   equation   (3),  

education   investment   is   the  major   factor   that  significantly  enhances   long-­‐run  growth.   In  China,  

the  middle  regions  have  even  slightly  higher  educational  level,  measured  by  per  capita  schooling  

years,  than  the  eastern  cities  do  (Lu,  2013).  So,  human  capital  investment  is  a  policy  tool  that  can  

be  used  to  enhance  growth  in  the  geographically  disadvantageous  regions.  In  contrast,  as  shown  

already,   moving   money   by   investment   and   government   expenditure   is   not   effective   to   help  

laggard  regions  in  the  long  run.    

 [Insert  Figure  7  here]  

 

VII.  Conclusions  

This  paper  represents  an  early  attempt  to  verify  the  spatial  pattern  of  China’s  urban  system  

following   the   non-­‐linear   CP  model.   China’s   large   territory   and   its   open   policy   since   the   1990s  

makes  China  a   feasible  application  and  suitable  experimental   field   for  testing  the  non-­‐linear  CP  

model  of  urban  systems.  

The  most   important   finding   of   this   paper   is   to   verify   the   ∽-­‐shaped   nonlinear   correlation  

between   the   geographical   distance   to   major   ports   and   urban   economic   growth,   which   is  

consistent  with  the  non-­‐linear  CP  model  of  urban  systems.  We  find  that  China’s  urban  economies  

adjust   to   increasingly   important   international   trade  according   to   their   access   to  global  market,  

especially  after  China’s  drastic  opening  up  since  the  mid-­‐1990s.  Compared  with  distance  to  port,                                                                                                                                          18   This  result  is  available  upon  request.  

Page 23: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  23  /  39    

the  distance  to  the  nearest  large  city  has  a  U-­‐shaped  relationship  with  urban  growth.  

The   agglomeration   shadow   first   modeled   by   Krugman   (1993)   is   also   evident   in   China’s  

urban  system,  which  means  that  being  closer  to  agglomeration  centers  is  not  always  good  news  

for  the  local  economy.  We  find  that  within  a  scope  about  600  km  away  from  Shanghai  and  Hong  

Kong  growth  rate  falls  with  distance  to  major  ports,  while  growth  goes  up  for  regions  600-­‐1200  

km  away  and  falls  again  for  more  remote  areas.  This  finding  adds  new  evidence  in  helping  solve  

the   paradox   that   Partridge   et   al.   (2009)   found   between   the   positive   closeness–growth  

relationship   found   when   using   real   data   and   the   theoretical   hypothesis   of   an   agglomeration  

shadow.  

Our  study  also  shows  that  in  the  long  run,  geography  plays  a  much  more  important  role  than  

in   the   short   run,   in   terms   of   the   significance   levels   of   the   distance-­‐to-­‐ports   variables,   their  

magnitudes  and  explanatory  power   in   the  model.   Investment  and  government  expenditure  can  

increase  short-­‐run  growth,  but  not  significantly   in   the   long  run.  Only  educational   investment   is  

found   effective   to   help   alleviate   geographic   disadvantage   for   laggard   areas   in   the   long   run.  

Therefore,  regional  policies  for  balanced  development  should  be  “moving  people”,  in  other  words,  

free  mobility  of   labor  out  of  disadvantageous   regions,   rather   than   “moving  money”  by  physical  

capital   investment   and   government-­‐sponsored   projects.   The   only   effective   “moving   money”  

policy   is   to   invest   in  human  capital   in   laggard  regions   to  make  people  more  capable  of  making  

choices  between  moving  out  and  staying.  

Page 24: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  24  /  39    

References:  

1. Anderson,  G.,  Ying  Ge,  2005.  The  Size  Distribution  of  Chinese  Cities,  Regional  Science  and  

Urban  Economics  35,  756–776.  

2. Au,  Chun-­‐Chung,   J.  Vernon  Henderson,  2006a.  Are  Chinese  Cities  Too  Small?  Review  of  

Economic  Studies  73,  549–576.  

3. Au,   Chun-­‐Chung,   J.   Vernon   Henderson,   2006b.   How   Migration   Restrictions   Limit  

Agglomeration   and   Productivity   in   China,   Journal   of   Development   Economics   80,  

350–388.  

4. Baldwin,   R.   E.,   R.   Forslid,   P.   Martin,   G.I.P.   Ottaviano   and   F.   Robert-­‐Nicoud,   2003,  

Economic  Geography  and  Public  Policy,  Princeton:  Princeton  University  Press.  

5. Bao,   Shuming,   Gene   Hsin   Chang,   Jeffrey   D.   Sachs,   Wing   Thye   Woo,   2002.   Geographic  

Factors   and   China’s   Regional   Development   under   Market   Reforms,   1978–1998,   China  

Economic  Review  13,  89–111.  

6. Barro,   Robert   J.,   2000.   Inequality   and   Growth   in   a   Panel   of   Countries,   Journal   of  

Economic  Growth  5,  87–120.  

7. Black,  Duncan,  J.  Vernon  Henderson,  1999.  Spatial  Evolution  of  Population  and  Industry  

in  the  United  States,  American  Economic  Review  89,  321–327.  

8. Brandt,  Loren,  Trevor  Tombe  and  Xiaodong  Zhu,  2010.  Factor  Market  Distortions  across  

Time,  Space,  and  Sectors  in  China,  University  of  Toronto  Working  Paper.  

9. Brülhart,  M.,  P.  Koenig,  2006.  New  Economic  Geography  Meets  Comecon,  Economics  of  

Transition  14,  245–267.  

10. Chen,   Min,   Qihan   Gui,   Ming   Lu,   Zhao   Chen,   2007.   Economic   Opening   and   Domestic  

Market  Integration,   in  Ross  Garnaut  and  Ligang  Song  (eds.),  China:  Linking  Markets   for  

Growth,  Asia  Pacific  Press,  369–393.  

11. Chen,   Zhao,   Yu   Jin,  Ming   Lu,   2008.   Economic  Opening   and   Industrial  Agglomeration   in  

China,  in  M.  Fujita,  S.  Kumagai  and  K.  Nishikimi  (eds.),  Economic  Integration  in  East  Asia,  

Perspectives   from   Spatial   and   Neoclassical   Economics,   Edward   Elgar   Publishing,  

276–315.  

12. Clarke,   G.   R.   G.,   1995,   “More  Evidence   on   Income  Distribution   and  Growth,”   Journal   of  

Development  Economics,  47,  403–427.  

13. Combes,   Pierre-­‐Philippe,   2000.   Economic   Structure   and   Local   Growth:   France,  

1984–1993,  Journal  of  Urban  Economics  47,  329–355.  

14. Dobkins,  L.,  Y.  Ioannides,  2000.  Dynamic  Evolution  of  the  Size  Distribution  of  U.S.  Cities,  

in  J.  M.  Huriot,  J.  F.  Thisse  (eds.),  Economics  of  Cities,  Cambridge:  Cambridge  University  

Press,  217–260.  

15. Dobkins,   L.,   Y.   Ioannides,   2001.   Spatial   Interactions   among   U.S.   Cities:   1900–1990,  

Regional  Science  and  Urban  Economics  31,  701–731.  

16. Fujita,  M.,   1988.  A  Monopolistic   Competition  Model   of   Spatial  Agglomeration,  Regional  

Science  and  Urban  Economics  18,  87–124.  

Page 25: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  25  /  39    

17. Fujita,  M.,   V.   Henderson,   Y.   Kanemoto,   T.  Mori,   2004.   Spatial   Distribution   of   Economic  

Activities  in  Japan  and  China,  in  V.  Henderson  and  J.  F.  Thisse  (eds.),  Handbook  of  Urban  

and  Regional  Economics,  vol.4,  North-­‐Holland,  2911–2977.  

18. Fujita,   M.,   P.   R.   Krugman,   2004.   The   New   Economic   Geography:   Past,   Present   and   the  

Future,  Regional  Science  83,  139–164.  

19. Fujita,   M.,   P.   R.   Krugman,   and   T.   Mori,   1999.   On   the   Evolution   of   Hierarchical   Urban  

Systems,  European  Economic  Review  43,  209–251.  

20. Fujita,  M.,   P.R.  Krugman,   and  A.J.   Venables,   1999.  The  Spatial  Economy:  Cities,  Regions  

and  International  Trade,  Cambridge,  Massachusetts:  MIT  Press.  

21. Fujita,   M.,   T.   Mori,   1996.   The   Role   of   Ports   in   the   Making   of   Major   Cities:  

Selfagglomeration  and  Hub-­‐effect,  Journal  of  Development  Economics  49,  93–120.  

22. Fujita,   M.,   T.  Mori,   1997.   Structural   Stability   and   Evolution   of   Urban   System,   Regional  

Science  and  Urban  Economics  27,  399–442.  

23. Fujita,  M.,   J.   F.   Thisse,   1996.   Economics   of   Agglomeration,   Journal   of   the   Japanese   and  

International  Economies  10,  339–378.  

24. Glaeser,  E.,   J.  Scheinkman,  and  A.  Shleifer,  1995.  Economic  Growth  in  a  Cross-­‐section  of  

Cities,  Journal  of  Monetary  Economics  36,  117–143.  

25. Hanson,  Gordon  H.,  1998.  Regional  Adjustment  to  Trade  Liberalization,  Regional  Science  

and  Urban  Economics  28,  419–444.  

26. Hanson,   Gordon  H.,   2001.   Scale   Economies   and   Geographic   Concentration   of   Industry,  

Journal  of  Economic  Geography  1,  255–276.  

27. Hanson,   Gordon   H.,   2005.   Market   Potential,   Increasing   Returns,   and   Geographic  

Concentration,  Journal  of  International  Economics  67,  1–24.  

28. Ho,   Chunyu,   Dan   Li,   2010.   Spatial   Dependence   and   Divergence   across   Chinese   Cities,  

Review  of  Development  Economics  14,  386–403.  

29. Ioannides,  Y.  M.,  H.  G.  Overman,  2004.  Spatial  Evolution  of  the  US  Urban  System,  Journal  

of  Economic  Geography  4,  131–156.  

30. Krugman,  P.,  1991.  Increasing  Returns  and  Economic  Geography,  Journal  of  Political  

Economy  99,  483–499.  

31. Krugman,   P.,   1993.   First  Nature,   Second  Nature,   and  Metropolitan   Location,   Journal   of  

Regional  Science  33,  129–144.  

32. Krugman,  P.,  1996.  Confronting  the  Mystery  of  Urban  Hierarchy,  Journal  of  the  Japanese  

and  International  Economies  10,  399–418.  

33. Krugman,  P.,  R.  L.  Elizondo,  1996.  Trade  Policy  and  the  Third  World  Metropolis,  Journal  

of  Development  Economics  49,  137–150.  

34. Lu,  Ming,   Zhao  Chen,   2009.   Fragmented  Growth:  Why  Economic  Opening  May  Worsen  

Domestic  Market  Segmentation?  (in  Chinese),  Economic  Research  Journal  3,  42–52.  

35. Lu,  Ming,   2013,   The   Power   of   Space:   Geography,   Politics   and   Urban   Development,   (in  

Chinese),  Shanghai  People’s  Press.    

Page 26: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  26  /  39    

36. National  Bureau  of  Statistics,  Chinese  Cities  Statistical  Yearbook  (1991–2007),  China  

Statistics  Press,  Beijing,  2007.  

37. Overman,  Henry  G.,  Y.  M.  Ioannides,  2001.  Cross-­‐Sectional  Evolution  of  the  U.S.  City  Size  

Distribution,  Journal  of  Urban  Economics  49,  543–566.  

38. Parsley,   D.,   S.   Wei,   2001.   Explaining   the   Border   Effect:   The   Role   of   Exchange   Rate  

Variability,   Shipping   Cost,   and   Geography,   Journal   of   International   Economics   55,  

87–105.  

39. Partridge,  M.  D.,  D.  S.  Rickman,  K.  Ali  and  M.  R.  Olfert,  2009.  Do  New  Economic  Geography  

Agglomeration   Shadows   Underlie   Current   Population   Dynamics   across   the   Urban  

Hierarchy?  Papers  in  Regional  Science  88,  445–466.  

40. Poncet,   S.,  2005.  A  Fragmented  China:  Measure  and  Determinants  of  Chinese  Domestic  

Market  Disintegration,  Review  of  International  Economics  13,  409–430.  

41. Venables,  A.  J.,  1996.  Equilibrium  Locations  of  Vertically  Linked  Industries,  International  

Economic  Review,  37,  341–359.  

42. Wan,  Guanghua,  Ming  Lu,  Zhao  Chen,  2007.  Globalization  and  Regional  Income  Inequality:  

Empirical  Evidence  from  within  China,  Review  of  Income  and  Wealth  53,  35–59.  

43. Wei,  S.,  1995.  The  Open  Door  Policy  and  China’s  Rapid  Growth:  Evidence  from  City-­‐level  

Data,  in  Takatoshi  Ito,  Anne  O.  Krueger  (eds.),  Growth  Theories  in  Light  of  the  East  Asian  

Experience,  NBER-­‐East  Asian  Seminar  on  Economics,  Vol.  4,  University  of  Chicago  Press.  

44. Young,  A.,  2000.  The  Razor’s  Edge:  Distortions  and   Incremental  Reform   in   the  People’s  

Republic  of  China,  Quarterly  Journal  of  Economics  115,  1091–1135.  

45. Zhang,  Jun,  2003.  Investment,  Investment  Efficiency,  and  Economic  Growth  in  China,  

Journal  of  Asian  Economics  14,  713–734  

Page 27: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  27  /  39    

 

 Figure  1:  Share  of  Industry  Value-­‐Added  in  GDP  (%)  in  China,  US  and  France  (1980–2008)  

Sources:  World  Bank  National  Accounts  data  and  OECD  National  Accounts  data  files.  

 

 

 

 

 Figure  2:  International  Trade,  Urbanization,  and  GDP  Growth  in  China  (1978–2008)  

Source:  NBS,  China  Statistical  Abstract  2009.  

 

Page 28: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  28  /  39    

 

 

 

HeilongJiang

Liaoning

Jinlin

Beijing [Inner Mongolia]

Tianjin Shandong

Jiangsu

Shanghai

Zhejiang

Fujian

g Guangdong [Guangxi]

[Tibet]

[Xinjiang]

[Ningxia]

[Sichuan]

[Qinhai]

[Gansu]

[Guizhou] [Yunnan]

[Chongqing]

[Shaanxi]

Hainan

(Hebei)

(Henan)

(Shanxi)

(Anhui)

(Jiangxi) (Hunan)

(Hubei)

Tianjin

Hong Kong

 Figure  3:  Distribution  of  Large  Cities,  Major  Ports,  and  Provinces  in  Mainland  China  

Note:  (1)  Deltas  and  squares  are  large  cities  and  major  ports  using  our  definitions,  respectively.  

    (2)  Provinces  in  square  brackets  are  located  in  the  West,  those  in  parentheses  are  in  the  

Center,  and  the  remainders  are  in  the  East.  

 

 

 

 

 

Page 29: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  29  /  39    

-9

-8

-7

-6

-5

-4

-3

-2

-1

00 200 400 600 800 1000 1200 1400 1600 1800 2000

Distance (km)

Gro

wth

(%)

Long runShort run

 Figure  4:  Distance  to  Major  Port  and  Urban  Economic  Growth  

 

Page 30: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  30  /  39    

 Figure  5:  Geographic  Distance  and  Urban  Economic  Growth

 

 

-1.5

-1.3

-1.1

-0.9

-0.7

-0.5

-0.3

-0.1 0 50 100 150 200 250 300 350 400 450

Distance (km)

Gro

wth

(%)

 Figure  6:  Distance  to  Large  City  and  Urban  Economic  Growth  

Page 31: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  31  /  39    

-6

-5

-4

-3

-2

-1

00 200 400 600 800 1000 1200 1400 1600 1800 2000

Distance (km)

Gro

wth

(%)

Other variables controlledOnly distance variables controlled

 Figure  7:  Distance  to  Major  Ports  and  Urban  Economic  Growth  

 

Page 32: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  32  /  39    

 

 

 

Table  1:  Number  of  China’s  Cities  

Year   Total   Municipalities   Prefecture-­‐level  cities   County-­‐level  cities  

1990   467   3   185   279  1995   640   3   210   427  2000   663   4   259   400  2005   657   4   283   370  

Source:  NBS,  Chinese  Urban  Statistical  Yearbooks  (1991–2006).  

Note:1)Our  database  does  not  include  information  for  Hong  Kong,  Macao,  Taiwan  and  Tibet.  

                            2)       Sub-­‐provincial  cities  are  also  included  in  the  prefecture-­‐level  cities.  

 

 

 

Table  2:  China’s  Urban  Hierarchy  

Year   Prefecture-­‐  level  and  above  

cities  

Provincial  capitals    

Nonagricultural  population>2  

million  

Nonagricultural  population>1.5  

million  

Nonagricultural  population>1  

million  1990   185   29   9   14   31  1995   210   29   10   16   32  2000   259   30   13   18   38  2005   286   30   22   31   54  

Source:  NBS,  Chinese  Urban  Statistical  Yearbooks  (1991–2006).  

Note:Provincial  capitals  include  both  municipalities  and  other  provincial  capitals.  

 

 

 

 

 

 

 

 

Page 33: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  33  /  39    

Table  3:  Descriptive  Statistics  

Variable   Obs   Mean   Std.  Dev.   Min.   Max.  dgdp(%)   208   8.36   2.82   –0.37   17.10  distbig(km)   286   291.33     251.35     0   2351.8  disport(km)   286   896.75     542.90     0   3526.4  largecity   286   0.07     0.26     0   1  

gdpofbig(100  million  yuan)  

286   114.93   80.74   37.36   344.47  

samepro   286   0.41     0.49     0   1  seaport   286   0.11     0.32     0   1  riverport   286   0.08     0.28     0   1  center   286   0.35     0.48     0   1  west   286   0.29     0.46     0   1  

gdp  per  capita(yuan)   210   3581.30   2120.26   382.23   19820.83  inve(%)   210   25.91     16.67     1.54   127.88  labor(%)   209   57.60   7.79   30.01   93.79  edu(%)   205   4.61     0.803   3.02   7.48  gov(%)   199   10.27   3.82   1.04   29.16  fdi(%)   145   3.28     9.78     0.01   100.99  urb(%)   211   59.40     23.62     8.05   96.53  

density  (per  km2)   210   11849.77     4180.96     3631   32920  SM(%)   210   59.53     31.95     7.14   188.51  capital   286   0.11     0.31     0   1  open   286   0.05     0.21     0   1  SEZ   286   0.02     0.15     0   1  

 

 

 

 

 

 

 

 

 

 

 

Page 34: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  34  /  39    

Table  4:  Geography  and  Urban  Economic  Growth  

(Dependent  variable  is  the  compound  average  growth  rate  between  1990  and  2006.)  

  (1)   (2)   (3)   (4)     dgdp   dgdp   dgdp   dgdp  disport/103   –0.215   –12.9**   –11.2**   –7.37***     (0.716)   (5.55)   (4.29)   (2.79)  disport2/106     15.0**   12.8***   8.81***       (6.79)   (4.82)   (3.03)  disport3/109     –4.98**   –4.17**   –3.14***       (2.36)   (1.60)   (0.995)  distbig/103   –1.69   –4.99   –8.02**   –5.58**     (1.49)   (7.35)   (3.52)   (2.21)  distbig2/106     6.76   13.2**   12.1***       (14.8)   (5.40)   (3.54)  distbig3/109     3.57           (7.59)      largecity   0.754   0.883   0.724       (0.918)   (0.988)   (0.925)    gdpofbig0   –0.549   –0.742   –0.763       (0.625)   (0.637)   (0.633)    samepro   –1.947***   –2.165***   –2.211***       (0.666)   (0.707)   (0.697)    seaport   1.978**   2.022**   1.962**       (0.838)   (0.843)   (0.831)    riverport   0.752   0.730   0.614       (0.649)   (0.693)   (0.645)    center   –1.391*   –0.989   –1.025       (0.797)   (0.812)   (0.806)    west   –0.980   –1.349   –1.330       (0.878)   (0.878)   (0.874)    lngdp   –0.845   –1.249*   –1.201       (0.726)   (0.745)   (0.735)    inve/102   –3.45*   –2.78   –2.74       (2.01)   (2.01)   (2.00)    labor/102   4.27   4.16   4.11       (3.36)   (3.44)   (3.43)    edu   0.552***   0.590***   0.584***       (0.172)   (0.171)   (0.170)    gov/102   4.39   2.69   3.07       (7.43)   (7.53)   (7.46)    fdi/102   3.05   1.46   1.32       (2.56)   (2.62)   (2.59)    urb/102   0.70   0.35   0.46       (1.35)   (1.36)   (1.33)    density/104     2.15   2.70   2.80       (2.07)   (2.08)   (2.06)    density2/109   –5.07   –7.77   –7.99       (6.00)   (6.05)   (6.01)    SM/103   –8.87   –5.16   –4.75       (10.6)   (10.7)   (10.6)    capital   1.051   0.598   0.548       (0.775)   (0.792)   (0.782)    open   –0.348   –0.287   –0.282       (1.043)   (1.031)   (1.027)    SEZ   –1.798   –1.976   –2.005       (1.436)   (1.416)   (1.410)    Constant   13.06*   19.72**   19.39**   10.39***     (7.626)   (8.290)   (8.230)   (0.847)  

Page 35: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  35  /  39    

Observations   132   132   132   202  R2   0.387   0.430   0.428   0.069  

Notes:  (1)  Standard  errors  in  parentheses;  

(2)  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  

 

 

Page 36: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  36  /  39    

Table  5:  Robustness:  Distance  and  Urban  Economic  Growth  

  (3)   (5)   (6)   (7)   (8)     dgdp   dgdp   dgdp   dgdp   dgdp2  disport/103   –11.2**   –3.73   –3.84     –13.9***     (4.29)   (2.50)   (2.53)     (5.27)  disport2/106   12.8***   3.59*   3.70*     14.6**     (4.82)   (2.10)   (2.13)     (6.19)  disport3/109   –4.17**   –0.854*   –0.876*     –4.28**     (1.60)   (0.463)   (0.4.69)     (2.07)  disport3/103         –8.81             (5.54)    disport32/106         14.4*             (7.55)    disport33/109         –7.42**             (3.30)    distbig/103   –8.02**       –9.53**   –9.25*     (3.52)       (4.30)   (5.40)  distbig2/106   13.2**       14.7**   10.7     (5.40)       (5.68)   (8.04)  distcap/103     –7.48***   –10.4           (2.50)   (8.53)      distcap2/106       7.05             (19.8)      gdpofcap     –2.011***   –2.036***           (0.423)   (0.430)      Other  controls   Y   Y   Y   Y   Y  Observations   132   132   132   132   192  R2   0.428   0.492   0.493   0.434   0.373  Notes:  (1)  Standard  errors  in  parentheses;  

(2)  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  

 

 

 

 

 

Page 37: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  37  /  39    

Table  6:  Urban  Economic  Growth  in  the  Short,  Medium  and  Long  Run  

    (9)   (10)   (3)     short  run   medium  run   long  run  

disport/103   -­‐15.6**   -­‐16.3***   –11.2**     (6.8)   (5.8)   (4.29)  disport2/106   18.0**   17.4***   12.8***     (7.5)   (6.5)   (4.82)  disport3/109   -­‐6.09**   -­‐5.41**   –4.17**     (2.40)   (2.12)   (1.60)  distbig/103   -­‐17.2***   -­‐10.8**   –8.02**     (5.5)   (4.5)   (3.52)  distbig2/106   22.5***   16.3**   13.2**     (8.1)   (7.1)   (5.40)  largecity   1.436   2.354*   0.724     (1.849)   (1.424)   (0.925)  gdpofbig0   -­‐1.355   -­‐0.301   –0.763     (1.083)   (0.886)   (0.633)  samepro   -­‐5.359***   -­‐4.171***   –2.211***     (1.112)   (0.907)   (0.697)  seaport   3.298**   3.198**   1.962**     (1.588)   (1.247)   (0.831)  riverport   -­‐0.111   0.548   0.614     (1.309)   (1.012)   (0.645)  center   -­‐0.138   -­‐0.287   –1.025     (1.358)   (1.102)   (0.806)  west   -­‐0.365   -­‐0.004   –1.330  

  (1.485)   (1.221)   (0.874)  lngdp   -­‐2.680***   -­‐2.858***   –1.201     (0.809)   (0.720)   (0.735)  inve/102   8.7***   3.5**   –2.74     (2.0)   (1.7)   (2.00)  labor/102   -­‐10.4***   -­‐10.0***   4.11     (2.0)   (1.6)   (3.43)  edu   0.482   0.289   0.584***     (0.468)   (0.321)   (0.170)  gov/102   26.9***   16.7**   3.07     (8.9)   (7.5)   (7.46)  fdi/102   1.6   2.4   1.32     (18.9)   (17.5)   (2.59)  urb/102   6.7***   1.5   4.60     (1.9)   (1.6)   (13.3)  density/104   -­‐17.50***   -­‐0.77   2.80     (1.50)   (3.04)   (2.06)  density2/109   68.20***   8.48   –7.99     (2.25)   (11.00)   (6.01)  SM/103   -­‐5.72   -­‐7.19   –4.75     (8.52)   (7.22)   (10.6)  capital   0.549   -­‐0.248   0.548     (1.558)   (1.186)   (0.782)  open   -­‐0.614   -­‐0.050   –0.282     (2.070)   (1.587)   (1.027)  SEZ   -­‐5.811**   -­‐2.364   –2.005     (2.801)   (2.216)   (1.410)  Constant   49.38***   41.05***   19.39**  

Page 38: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  38  /  39    

  (11.10)   (9.52)   (8.23)  Observations   2793   561   132  R2   0.346   0.170   0.428  

Notes:  (1)  Standard  errors  in  parentheses;  

(2)  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.  

Page 39: Agglomeration$Shadow:$!4!/39!! later!rises!as!dispersion!forces!dominate.!Later,!the!curve!will!again!decline!for!more!remote! areas.Consequently,an!agglomeration!shadow!exists!for!places

  39  /  39    

Table  7:Urban  Economic  Growth  in  the  Short,  Medium  and  Long  Run  (Only  Distance  Controlled)  

  (11)   (12)   (4)     short  run   medium  run   long  run  

disport/103   -­‐11.8**   -­‐2.7   –7.37***     (5.9)   (4.0)   (2.79)  disport2/106   13.1**   4.5   8.81***     (6.2)   (4.2)   (3.03)  disport3/109   -­‐4.04**   -­‐1.88   –3.14***  

  (1.99)   (1.37)   (0.995)  distbig/103   -­‐7.1   -­‐3.9   –5.58**     (5.0)   (3.2)   (2.21)  distbig2/106   12.8*   8.7*   12.1***     (7.3)   (4.9)   (3.54)  Constant   12.85***   8.82***   10.39***  

  (1.92)   (1.24)   (0.847)  Observations   3185   706   202  R2   0.002   0.006   0.069  

Notes:  (1)  Standard  errors  in  parentheses;  

(2)  *  p  <  0.10,  **  p  <  0.05,  ***  p  <  0.01.